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Abstract

In this paper we consider the Mixed-Integer Bilinear Programming problem,
a widely-used reformulation of the classical mixed-integer quadratic programming
problem. For this problem we describe a branch-and-cut algorithm for its exact
solution, based on a new family of intersection cuts derived from bilinear-specific
disjunctions. We also introduce a new branching rule that is specifically designed
for bilinear problems. We computationally analyze the behavior of the proposed
algorithm on a large set of mixed-integer quadratic instances from the MINLPlib
problem library. Our results show that our method, even without intersection
cuts, is competitive with a state-of-the-art mixed-integer nonlinear solver. As to
intersection cuts, their extensive use at each branching node tends to slow down
the solver for most problems in our test bed, but they are extremely effective for
some specific instances.

Keywords: (O) mixed-integer quadratic programming, bilinear programming, branch-
and-cut algorithms, intersection cuts, computational experiments.

1 Introduction

We consider a Mixed-Integer Bilinear Programming problem (MIBLP) of the following
form

(MIBLP ) minx c
Tx (1)

Ax = b (2)

`j ≤ xj ≤ uj, j = 1, . . . , n (3)

xj integer, j ∈ I (4)

xrk = xpk xqk , k = 1, . . . , K, (5)
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where x ∈ <n, matrix (A, b) has m rows and n+ 1 columns, and ` and u are lower/upper
bound vectors in <n, and I ⊆ N := {1, . . . , n} is the (possibly empty) index set of the
integer variables. Finally, a triple of indices (pk, qk, rk) in N is given for each k = 1, . . . , K,
for which the bilinear equation (5) is imposed. Case pk = qk is allowed, i.e., the model
can handle quadratic terms of the type xj = x2i . We assume that variables xpk and xqk
have finite bounds—possibly implied by other constraints.

Problem (1)–(4), obtained removing constraints (5) from the model, will be referred
to as the bilinear relaxation. This relaxation turns out to be a Mixed-Integer Linear
Programming problem (MILP). A solution x that is feasible for the bilinear relaxation
and does not satisfy inequalities (5) will be called bilinear infeasible.

Problem MIBLP is stated in a form where the bilinear and quadratic terms are isolated
from the linear ones, and are defined through the bilinear equations (5). It is self-
evident however that MIBLP can model (among others) a completely-general mixed-
integer quadratic programming problem of the form

(MIQP ) min aT0 x+ xTQ0x (6)

aTk x+ xTQk x@ b, k = 1, . . . ,m (7)

`j ≤ xj ≤ uj, j = 1, . . . , n (8)

xj integer, j ∈ I, (9)

with @ ∈ {≤,=,≥}, hence it is strongly NP-hard.
MIBLPs play a relevant role in mixed-integer nonconvex optimization. A general

approach for deriving convex relaxations to bilinear terms has been introduced by Mc-
Cormick [30], allowing the development of branch-and-bound algorithms. Many ef-
forts have been done in the literature to derive tight relaxations. The Reformulation-
Linearization Technique (RLT), introduced in [36] for solving continuous bilinear prob-
lems, computes lower bounds based on the solution of linear programming problems in
which some additional variables are used to linearize bilinear terms. Based on RLT, a
branch-and-cut algorithm for nonconvex quadratically constrained quadratic program-
ming problems was introduced in [5]. In [37], convex envelopes that involve all the
bilinear terms simultaneously were considered; this characterization is based on disjunc-
tive programming and does not introduce additional variables. In [1] real applications of
MIBLPs to location and product distribution situations were considered, and solved by
means of an exact algorithm that generates Benders’ cuts on the fly and uses them to
define a Lagrangian relaxation of the problem. Recently, MIBLPs in which all nonlinear
terms involve the product of one continuous and one integer variable were addressed in
[24]. For this special case, a reformulation obtained replacing an integer variable with
its binary expansion is presented, and the convex hull of the underlying mixed integer
linear set is analyzed. A branch-and-cut algorithm for a family of mixed-integer quadratic
programming problems was computationally analyzed in [9], while intersection cuts for
polynomial optimization were addressed in [8].

MIBLPs have a number of real-world applications and arise as subproblems in more
complex optimization problems. A typical application of bilinear optimization is repre-
sented by the pooling problem (see, Foulds, Haugland and Jörnsten [21]), that can be
seen as a combination of the classical network flow problem and of the blending problem
(which is a special minimum cost network flow problem). This problem is fundamental in
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many contexts, including petrochemical refining, wastewater treatment and mining, and
requires to optimize the flow rates over a given network satisfying some side constraints,
related to the quality on the final product composition. The network may also include
some inter-pool links, in which case discrete decisions about the use of some intermediate
components have to be taken. Alternative formulations, reformulation-linearization tech-
niques and heuristic algorithms for different variants of the pooling problem were given,
e.g., in [4, 26, 32, 15, 16], and [25].

Finally, we mention that other applications of MIBLPs can be found, e.g., in farm
management [10], cutting and packing [13], and supply chain [34].

Solvers for generic (mixed-integer) nonlinear problems include SCIP [38], BARON
[35], BONMIN [11], ANTIGONE [33], COUENNE [7], MOSEK [3], IPOPT [39], and
Knitro [12], among others.

The paper is organized as follows. In Section 2 we present a branch-and-cut algorithm
for the exact solution of MIBLP, embedding valid inequalities from the literature and a
new branching rule based on spatial branching. Section 3 introduces a new family of
valid inequalities belonging to the family of intersection cuts, and discusses possible ways
to derive those cuts. Section 4 gives some implementation details of our algorithms, that
are computationally evaluated in Section 5 using a large benchmark of instances from the
literature. Finally, some conclusions are drawn in Section 6

2 A branch-and-cut algorithm for MIBLP

Our solution algorithm for MIBLP relies on the solution of the bilinear relaxation (1)–
(4), in which nonlinear constraints (5) are initially removed. To this end, an effective
branch-and-cut MILP solver is used, which computes an optimal solution of the Linear
Programming (LP) relaxation (1)–(3) at the various nodes of the decision tree, and uses
branching to impose the integrality requirements. The solution algorithm is enriched
by the addition of locally-valid inequalities based on the bilinear conditions (5), that
are generated on the fly, to improve the LP relaxation at the current node. In case of
branching, we rely on the default branching decision of the MILP solver whenever this is
possible, and use a bilinear-specific (spatial) branching strategy only as a last resort, i.e.,
in case the current solution satisfies integrality conditions (4) but is bilinear infeasible.

The main ingredients of our solution scheme are described in the next subsections.
To simplify our presentation, with a little abuse of notation, we will sometimes denote
the generic (single) bilinear equation (5) and the associated variables’ bounds by

z = x y (10)

`x ≤ x ≤ ux (11)

`y ≤ y ≤ uy (12)

where x, y, z ∈ < denote scalar variables (possibly, x ≡ y).

2.1 McCormick inequalities

As already mentioned, our solution algorithm is based on the dynamic separation of
locally valid inequalities which are used to strengthen the formulation and ensure that
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the returned solution satisfies bilinear conditions (5). In this section we describe the
classical McCormick inequalities ([31, 2]) associated with a triple of variables involved
in the bilinear equations (5). A new class of inequalities, that contains intersection cuts
([6]) based on different bilinear-free polyhedra, will be described in Section 3.

It is known [31, 2] that the convex hull of the points (x, y, z) ∈ <3 satisfying (10)–(12)
is defined by the following McCormick inequalities :

mc1) z ≥ `yx+ `xy − `x`y (13)

mc2) z ≥ uyx+ uxy − uxuy (14)

mc3) z ≤ uyx+ `xy − `xuy (15)

mc4) z ≤ `yx+ uxy − ux`y (16)

which are in turn obtained from the obvious condition

(x− `x)(y − `y) ≥ 0 (17)

(x− ux)(y − uy) ≥ 0 (18)

(x− `x)(y − uy) ≤ 0 (19)

(x− ux)(y − `y) ≤ 0 (20)

by replacing xy by z. As such, these linear inequalities are tight only when x and/or y
are at their lower or upper bound (in which case the left-hand side of one of (17)–(20) is
exactly equal to zero), while in all other cases they give a lower or upper approximation
of z = xy whose quality depends on the distance of x and y from their bounds. These
considerations show the importance of having reduced domains for the x and y variables,
obtained either by preprocessing or by branching.

While McCormick inequalities are the best possible linear cuts in the (x, y, z) space
for the general case, improved linear inequalities can be obtained when the feasible x
and y variables must satisfy additional conditions such as x ≤ y or alike. A particularly
relevant case arises when x = y, i.e., in the quadratic case z = x2. Here, (17) and (18)
are useless as they are dominated by the bound conditions, and can be replaced by the
family of gradient cuts

z ≥ x20 + 2x0(x− x0), for each x0 ∈ < (21)

that describe the convex set z ≥ x2. As to (19), it coincides with (20) and gives the
best-possible linear (upper) approximation of the nonconvex region z ≤ x2 over the close
segment [lx, ux].

2.2 Bilinear-specific branching rule

As already mentioned, our algorithm performs branching on integer variables, when pos-
sible. At every branching node where the current LP solution is integer but bilinear
infeasible and cannot be cut by our cut separation procedures, we need to perform a
branching operation. A typical branching criterion, known as spatial branching, consists
of reducing the domain of a certain variable xpk (say) involved in the right-hand side of a
violated bilinear equation (5); see, e.g., [7]. This is obtained by imposing the branching
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condition (xpk ≤ θ) ∨ (xpk ≥ θ), where θ is a threshold value to be determined. Typical
choices proposed in the literature are, e.g., θ = x∗pk or θ = (`pk +upk)/2, where `pk and upk
are the lower and upper bounds of xpk at the current branching node, respectively. As
already noticed, the rationale of these choices is that the reduced domain of the branching
variable xpk will tighten the McCormick inequalities in the child nodes. We next propose
an alternative definition of the threshold θ, based on the following argument.

To simplify notation, we will concentrate again on a single bilinear equation in the
system (5), written as in (10)–(12). Given (x∗, y∗, z∗) at the current node, we compute
the error

ρ∗ := z∗ − x∗y∗

whose absolute value is strictly positive in the case of interest. Assume ρ∗ > 0 (the case
ρ∗ < 0 is similar). Our order of business is to branch on the condition

(x ≤ θ) ∨ (x ≥ θ)

where θ = x∗ − δ and δ > 0 is a parameter to be defined later (the cases with x and y
swapped and/or θ = x∗ + δ are analogous).

By definition, in the left-hand branch the new upper bound condition x ≤ θ will be
violated by δ > 0 by the current point (x∗, y∗, z∗). As to the right-hand branch, we will
update the lower bound `x on variable x as follows

`x = x∗ − δ

thus improving the McCormick inequalities involving `x because we are reducing the
domain of x by removing the open segment [lx, θ) from it—recall that smaller domains
result into improved McCormick inequalities. Our idea is to require that at least one of
these inequalities be violated by the same amount δ, so as to “balance” the two child
nodes.

As an illustration, the McCormick inequality (19) becomes

(x− x∗ + δ)(y − uy) ≤ 0

in the right-hand branch (the other McCormick inequalities can be dealt with in a very
similar way). Rewriting the above condition as

xy − xuy − x∗y + x∗uy + δy − δuy ≤ 0

and replacing xy by z leads to the McCormick inequality for the right-hand branch

z − xuy − x∗y + x∗uy + δy − δuy ≤ 0.

By imposing this inequality be violated by δ w.r.t (x∗, y∗, z∗) we obtain

z∗ − x∗uy − x∗y∗ + x∗uy + δy∗ − δuy = δ

i.e.
(z∗ − x∗y∗) + δy∗ − δuy = δ

hence
ρ∗ = δ (1 + uy − y∗)
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Algorithm 1: Our branching procedure

Input : The bilinear-infeasible point x∗ and the variable bounds (`, u) at the
current node; the tolerance value ε for constraint violation;

Output: The branching variable xbvar and the corresponding threshold value θ for
spatial branching;

1 δ := −∞; bvar := −1; θ := 0;
2 for each k ∈ {1, . . . , K} with |x∗rk − x

∗
pk
x∗qk | > ε do

3 branch score(x∗, `, u, pk, qk, rk, bvar, δ, θ);

4 branch score(x∗, `, u, qk, pk, rk, bvar, δ, θ);

5 end

6 if (θ < `bvar + 10 ε or θ > ubvar − 10 ε) then θ := (`bvar + ubvar)/2 endif;
7 return (bvar, θ);

Algorithm 2: function branch score(x∗, `, u, ix, iy, iz, bvar, δ, θ)

ρ∗ = x∗iz − x∗ix x∗iy;
if (ρ∗ < −ε) then // x∗iz too small: use McCormick ineq.s mc1–mc2 to increase it

d := −ρ∗/(1 + x∗iy − `iy);
if (d > δ) then bvar := ix, θ := x∗ix − d, δ := d endif;
d := −ρ∗/(1 + uiy − x∗iy);
if (d > δ) then bvar := ix, θ := x∗ix + d, δ := d endif;

end
if (ρ∗ > ε) then // x∗iz too large: use McCormick ineq.s mc3–mc4 to reduce it

d := ρ∗/(1 + uiy − x∗iy);
if (d > δ) then bvar := ix, θ := x∗ix − d, δ = d endif;

d := ρ∗/(1 + x∗iy − `iy);
if (d > δ) then bvar := ix, θ := x∗ix + d, δ := d endif;

end

that finally yields
δ = ρ∗/(1 + uy − y∗) > 0

(recall that we assume ρ∗ > 0). Given a set of violated bilinear conditions (5), we
determine the branching condition (i.e., branching variable and value of θ) as the one
associated with maximum value of δ.

Our detailed branching procedure is given in Algorithm 1, where the update func-
tion branch score described in Algorithm 2 is used to update the best (i.e., maximum)
achievable δ. Thus, the so-far best δ is initialized at Step 1 of Algorithm 1, and is updated
at Steps 3 and 4 for each violated bilinear equation. Note that, at Step 4, the role of pk
and qk (i.e., of x and y) is just swapped. As to Step 6, it avoids that the threshold θ is
too close to one of the bounds. As to the violation tolerance, in our implementation we
used ε = 10−6.

6



3 Intersection cuts for bilinear programming

In this section we introduce a new class of valid inequalities for MIBLP based on inter-
section cuts. The separation of these inequalities relies on the fact that the solution to
be cut corresponds to a vertex of the current LP relaxation.

3.1 Intersection cuts

Intersection cuts have been introduced in [6] in the 1970’s, and are widely used in Mixed-
Integer Programming; the reader is referred to Ch. 6 “Intersection Cuts and Corner
Polyhedra” in [14] for a recent in-depth treatment of the subject.

The definition of an intersection cut (IC) violated by a given point x∗ ∈ <n (say)
requires the definition of two sets:

1. a cone pointed at x∗ that contains all the bilinear-feasible solutions; and

2. a convex set (a polyhedron, in our case) S containing x∗ but including no bilinear-
feasible solutions in its interior.

Note that the latter condition replaces the usual “lattice free” property (exploited in
classical MILPs) with the bilinear-free one.

It is well known that, in the definition of an IC, the larger S, and the smaller the cone,
the better the resulting IC. As to the first requirement, we observe that, as customary in
mixed-integer programming, our ICs are generated for vertices of the current relaxation,
so a suitable cone is just the corner polyhedron associated with the corresponding opti-
mal basis. All relevant information about this cone is readily available in the “optimal
tableau”. As the LP relaxation at a given branching node exploits locally-valid informa-
tion (notably, the reduced variable domain resulting from branching), our ICs are locally
(as opposed to globally) valid.

The second point (namely, the definition of a proper set S), will be discussed in
Subsection 3.2.

We next describe how we compute ICs in a numerically reliable way, by exploiting
their “disjunctive interpretation” [22, 23]; see [18] for more details.

To ease exposition, let the LP model at the given branch-and-cut node be formulated
in its standard form as

min{ĉTx : Âx = b̂, x ≥ 0}.
Now let x∗ be an optimal vertex of the above LP, associated with a certain basis B̂ (say)
of Â, and let the bilinear-free polyhedron S of interest be defined as

S = {x : gTi x ≤ g0i, i = 1, . . . , k}.

We aim at deriving a valid inequality, violated by x∗, from the feasibility condition “x
cannot belong to the interior of S”. To this end, we observe that the latter condition can
be reformulated as the k-term disjunction:

k∨
i=1

(gTi x ≥ gi0) (22)

where we write ≥ instead of > as a feasible x can in fact belong to the frontier of S. ICs
are then obtained by the 3-step procedure below:
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1. For i = 1, . . . , k, take the equivalent “reduced form” of gTi x ≥ gi0 with respect to
B̂, namely gTi x ≥ gi0 where (gTi , gi0) = (gTi , gi0) − uTi (Â, b̂) and uTi = (gi)

T
B̂
B̂−1

guarantees that all basic variables have 0 coefficient in the reduced inequality.

2. Normalize all right-hand sides by dividing each reduced-form inequality by gi0,
the latter term being strictly positive as gTi x ≥ gi0 is strictly violated by x∗, and
gTi x

∗ = 0 by construction.

3. Combine the resulting ≥ inequalities by taking, for each variable xj, the maximum
left-hand-side coefficients (while the right-hand-side is 1): the resulting inequality
is a weakening of the single inequalities gTi x ≥ gi0, hence it is valid for (22) and
violated (by 1) by x∗.

It is important to observe that, at Step 1, the validity of the final IC does not require
the vectors uTi = (gi)

T
B̂
B̂−1 be computed with a very high numerical precision, as the

cut coefficients are computed by using the original data (Â, b̂) and not the (possibly
inaccurate) tableau information. This property is very important in practice, to ensure
the correctness of the method—numerical issues in computing uTi can reduce cut violation
but do not affect the validity of the final IC.

3.2 Bilinear-free sets

Given the solution to be separated, for each (x∗, y∗, z∗) such that |z∗ − x∗y∗| is larger
than a given tolerance ε > 0 (equal to 10−6 in our implementation), one can generate a
bilinear-free set S by simulating a branching operation on x (or y) and by collecting a
violated inequality for each branch.

To be more specific, assuming a k-way branch, the bilinear-free set S can be defined
as

S := {(x, y, z) : αtx+ βty + γtz ≤ δt, for t = 1, . . . , k} (23)

where, for each t = 1, . . . , k,

αtx+ βty + γtz ≥ δt (24)

is a valid inequality for the t-th branch which is strictly violated by (x∗, y∗, z∗). Note that
the sense of the inequalities in (23) is reverted with respect to (24), which implies that
no bilinear-feasible solution can belong to the interior of S, as required.

Our first bilinear-free set, S1, is based on the customary 2-way branch

(x ≤ x∗) ∨ (x ≥ x∗). (25)

(the case with x and y swapped is analogous). For each branch, we separate the corre-
sponding McCormick inequalities (13)–(16) for the updated lower/upper bounds on x,
and pick the one that is most violated with respect to (x∗, y∗, z∗).

Our second bilinear-free set, S2, is based on the 4-way branch

(x ≤ x∗, y ≤ y∗) ∨ (x ≤ x∗, y ≥ y∗) ∨ (x ≥ x∗, y ≤ y∗) ∨ (x ≥ x∗, y ≥ y∗) (26)
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For each branch, we separate again the corresponding McCormick inequalities (13)–(16)
for the updated lower/upper bounds on x and y, and pick the one that is most violated
with respect to (x∗, y∗, z∗).

Other bilinear-free set S could be defined in an analogous way, by just changing the
branching disjunction. E.g., one can use the branching rule described in Subsection 2.2,
or even branch on more elaborated conditions like

((y − `y)(x− y − x∗ + y∗) ≥ 0) ∨ ((`x − x)(x− y − x∗ + y∗) ≥ 0)

or
((x− `x)(x+ y − x∗ − y∗) ≤ 0) ∨ ((x− ux)(x+ y − x∗ − y∗) ≤ 0)

where the term x y is replaced by z, while x2 and y2 can be approximated by the gradient
cuts x2 ≥ (x∗)2+2x∗ (x−x∗) and y2 ≥ (y∗)2+2y∗ (y−y∗), respectively. According to our
preliminary tests, however, the corresponding intersection cuts do not seem to improve
the performance of our solver in a significant way. Thus, we removed them from our code,
to keep our implementation as clean as possible.

4 Branch-and-cut Implementation

In this section we briefly describe some implementation details that play an important
role in the design of an effective code. Our description is based on the actual MILP solver
we used (IBM ILOG CPLEX 12.8), but it extends easily to other solvers.

Our implementation solves a generic quadratic problem (6)–(9) written in its equiv-
alent form (1)–(5), and infers simple bounds on the auxiliary xrk variables appearing in
(5) from those of the corresponding xpk and xqk variables.

Our branch-and-cut algorithm is applied to the bilinear relaxation (1)–(4).
Due to the presence of callbacks, we need to work on the original variable space and

disable dual presolve reductions and nonlinear presolve reductions. In addition, if IC
separation is active we need to retrieve the LP basis at each node, which requires the
complete deactivation of all preprocessing operations (CPX PARAM PREIND=0).

Our implementation is thread safe, so we can select 1-thread or multi-thread (de-
terministic or opportunistic) parallel mode depending on the kind of tests we want to
perform.

Each time a new integer solution x∗ is found and is going to update the incumbent,
a specific “lazyconstraint callback” function is automatically invoked by CPLEX to let
the user possibly discard this solution for whatever reason, and possibly add a cut that
makes this solution infeasible. In this callback function, we first determine whether the
solution is in fact bilinear-feasible. If this is not the case, we try to cut it by using a
suitable McCormick/gradient or intersection cut. In case internal CPLEX’s heuristics
produced a bilinear-infeasible candidate solution, for which an associated LP basis is not
available (hence, ICs cannot be derived), we just discard it. In our implementation, for
each violated bilinear equation (5) we first look for a violated McCormick/gradient cut.
If no such violated cut is found, we resort to IC separation by trying the bilinear-free sets
S1 first, and then the sets S2—as defined in Subsection 3.2. In any case we generate, at
most, one violated IC for each bilinear equation (5), discarding cuts that are numerically
unreliable and hence error prone.
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Immediately before branching, at each node CPLEX automatically invokes an “user-
cut callback” function where violated McCormick/gradient or intersection cuts can be
generated. In our default setting, however, this callback is not installed, meaning that we
do not generate bilinear-specific cuts for fractional solutions but only rely on the internal
CPLEX’s cuts.

Note that CPLEX is not aware of the existence of bilinear constraints, so it would not
branch on a solution that satisfies all the linear and integrality constraints (even if this
solution is bilinear infeasible). To circumvent this issue, one needs to change the problem
type to CPXPROB MILP (even if the problem does not involve any integer variable)
and to install a “branching callback” function that handles the bilinear-specific cases. In
our implementation, this function receives on input the branching condition chosen by
CPLEX: if this condition is not undefined (meaning that CPLEX knows how to branch),
then we just let CPLEX branch as usual; otherwise we check whether the current solution
is bilinear infeasible, in which case we apply our own branching rule.

5 Computational results

All the procedures described in the previous sections were coded in C language. To
asses the performance of our branch-and-cut algorithm, we performed an extensive com-
putational analysis on MIBLP instances from the literature. All the experiments were
executed on an Intel Xeon E3-1220V2 running at 3.10 GHz, with 16 GB of RAM each,
in single thread mode.

In the following, we compare the following approaches:

• SCIP: the direct application of the general-purpose solver SCIP [38] (version 5.0.1);

• basic: a branch-and-cut algorithm which implements our bilinear-specific branch-
ing rule (see Section 2.2), and separates McCormick inequalities only (see Section
2.1), without ICs;

• with-IC: a more sophisticated branch-and-cut algorithm obtained from the previous
one by separating intersection cuts at each node where the LP solution x∗ is integral,
as described in Section 3.1.

As one of the main goals of our tests was the evaluation of the role of ICs for bilinear
programming, and since our branch-and-cut schemes do not implement any bilinear-
specific primal heuristic, to reduce performance variability [20, 29] we decided to provide
on input to all solvers the optimal (or best-known) solution; this is customary when
analyzing the effect of cutting planes, and has been done, among many others, in [19, 27].

We ran each algorithm with a time limit of 3,600 CPU seconds. While SCIP was
applied directly to the quadratic model (6)–(9), algorithms basic and with-IC were
executed on the bilinear reformulation (1)–(5) of the problem. All the three algorithms
use IBM ILOG CPLEX (version 12.8) as LP solver; in addition, SCIP uses IPOPT [39]
(version 3.12.9) as NLP solver.

SCIP and CPLEX have different default values for what concerns their internal pa-
rameters. In addition, differently from our branch-and-cut implementations, SCIP does
not support multi-thread runs. Therefore, to have a fair comparison we had to find a
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common setting for running the three codes. To this end, SCIP was run with its de-
fault parameters but for the relative and absolute optimality gap that were set to 10−4

and 10−6, respectively (those being the default values for CPLEX). As for CPLEX, all
internal parameters were left to their default value, but the integrality and feasibility
tolerances (namely, CPX PARAM EPINT and CPX PARAM EPRHS) were set to 10−6

(as in the SCIP’s default). In addition, the sequential (1-thread) CPLEX’s mode was ac-
tivated (CPX PARAM THREADS = 1), internal CPLEX’s cuts were activated at their
aggressive level (namely, level 2), and CPLEX’s strong branching was selected.

Our benchmark was derived from the MINLPlib library, available at http://www.

minlplib.org/index.html, and containing instances coming from different sources. We
considered all the 768 instances that are available in .lp format, and removed all the
instances for which the root-node bilinear relaxation (1)–(3) is unbounded—as already
stated, our branch-and-cut scheme being not applicable in those situations. This pro-
duced our final testbed, containing 620 instances.

5.1 Preliminary experiments

During the development of our codes, we made a number of preliminary experiments
with several possible variants. We next report some of those preliminary computational
results.

Our first order of business was to evaluate the effectiveness of our new branching rule,
as described in Algorithm 1, with respect to a more classical rule from the literature. We
therefore implemented, using our CPLEX callback framework, the following branching
strategy taken from [7]. Given the current bilevel-infeasible solution x∗, we define for each
variable xj a branching score σ∗j that gives the total contribution of xj to the violation
of the bilinear equations (5), namely:

σ∗j :=
∑

k∈{1,...,K}:j∈{pk,qk}
|x∗rk − x

∗
pk
x∗qk |.

We then compute bvar := arg max{σ∗j : j ∈ N} and branch on the disjunction (xbvar ≤
θ) ∨ (xbvar ≥ θ), where

θ = αx∗bvar + (1− α)
`bvar + ubvar

2

and `bvar and ubvar are, respectively, the local lower and upper bound of xbvar at the
current branching node, with α = 0.25 as in [7].

Figure 1 (top) plots a performance profile comparing basic with its modified ver-
sion mod-basic (say) obtained by just replacing our branching rule with the branching
strategy described above. The two versions hit the time limit more or less on the same
MINLPlib instances in our testbed. Removing the time limits for both methods left 339
MINLPlib instances, on which basic had a significantly better performance in terms of
wins, i.e., of numbers of instances for which one algorithm required strictly less computing
time than the other one (basic had 222 wins, while mod-basic only 93 wins). All in all,
as shown in the figure, our new branching rule performed better, although the difference
was not striking for the hardest cases, hence we decided to use it in our codes.

Also related to branching, we implemented a variant of our code where McCormick
inequalities (that are separated only for integer solutions) were used as local constraints
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Figure 1: Performance profile comparisons (time shift of 1 sec.): alternative branching
rule (top) and fractional cut separation only at the root node (bottom).

at the branching level. To be more specific, when we build each child node, besides
updating the lower/upped bound of the branching variable xbvar, we scan all the bilinear
inequalities (5) involving xbvar and separate the associated McCormick inequalities (with
the new lower or upper bound on xbvar) with respect to the current branching solution x∗:
all the violated McCormick inequalities that we find are then added as local constraints
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for the child node. In this way, we are sure that also the fractional optimal solutions of
the child subproblem are affected by the improved McCormick inequalities (while in the
original version this holds true only for the integer solutions). This new version of the
code was however not significantly better than the original one, so in the end we preferred
to stay with the simplest version without the above local constraints.

We also tried a variant of with-IC, called root-only, where all cuts—including ICs—
are separated also for fractional solutions (i.e., in both lazyconstraint and usercut call-
backs) at the root node; after the root node, ICs are deactivated and McCormick/gradient
cuts are only separated for integer solutions, as in basic. Figure 1 (bottom) plots the
corresponding performance profile on the MINLPlib instances. The cases where all three
versions hit the time limit have been removed; on the remaining 365 ones, both basic

and with-IC reached the time limit 36 times, while root-only hit it 64 times. Although
implementing a more clever tailing-off strategy could perhaps improve those figures, we
decided to stay with the safer option of avoiding the separation of fractional solutions—
even at the root node.

5.2 Final experiments

Table 1 reports the outcome of our final experiments on the 620 instances of our testbed.
For each algorithm we give:

• the number of instances solved to proven optimality within the given time limit
(#opt);

• the number of instances for which the algorithm proved optimality within the small-
est computing time, including ties (column “#fast”); instances for which all algo-
rithms hit the time limit are not counted in this figure;

• the arithmetic and the geometric means of the computing time (Tari, and Tgeo,
respectively); computing times are reported in CPU seconds, and geometric means
are shifted by 1 second; the reported figures include the instances for which all
solvers hit the time limit.

SCIP basic with-IC

#opt #fast Tari Tgeo #opt #fast Tari Tgeo #opt #fast Tari Tgeo

378 224 1480.58 34.45 328 156 1744.56 53.04 323 58 1787.33 67.93

Table 1: Results on 620 instances from the MINLPlib.

The performance of our branch-and-cut algorithms turns out to be not too far from
that of a highly-sophisticated solver such as SCIP. Note however that SCIP and CPLEX
are very different in terms of technology. Furthermore, our implementations use callbacks,
hence they are completely different from the SCIP’s one. Thus, it is not possible to assess
a direct comparison of our algorithms with SCIP—as a matter of fact, our use of SCIP
was only intended to show that our basic callback-based implementation, basic, is not
far from the state of the art.
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Figure 2 gives additional information about the relative performance of SCIP, basic
and with-IC. The figure plots the corresponding performance profile [17] on the 408
MINLPlib instances that could be solved by al least one of the three methods in the
1-hour time limit (i.e., we only removed the instances for which all methods hit the time
limit). It confirms that basic and SCIP have a quite close performance, while with-IC

is slightly worse.
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1.0
shift 1 sec.
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with-IC

Figure 2: Performance profile comparison of basic, SCIP and with-IC, on the 408
MINLPlib instances that could be solved by at least one method in the 1-hour time
limit (time shift of 1 sec.)

To gain additional computational insights, we considered the subset of instances for
which all algorithms converged, without numerical issues, to a proven optimal solution
within the time limit—although this introduces a bias in disfavor of SCIP, which solved
more problems within the time limit. This subset contains 248 instances of various
difficulty, that we partitioned into 5 non-overlapping classes C1, . . . , C5 defined as follows.
Given an instance i and an algorithm a, let tai be the computing time of algorithm a on
instance i. For each instance i we define t̄i := max

a
{tai}, and assign instance i to the class

k(i) such that

k(i) = 1 if t̄i ≤ 1, and 10k(i)−2 ≤ t̄i < 10k(i)−1 otherwise.

In other words, C1 contains the easiest instances that can be solved by all the algorithms
within 1 second; C2 contains all instances not in C1 that can be solved by all the algorithms
within 10 seconds, and so on. This is a fair policy for classifying instances because the
competing methods play an indistinguishable role in the class definition, so no bias is
expected.
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SCIP basic with-IC

Class Time #inst #fast Tari Tgeo #fast Tari Tgeo #fast Tari Tgeo

Range
C1 (0,1] 130 86 0.07 0.05 46 0.06 0.05 12 0.09 0.08
C2 (1,10] 40 11 2.58 1.22 24 1.23 0.70 6 1.74 1.10
C3 (10,100] 37 6 26.95 12.34 23 12.30 2.84 10 21.57 9.07
C4 (100,1000] 29 15 179.26 18.38 10 309.03 97.06 4 296.96 115.79
C5 (1000, 3600] 12 5 1153.15 154.94 5 789.24 66.83 2 954.65 84.14

ALL (0,3600] 248 123 81.23 0.90 108 76.39 0.77 34 84.46 1.15

Table 2: Results on the 248 MINLPlib instances than can be solved by all methods within
the 1-hour time limit.

Table 2 reports the performance of the three algorithms on the 5 classes defined above
and, in the last line, on the entire benchmark. For each class we report the number of
instances in the class and, for each algorithm, the average computing time and the number
of instances for which the algorithm was the fastest one.

Table 2 shows that basic outperforms SCIP for all classes but C1 and C4. The better
performance of SCIP on the very easy instances of class C1 can be explained by observing
SCIP includes many bilinear-specific tools—including specific preprocessing and the use
of a nonlinear solver—that evidently are instrumental to quickly solve (sometimes during
presolving) these very easy instances.

Table 3 gives the same information as in Table 2, but with a different grouping of the
instances intended to study the behavior of the three algorithms on subsets of harder-
and-harder instances. To this end, the testbed is partitioned into 5 classes G1, . . . , G5,
where Gk = Ck∪· · ·∪C5 (k = 1, . . . , 5). In other words, G1 contains all the instances, G2

contains all instances but the easiest ones (i.e., those that can be solved by all algorithms
in at most 1 second), and so on.

SCIP basic with-IC

Class Time #inst #fast Tari Tgeo #fast Tari Tgeo #fast Tari Tgeo

Range
G1 (0,3600] 248 123 81.23 0.90 108 76.39 0.77 34 84.46 1.15
G2 (1,3600] 118 37 170.65 8.19 62 160.48 6.05 22 177.42 10.67
G3 (10,3600] 78 26 256.84 21.14 38 242.15 17.36 16 267.51 33.02
G4 (100,3600] 41 20 464.30 34.33 15 449.58 87.02 6 489.46 105.46
G5 (1000,3600] 12 5 1153.15 154.94 5 789.24 66.83 2 954.65 84.14

Table 3: Results on the 248 MINLPlib instances than can be solved by all methods within
the 1-hour time limit.

Results in Table 3 confirm that basic is the best algorithm if the very easy instances in
class C1 (which can be solved by all algorithms within just 1 second) are removed. Indeed,
for class G2, algorithm basic turns out to be the fastest method in 62 (os opposed to 37
for SCIP) cases, and has a better average computing time.
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As to algorithm with-IC, it seldom produces significant improvements over basic

in terms of average computing time. This is not really surprising, in that it is a com-
mon (somehow frustrating) experience in mixed-integer programming that sophisticated
classes of cuts such as ICs and disjunctive cuts are not beneficial when a large and var-
ied testbed is considered. In addition, as observed in the implementation section, the
performance of with-IC (but not of basic) is affected in a negative way by the need
of deactivating preprocessing completely. However, there are a number of problems for
which ICs do produce a considerable speedup. Table 4 reports the computing times for
the three algorithms on a selected subset of nine instances for which with-IC is by far
the best algorithm, i.e., the addition of intersection cuts in the branch-and-cut algorithm
plays a relevant role in the possibility to solve these instances to optimality—or in reduc-
ing computing time. This behavior was confirmed (for those instances) by re-running our
codes with 5 different random seeds, so as to take performance variability into account.

Instance Application SCIP basic with-IC

blend531 Multiperiod Blend Scheduling 234.21 3600.00 31.05
crudeoil lee4 09 Crude Oil Scheduling 89.12 9.83 2.21
portfol classical050 1 Portfolio Optimization 57.03 54.37 33.26
powerflow0009r Electricity Network 3600.00 3600.00 969.12
powerflow0014r Electricity Network 3600.00 3600.00 302.77
sporttournament14 Sports Tournament 3600.00 182.41 125.50
squfl015-080 Facility Location 3600.00 238.53 137.32
squfl025-030 Facility Location 3600.00 44.46 18.72
turkey Agriculture 61.19 3600.00 0.11

Table 4: Selected instances for which adding intersection cuts is highly beneficial.

When analyzing the results reported in Figure 2, we realized that many of the 408
MINLPlib instances therein considered are in fact quite small: 144 (respectively, 188) of
them involve no more than 50 (respectively, 100) variables even after reformulation. It
turns out that some of them—including some toy instances named ex*—are just trivial
for SCIP (that leverages on an internal NLP solver), while they are quite hard for our
LP-based branch-and-cut solvers. On the other hand, removing a posteriori those small
instances from our testbed would have been unfair to SCIP as it would have produced a
biased dataset, so we decided to include all of them in our statistics. Nevertheless, it can
be of some interest to see a comparison of the three solvers on the instances that, after
reformulation, involve more than 50 (resp. 100) variables, as shown in the top (resp.,
bottom) plot in Figure 3.

All the reported results so far refer to sequential runs but, as already observed, our
implementation can easily handle multi-thread runs—the only requirement being that
the callbacks are implemented in a tread-safe mode. In Figure 4 we report a performance
profile comparing the running times of basic when run sequentially (i.e., with 1 thread,
as in the previous experiments) and in parallel mode (opportunistic with 4 threads).
Instances where both versions hit the time limit have been eliminated; on the remaining
349 instances, the sequential version hits the time limit 19 times, while the 4-thread
version only 2 times. According to the plot, a significant speedup can be achieved when
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Figure 3: Performance profile comparison of basic, SCIP and with-IC as in Figure 2,
when small instances are removed (time shift of 1 sec.)

exploiting parallelism. In particular, in about 20% of the cases we had a speedup of 3 or
more—speedups larger than 4 (about 10% of the cases) are mainly due to performance
variability [28, 20].
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Figure 4: Performance profile comparison of basic in sequential vs parallel (4-thread)
mode, with a time shift of 1 sec.

6 Conclusions

In this paper we have considered Mixed-Integer Bilinear Programming (MIBLP) prob-
lems, and proposed branch-and-cut algorithms for their exact solution. We have intro-
duced a new branching rule that is specifically designed for bilinear problems, and a
family of intersection cuts that can strengthen the formulation and possibly reduce the
computational effort required for solving the problem. We have computationally tested
our algorithms on a large set of instances from the MINLPlib problem library.

Our results show that the proposed algorithms are competitive with a general-purpose
state-of-the-art nonlinear solver (SCIP) for a large subset of instances, and that a con-
siderable speedup can be obtained for some specific problems because of the addition of
intersection cuts.

Future research should be be devoted to the definition of alternative bilinear-free sets,
that are required for deriving the intersection cuts. Understanding the relevant features
of a MIBLP instance that influence the performance of our algorithm is also an interesting
research topic, that could lead to an automated tuning of the main parameters of our
branch-and-cut algorithm—deciding, in particular, if IC separation must be activated or
not for the specific instance at hand.
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[17] E. D. Dolan and J.J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91(2):201–213, 2002.
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