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Abstract

The spread of viruses such as SARS-CoV-2 brought new challenges
to our society, including a stronger focus on safety across all businesses.
In particular, many countries have imposed a minimum social distance
between people in order to ensure their safety. This brings new challenges
to many customer-related businesses, such as restaurants, offices, etc., on
how to located their facilities under distancing constraints. We propose a
parallelism between this problem and the one of locating wind turbines in
an offshore area. Even if the two problems may seems very different, there
are many analogies between them. In particular, both problems require
fitting facilities (turbines or customers) in a given area while ensuring
a minimum distance between them. Similarly to nearby customers who
can infect each other, also nearby turbines “infect” each other by casting
wind shadows (the so-called “wake effect”) that cause production losses.
In both problems we want to minimize the interference/infection. The
solution of both problems will therefore favor solutions where facilities
are as spread as possible. The discovery of this parallelism between the
two applications allowed us to apply a recently published approach for
wind-farm layout design to produce optimized facility layouts subject to
social distancing constraints as those arising in the time of COVID-19
pandemic. These methods allow us to challenge the current (manual)
layouts and provide new insights on how to improve them. In particular
we show that optimized layout are far from trivial to design and that
Mathematical Optimization can make an impact, helping businesses while
ensuring safety.

Keywords: Social distancing, Mathematical Optimization, Mixed Integer
Linear Programming, COVID-19
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1 Introduction

In this paper we study the optimal positioning of people in a common area in
order to minimize the spread of viruses such as SARS-CoV-2. The re-opening
of many countries after lockdown, indeed, puts new challenges for many busi-
nesses as they want to ensure safety of their customers and personnel, while
still making a profit and offering their usual services. Many countries impose a
minimum distance between people in order to ensure safety, the so-called social
distancing constraint. This means that shared spaces (like offices, restaurants,
public transports, etc.) are now facing a new challenge that concerns fitting
their usual customers while respecting social distancing restrictions.

The challenge can be interpreted in different ways: on one side, we may want
to place as many “facilities” (e.g., customers) as possible in a given area while
fulfilling the social distancing requirement. One example can be a restaurant
where we want to fit as many tables as possible to ensure a profitable business
and customer satisfaction, while not putting customers at risk. On the other
side, we may have a fixed number of facilities that we want to fit in the most safe
way in a given area. One example can be a restaurant with a limited personnel
capacity and a large room available for tables, where the strategy is to fit a
predefined number of tables while maximizing the safety of the clients.

The intuition would tell us that, placing facilities at the maximum distance
one from each other would ensure the most safe layout. But is this enough? Also,
the challenge of the optimal placement of facilities is often solved manually, by
placing them at a fixed distance from one another. Is this a good strategy?

Our experience on a different, yet similar, problem (the wind farm layout
optimization problem), allowed us to verify these intuitions through compu-
tational experiments, thus bringing new light on the structure of the optimal
solutions under different constraints and objectives.

In particular, in this paper we will challenge the intuition that having a
regularly-spaced layout is an optimal choice, looking both at the variant of the
problem where we maximize the number of facilities, and at the version aimed
at the minimization of virus spread. We will do so by explicitly modelling (in
an admittedly simplified way) a possible spread function for the virus, and by
letting a Mathematical Optimization algorithm decide the best placement of
facilities. We will show that the optimized placement is often far from trivial,
and depends on the geometrical shape of the available area. We will see from our
results, for example, that positioning as many facilities as possible on the borders
of the available area tends to be a winning strategy, while the positions in the
center of the area should be avoid as much as possible as they are surrounded
in all directions by many other (potentially infectious) facilities. Whereas this
might seem unsurprising, we shall also demonstrate that the specific topologies
can be non-trivial.

Our ultimate goal is to show how the usage of sound Mathematical Opti-
mization algorithms can improve the layout of public spaces while decreasing
the spread of viruses.
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2 Optimal social distance and optimal wind
farm layout

The professional expertise of the first author concerns the usage of optimization
in the design phase of wind farms. Among other topics, she worked on the off-
shore wind farm layout optimization problem, which consists in deciding where
to place turbines in a given area in order to maximize production while reducing
costs [8, 4, 9, 6]. But what is the relationship between wind farms and social
distancing? Let us introduce the reader to the wind farm layout optimization
problem first, so that the similarities with the problem at hand will result more
clearly.

The offshore wind energy business in Europe is based on an auction system
where a country puts a well-defined offshore area on tender, and different com-
panies compete to get the rights to construct the wind farm in that area. The
company that can provide energy at the lower cost will get the right to construct
and operate the new offshore wind farm. Therefore each company wants to de-
sign the new wind farm minimizing costs and increasing profitability. This task
typically involves optimizing the placement of turbines within the given area.
A key aspect in the optimization is to take wake effects into account. The wake
effect is the interference phenomenon for which, if two turbines are located one
close to another, the upwind turbine creates a shadow on the one behind, see
e.g. [11]. This is of great importance in the design of the layout since it results
in a loss of power production for the turbines downstream, that are also subject
to a strong (hence damaging) turbulence. Also, nearby wind farms might need
to be considered in the optimization as they can also interfere with the new one.

Figure 1: Wake effect on a real wind farm (Horns Rev 1): regular layouts like
the one in the picture can be very inefficient for certain specific wind scenarios,
resulting into a greatly reduced energy production for the whole wind farm.
[Source: Vattenfall]

Given a certain wind scenario, defined by the wind intensity and direction,
the wake effect can be simply modelled as a cone, centered in the upwind tur-
bine, that fades away with distance (Jensen’s model [10]). Nevertheless, when
the wind farm layout problem is solved during the design phase, one needs to
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consider the full variability of the wind. As a matter of fact, considering only
one wind scenario would create a layout which is optimal for that specific wind
condition, but potentially highly suboptimal when the wind changes intensity
and/or direction. In [8] a method to consider the full variability of the wind
when optimizing the layout, is proposed. Intuitively, this method lets the opti-
mizer consider a weighted intersection of the interference cones for all possible
wind scenarios, where more likely scenarios have a higher weight in the com-
bination. Visually, this means that the interference becomes a star of cones
around the turbine. In practical applications with thousands of possible wind
scenarios, this star is so dense that it looks like a continuous interference shade
around the turbine, with more intense values in the main wind directions; see
Figure 2 for an illustration.

Figure 2: The interference between turbines can be visualized as a cone when
only one wind scenario is considered (left plot). In the design of an offshore
wind farm, however, the full variability of the wind needs to be considered, as
visualized in the right-hand-side plot. [Source: [3]]

In practical applications, a minimum and/or maximum number of turbines
to be located in the area can be imposed, together with a minimum distance
between turbines (to avoid the blades clash, and also for turbulence considera-
tions). There can be obstacles within the offshore area (such as natural reserves,
preexisting infrastructures, bad seabed areas etc.), which are areas where the
turbines cannot be located. The wind farm layout optimization problem there-
fore consists in locating a given number of turbines (or as many as profitable)
in a given area, ensuring a minimum distance between turbines and minimizing
the interference between them.

What about our problem about social distancing in a public place such as
a restaurant? It also consists in locating a given number of facilities (tables
or customers) in a given area, ensuring a minimum distance between them (le-
gal or recommended social distance) and minimizing the potential virus spread
between facilities.

In the wind farm layout problem the interference is a well-studied function
that represents the loss of power due to wake effect. In the social distancing
problem, instead, the interference is a function that represents the spread of the
virus. Both interference interpretations depend on the distance—the further the
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better. As we will see in more details in Section 4, we can already intuitively see
the similarity between the interference function between wind turbines (second
plot of Figure 2) and an infection function around customers (as, for example,
the one in the top-right plot of Figure 5) .

Our experience on the wind farm layout problem shows that optimal layouts
tend to use the borders of the available area, where the turbines create less in-
terference to other turbines. It also shows that traditional manual layouts where
turbines were placed on a regular grid, are highly sub-optimal as significantly
higher production can be achieved by a smarter (i.e., optimized) placement of
turbines. The resolution of the problem in practical applications is far from
trivial, and state-of-the-art Mathematical Optimization techniques have proved
to make a huge impact in the practical resolution of the problem [7].

Can we then use our wind farm expertise to provide private and public busi-
nesses with insights on how to optimally place customers, in order to minimize
the spread of the virus? Is it true also for this problem, that regular layouts are
often suboptimal?

3 Optimization model (for wind farms)

The first author proposed in [8] a Mixed Integer Linear Programming (MILP)
model for the wind farm layout problem. The overall area available is sampled
to define a discrete set V of possible positions, and a binary variable xi is defined
for each i ∈ V , taking value 1 if and only if a turbine is built at position i ∈ V .

The optimizer considers:

a) a minimum and maximum number of turbines that can be built;

b) a minimum separation distance between any pair of turbines, to ensure
that the blades do not physically clash;

c) the interference between installed turbines (wake effect).

Let

• Iij be the interference (loss of power) experienced by position j when a
turbine is installed at position i, with Ijj = 0 for all j ∈ V ; Jensen’s model
[10] can be used to compute such an interference;

• Pi be the power that a turbine would produce if built (alone) at position
i;

• Nmin and Nmax be the minimum and maximum number of turbines that
can be built, respectively;

• dij be the distance between positions i and j;

• Dmin be the minimum distance required between two turbines.
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In addition, let GI = (V,EI) denote an “incompatibility” undirected graph with

EI = { [i, j] : i, j ∈ V, dij < Dmin, i < j }.

A natural quadratic objective function (to be maximized) for our problem
reads ∑

i∈V
(Pixi − (

∑
j∈V

Iijxj)xi) (1)

and can be restated as ∑
i∈V

(Pixi − wi) (2)

where the continuous variable wi is defined as

wi =
(∑

j∈V
Iijxj

)
xi =

{ ∑
j∈V Iijxj if xi = 1;

0 if xi = 0

and denotes the total interference caused by a turbine built in position i. The
MILP model then reads

max z =
∑

i∈V (Pixi − wi) (3)

s.t. Nmin ≤
∑

i∈V xi ≤ Nmax (4)

xi + xj ≤ 1, [i, j] ∈ EI (5)∑
j∈V Iijxj ≤ wi +Mi(1− xi), i ∈ V (6)

xi ∈ {0, 1}, i ∈ V (7)

wi ≥ 0, i ∈ V. (8)

The objective function (3) maximizes the total power production by taking
interference losses into account. Constraints (4) impose a minimum and a max-
imum number of turbines that can be constructed in the area. If Nmin = Nmax,
then we are actually imposing to build a fixed number of turbines, otherwise the
optimizer can define the best number of turbines (within Nmin and Nmax) to be
located. Constraints (5) ensure the minimum distance between turbines. Con-
straints (6) force the correct value for variables wi; here, a big-M term Mi � 0
is used to deactivate the constraint in case xi = 0, namely

Mi =
∑

j∈V :(i,j)6∈EI

Iij .

Finally (7) and (8) define our binary and continuous variables, respectively.
As shown in details in [8], using a single index variable wi allows this model
to solve larger instances compared with equivalent two-index models in the
literature (e.g., [1, 2]). Another strength of this formulation is the ability of
easily dealing with multiple wind scenarios; the reader is again referred to [8]
for further details.

Based on the above model, a sound matheuristic [5] solution approach has
been developed in [8].
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4 Modelling virus spreading

Wake effects between turbines have been largely studied in the wind energy
literature, and well-established interference models exist in the literature [10].
As far as we know, however, the same does not hold for virus-spread functions,
in the sense that there is not widely-accepted and sufficiently simple models.
For recent CFD based models that takes ventilation air-flows into account please
refer to [12] and references there-in. The complexity, however, of CFD models
prohibits a feasible optimization setup.

Therefore we decided to analyse alternative functions that can be used to
define the interference matrix (Iij) used in our optimization model. These
functions are just illustrative and should be considered with caution as they
are not based on a careful pathogenic spread analysis or validated e.g. through
tracer gas experiments. Our aim is just to find a function that favors layouts
where the facilities are scattered among the available area even with Dmin = 0,
i.e., even without imposing explicitly a minimum distance between facilities.

When Iij has been defined, we assume that the “total virus exposure” (i.e.,
the infection risk) experienced by a customer sitting in position j is computed
as ∑

i∈V,i6=j

Iijxi,

where xi = 1 if a source of virus (e.g., a potentially-infected customer) is present
at position i, and xi = 0 otherwise.

Let dij represent the Euclidean distance (in meters) between positions i, j ∈
V , and let dmax be the maximum such distance. We consider the following
alternative definitions for the interference Iij that a facility located at position
i causes to a customer in position j at a distance dij ≥ 10−4; by convention,
Iij = 0 whenever dij < 10−4, which implies Iii = 0 for all i ∈ V :

Iij = dmax − dij (9)

Iij = e−d
2
ij/2 (10)

Iij = 1/dij (11)

Iij = 1/d2ij (12)

Iij = 1/d3ij (13)

Definition (9) considers an infection risk inversely proportional to the dis-
tance. At first glance, this would seem a reasonable assumption, but it turns
out to be a very bad choice: even when positioning just 3 facilities on a line
segment, an optimal solution will position two facilities and the endpoints of
the segment, while the third one can freely be located at any other point of
the segment without affecting the solution value—while we would expect the
optimal solution be unique and place the third facility on the middle point of
the segment.
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Definition (10) assumes the infection risk can be modeled as a Gaussian
function with variance σ2 = 1. This can be a realistic assumption to model the
trajectory of droplets, which are expected to decay rapidly and fall down within
1-2m or so.

Definitions (11) to (12) assume instead that a virus aerosol is spread uni-
formly on a 1- or 2- or 3-dimensional space, respectively. Indeed, in a k-
dimensional space a sphere of ray dij centered at position i (where the virus
aerosol is emitted) has a volume proportional to dkij . Thus, assuming a uniform
virus distribution within the sphere, the virus concentration at position j is
proportional to 1/dkij . In this view, definition (11) seems a realistic model only
for 1-dimensional problems where virus is spread along a line, while (12) and
(13) seems more suited for the 2- and 3-dimensional cases (the latter arguably
being the most realistic one).

4.1 Computational study of alternative virus-interference
functions

As already discussed, we are interested in defining the interference matrix (Iij)
in a way that favors the spread of facilities on the available area. In the next
subsections, we will therefore consider regular 1- and 2-dimensional areas and
compare the optimised layouts resulting from the alternative interference def-
initions. In those experiments, we fixed the number k of facilities to be lo-
cated (by setting Nmin = Nmax = k), we defined Pi = 0 for all i ∈ V (no
power production), and we did not require any minimum distance between fa-
cilities (Dmin = 0). In this way, we only evaluated the effect of the alternative
interference-matrix definitions in producing scattered layouts.

4.1.1 Positioning facilities on a line

In Figure 3 we consider the problem of positioning 10 facilities on a line seg-
ment, using the alternative interference definitions (9) to (13). As expected, the
two endpoints of the segment are selected in all cases—using the border of the
available area turns out to be a successful policy in wind farm design as well.
The layout in the top subfigure (definition (9)) is completely unsatisfactory in
terms of social distances, as the selected points define two clusters of five points
each, located beside the line endpoints. The second layout based on the Gaus-
sian function (10) is more regular, but still uses two pairs of almost-overlapping
positions beside the line endpoints. The remaining layouts are obtained with
(11) to (13), and allow for a satisfactory distancing among facilities.
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Figure 3: Positioning 10 facilities on a line using interference definitions (9) to
(13) (from top to bottom) .

4.1.2 Positioning facilities within a square

In Figure 4 we consider the problem of positioning 20 facilities within a square.
As expected, the border points are very attractive and the four edges contain
most of the built facilities. As in the 1-dimensional case, definition (9) produces
clusters of facilities on the four vertices of the square (top-left subfigure). Using
the Gaussian function (10) produces the more satisfactory layout of the top-right
subfigure, while the bottom-left subfigure refers to (11). The most satisfactory
layouts are obtained using definition (12) (bottom-right subfigure) and (13) (not
reported as identical to the one in the bottom-right subfigure).
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Figure 4: Positioning 20 facilities within a square area using definitions (9) (top-
left) to (12) (bottom-right); the layout using definition (13) is the same as the
one reported in the bottom-right subfigure.

Figure 5: Penalty measuring the infection level (i.e., the total interference) using
the interference definitions (9) (top-left subfigure) to (12) (bottom-right subfig-
ure). Penalty scales are different in each subfigure. The plot using definition
(13) is very similar to the one reported in the bottom-right subfigure, hence it
is omitted.
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Figure 5 plots the total interference
∑

i∈V,i6=j Iijxi perceived by each point
j ∈ V , by using alternative interference definitions. In the virus-spread context,
this is a measure of the probability of infection that depends on the location of
all the built facilities. The top-left subfigure confirms once again that definition
(9) is not adequate to represent virus spread, as the probability of infection is
almost uniform in the square—the total interference ranges from about 140 in
the center, and about 100 in the four corners where the facilities are actually
clustered.

On the whole, it seems that definition (13) qualifies as the most reliable
modelling formula of virus-aerosol spreading in an open-space environment—
among the considered ones—hence we will use it in the forthcoming experiments.

5 Applications

We next address some practical examples of optimized facility layout under
social distancing constraints.

5.1 Restaurants

Let us suppose we own a restaurant which has a certain space to place customer
tables (an indoor room, or a given outdoor space). This space could have
any shape and potentially have areas where tables cannot be placed (access to
security exits, structural elements in the room, outdoor trees or fountains, etc.).
We have to ensure a minimum distance between tables, as imposed by the local
government regulations, and at the same time we want to fit as many tables as
possible—even one more table can make a difference in the final income for the
day. Also, among the feasible layouts we would like to choose one that minimizes
the infection probability of the customers, measured though a suitable “virus
spread” function—we used definition (13) in our experiments. Most restaurants
are today solving this optimization challenge manually, often by placing tables
aligned in rows and at a regular distance one from one another. As we will see,
optimized solutions for this problem are not as regular as the manual ones—
positioning tables in a less-regular but smarter way can satisfy more customers
and reduce virus spread.

We considered two real cases to test the impact of optimizing table loca-
tion in the restoration business. Our two examples are a cafeteria in Italy (Bar
Nazionale, Padua) and a brewpub in Denmark (Brus, Copenhagen). Both busi-
nesses have an available outdoor area where they can place tables. Using online
satellite views (first plot of Figures 6 and 7), we identified the available area
for tables (red area in the second plot of Figures 6 and 7). Note, for example,
that in the case of Brus (Figure 7) the presence of a tree does not allow to place
tables in the middle part of the area, which was therefore excluded from the set
of available positions. Being able to easily exclude areas from the optimization
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also allows for the definition of free corridors for customer movements, as in
Figure 6.

Figure 6: Example of optimization of table placement for the outside area of a
cafeteria in Northern Italy. The available area for placing tables is highlighted
in red in the second plot.

Figure 7: Example of optimization of table placement for the outside serving
area of a brewpub in Denmark. The available area for placing tables is high-
lighted in red in the second plot.

5.1.1 Fitting more tables under social distancing rules

The first problem we would like to solve is to place as many tables as possible
in the available area, while of course complying with the minimum distance
between tables imposed by country’s regulations. In our model, this is easily
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obtained by setting Nmin = 0, Nmax = +∞, Dmin to the required value (e.g., 3m
center-to-center), and all Pi’s to a large positive value (103 in our experiments)
to favor building as many facilities as possible.

A näıve way to manually solve this problem is to locate tables on a regular
grid, starting from one angle of the available area and locating each new table
at the given minimum distance. Let us use this approach for the Italian Bar
Nazionale of Figure 6: we define a regular grid starting from the right bottom
corner and we put tables regularly at 3m distance. The result (and the underly-
ing 3x3 grid) is visualized in the first plot of Figure 8. In this way the restaurant
can locate 7 tables.

Then we try a more sophisticated approach, namely, we solve the table layout
problem using our optimization method. The result is shown in the second
plot of Figure 8: the optimizer could locate 10 tables, while still satisfying the
minimum distance of 3m.
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Figure 8: Example of optimization of table placement for the outside area of
cafeteria “Bar Nazionale” in Northern Italy. The tables are placed following
a manual approach (based on a super-imposed 3m × 3m regular grid) in the
first plot. The second plot shows the optimized placement of tables, still with
minimum distance of of 3m, using an optimization algorithm: 3 more tables can
be fit in the same area.

We will now address our second test case, namely, the Brus brewpub in
Copenhagen of Figure 7. The manual layout is defined here by imposing a
regular grid starting from the top corner of the available area (shown on the
plots of Figure 9). The manual approach could locate 30 tables (red dots in the
first plot of Figure 9), while our optimization method could locate 36 turbines
(red dots in the second plot of Figure 9). Having 6 more tables increases the
capacity for customers of 20%: this can make a significant difference in terms
of daily profits of the brewpub, without impacting the compliance to the local
social distancing rules (here assumed to be 3m) and the safety of the customers.
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Figure 9: Example of optimization of table placement for the outside area of
“Brus” brewpub in Denmark. Tables are placed following a manual approach
(based on a super-imposed 3m × 3m regular grid) in the first plot. The second
plot shows the optimized placement of tables at a minimum of 3m distance,
using an optimization tool: 6 more tables can be located.

It is clear from these tests that the optimal placement of tables is often not
straightforward, and that the usage of optimization methods can significantly
increase the capacity of a restaurant to fit customers, and thus its daily revenue.

5.1.2 Fitting a given number of tables while minimizing virus spread

Another variant of the problem consists in fitting a fixed amount of tables in
the area, while maximizing the safety of the customers. For these tests, we will
fit as many tables as the manual solutions would fit (see first plot of Figures 8
and 9) but in a safer way. In other words, with respect to the previous tests, the
focus is now shifted from maximizing the table number to minimizing the virus
spread, while still fulfilling the country regulations on minimum table distances.
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With respect to our two test cases we will therefore still require the minimum
distance of 3m between tables, but we imagine that we want to locate 7 tables
for the Italian cafeteria (though we have seen that up to 10 tables could fit in
the same area) and 30 tables for the Danish brewpub (while have seen that up
to 36 tables could fit as well). This is simply obtained in our model by setting
Nmin = Nmax (= 7 or 30). We use the virus-spread functions (13) to measure
the risk of infection between tables. The resulting layouts are shown in Figure
10.

Figure 10: Minimizing virus spread for a fixed number of facilities smaller than
the maximum capacity.

5.2 Beach umbrellas

Another possible application of our optimization method is the optimal loca-
tion of umbrellas on a beach. Many seaside activities are indeed challenged by
the COVID-19 restrictions, and owners of seaside areas can face difficulties in
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secure their income while ensuring safety. In countries like Italy, many beach
areas are managed by privates, who rent beach facilities (such as umbrellas,
sunbeds, chairs, etc) to customers. Due to COVID-19, social distance limita-
tions also apply in defining the exact position of the umbrellas on the beach.
Using optimization methods instead of relaying on manual layout, can have a
big impact also in this case, allowing one to fit more customers while not com-
promising on their safety. For example, we considered a real case from beach
“Bagni Alberoni”, located in Venice, Italy. The first plot of Figure 11 shows
the actual layout designed by the beach owners to cope with the required 4m
minimum distance between umbrellas. This solution locates 203 umbrellas in
the available area. We gave the same area (blue in the second plot of Figure)
on input to our optimizer, together with the minimum distance of 4m. The
interference definition (13) was considered. Our goal was to fit as many umbrel-
las as possible within the given limitations. Our optimizer was able to fit 211
umbrellas–having 8 more umbrellas to rent out over the summer season, can
make a big economical impact for local business.
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Figure 11: Example of a real case—the Venice beach “Bagni Alberoni”. Beach
umbrellas must ensure a minimum distance of 4m (center-to-center). The man-
ual solution actually implemented (top) allocates 203 beach umbrellas, while the
optimized one (bottom) is able to fit 211 beach umbrellas using a less-regular
pattern.
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6 Conclusions and future work

In this paper we have studied the problem of locating facilities in a given area,
subject to social distancing constraints as those arising in the time of COVID-19.
We have proposed a parallelism between this problem and the one of locating
wind turbines in an offshore area, which allowed us to apply state-of-the-art
solution approaches for the latter problem to produce optimized facility layouts.
We have analyzed alternative definitions of the interference function used to
model virus spread, and have compared them on simple cases. Then we have
addressed possible applications of our optimization technology, showing that
improved solutions can be obtained with less-regular (but more efficient) layout
patterns than those typically found manually.

Future work can address different applications such as seat allocation in
transport systems (buses, trains or airplanes).

Another challenging research direction is the definition of an interference
function that models virus spread along specific directions (rather than uni-
formly over the surrounding space), e.g., because of the presence of air condi-
tioning and/or Plexiglas settings. This would produce very irregular interference
matrices (akin to those arising in offshore wind farms with predominant wind
scenarios) that are very difficult to handle by a manual solution approach, thus
making our methodology even more appealing.
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