
Learning to Search in Local Branching

Defeng Liu 1, Matteo Fischetti 2, Andrea Lodi 1, 3

1Canada Excellence Research Chair, Polytechnique Montréal
2Department of Information Engineering, University of Padova

3 Jacobs Technion-Cornell Institute, Cornell University
defeng.liu@polymtl.ca, matteo.fischetti@unipd.it, andrea.lodi@cornell.edu

Abstract

Finding high-quality solutions to mixed-integer linear pro-
gramming problems (MILPs) is of great importance for many
practical applications. In this respect, the refinement heuristic
local branching (LB) has been proposed to produce improv-
ing solutions and has been highly influential for the develop-
ment of local search methods in MILP. The algorithm itera-
tively explores a sequence of solution neighborhoods defined
by the so-called local branching constraint, namely, a linear
inequality limiting the distance from a reference solution. For
a LB algorithm, the choice of the neighborhood size is critical
to performance. Although it was initialized by a conservative
value in the original LB scheme, our new observation is that
the “best” size is strongly dependent on the particular MILP
instance. In this work, we investigate the relation between the
size of the search neighborhood and the behavior of the un-
derlying LB algorithm, and we devise a leaning based frame-
work for guiding the neighborhood search of the LB heuris-
tic. The framework consists of a two-phase strategy. For the
first phase, a scaled regression model is trained to predict the
size of the LB neighborhood at the first iteration through a
regression task. In the second phase, we leverage reinforce-
ment learning and devise a reinforced neighborhood search
strategy to dynamically adapt the size at the subsequent iter-
ations. We computationally show that the neighborhood size
can indeed be learned, leading to improved performances and
that the overall algorithm generalizes well both with respect
to the instance size and, remarkably, across instances.

1 Introduction
Mixed-integer linear programming (MILP) is a principal
optimization formulation for modeling complex combina-
torial problems. The exact solution of a MILP model is
generally attempted by a branch-and-bound (or branch-and-
cut) (Land et al. 2010) framework. Although state-of-the-art
MILP solvers experienced a dramatic performance improve-
ment over the past decades, due to the NP-hardness nature
of the problem, the computation load of finding a provable
optimal solution for the resulting models can be heavy. In
many practical cases, feasible solutions are often required
within a very restricted time frame. Hence, one is interested
in finding solutions of good quality at the early stage of the

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

computation. In fact, it is also appealing to discover early in-
cumbent solutions in the exact enumerate scheme, which im-
proves the primal bound and reduces the size of the branch-
and-bound tree by pruning more nodes (Berthold 2013).

In this respect, the concept of heuristic is well rooted as a
principle underlying the search of high-quality solutions. In
the literature, a variety of heuristic methods have proven to
be remarkably effective, e.g., local branching (Fischetti and
Lodi 2003), feasibility pump (Fischetti et al. 2005), prox-
imal search (Fischetti and Monaci 2014), large neighbor-
hood search (Gendreau et al. 2010), etc. For more details
of these methods, the reader is referred to the surveys (Fis-
chetti and Lodi 2010; Gendreau et al. 2010). In this paper,
we focus on local branching, a refinement heuristic that iter-
atively produces improving solutions by exploring suitably
predefined solution neighborhoods.

Local branching (LB) was one of the first methods using
a generic MILP solver as a black-box tool inside a heuris-
tic framework. Given an initial feasible solution, the method
first defines a solution neighborhood through the so-called
local branching constraint, then explores the resulting sub-
problem by calling a black-box MILP solver. For a LB al-
gorithm, the choice of neighborhood size is crucial to per-
formance. In the original LB algorithm (Fischetti and Lodi
2003), the size of neighborhood is mostly initialized by a
small value, then adjusted in the subsequent iterations. Al-
though these conservative settings have the advantage of
yielding a series of easy-to-solve subproblems, each lead-
ing to a small progress of the objective, there is still a lot
of space for improvement. As discussed in (Fischetti and
Monaci 2014), a significantly better performance can be po-
tentially achieved with an ad-hoc tuning of the size of the
neighborhood. Our observation also shows that the “best”
size is strongly dependent on the particular MILP instance.
To illustrate this, the performance of different LB neighbor-
hood size settings for two MILP instances are compared in
Figure 1. In principle, it is desirable to have neighborhoods
to be relatively small to allow for an efficient computation,
but still large enough to be effective for finding improved so-
lutions. Nonetheless, it is reasonable to believe that the size
of an ideal neighborhood is correlated with the characteris-
tics of the particular problem instance.

Furthermore, it is worth noting that, in many applications,
instances of the same problem are solved repeatedly. Prob-

ar
X

iv
:2

11
2.

02
19

5v
1

 [
m

at
h.

O
C

]
 3

 D
ec

 2
02

1

Figure 1: Evaluation of the size of LB neighborhood on a set
covering instance and a maximum independent set instance.
The neighborhood size k is computed by k = r×N , where
N is the number of binary variables, r ∈ [0, 1]. A time limit
is imposed for each neighborhood exploration.

lems of real-world applications have a rich structure. While
more and more datasets are collected, patterns and regular-
ities appear. Therefore, problem-specific and task-specific
knowledge can be learned from data and applied to adapt-
ing the corresponding optimization scenario. This motives
a broader paradigm of learning to guide the neighborhood
search in refinement heuristics.

In this paper, we investigate a learning framework for siz-
ing the search neighborhood of local branching. In particu-
lar, given a MILP instance, we exploit patterns in both the
problem structure and the statistics of the solving process to
predict the size of the LB neighborhood with the aim of max-
imizing the performance of the underlying LB algorithm.
We computationally show that the neighborhood size can
indeed be learned, leading to improved performances, and
that the overall algorithm generalizes well both with respect
to the instance size and, more surprisingly, across instances.

2 Related Work
Recently, the progress in machine learning (ML) has stim-
ulated increasing research interest in learning algorithms
for solving MILP problems. These works can be broadly
divided into two categories, learning decision strategies
within MILP solvers and learning primal heuristics.

The first approach investigates the use of ML to learn to
make decisions inside a MILP solver, which is typically built
upon a general branch-and-bound framework. The learned
policies can be either cheap approximations of existing ex-
pensive methods, or more sophisticated strategies that are
new to be discovered. Related works include: learning to se-
lect branching variables (Khalil et al. 2016; Balcan 2018;
Gasse et al. 2019), learning to select branching nodes (He
et al. 2014), learning to select cutting planes (Tang et al.
2020), and learning to optimize the usage of primal heuris-
tics (Khalil et al. 2017; Chmiela et al. 2021).

The learning primal heuristics approach is to learn al-
gorithms to produce primal solutions for MILPs. Previous
works in this area typically use ML methods to develop
large neighborhood search (LNS) heuristics. Within an LNS
scheme, ML models are trained to predict “promising” solu-

tion neighborhoods that are expected to contain high-quality
solutions. Ding et al. (2020) trained neural networks to di-
rectly predict solution values of binary variables, and then
applied the LB heuristic to explore the solution neighbor-
hoods around the predictions. Nair et al. (2020) also used
neural networks to predict partial solutions. The subprob-
lems defined by fixing the predicted partial solutions are
solved by a MILP solver. Sonnerat et al. (2021) proposed
a LNS heuristic based on a “learn to destroy” strategy,
which frees part of the current solution. The variables to be
freed are selected by trained neural networks using imitation
learning. Note that their methods rely on parallel computa-
tion, which makes the outcome of the framework within a
non-parallel environment less clear. Song et al. (2020) pro-
posed a decomposition-based LNS heuristic. They use imi-
tation learning and reinforcement learning to decompose the
set of integer variables into subsets of fixed size. Each sub-
set defines a subproblem. The number of subsets is fixed as
a hyperparameter.

Note that the learning-based LNS methods listed above
directly operate on the integer variables, i.e., the predictions
of ML models are at a variable-wise level, which still en-
counters the intrinsic combinatorial difficulty of the prob-
lem and limits their generalization performances on generic
MILPs. Moreover, the learning of these heuristics is mostly
based on the extraction of static features of the problem,
the dynamic statistics of the heuristic behavior of the solver
being barely explored. In this work, we aim to avoid di-
rectly making predictions on variables. Instead, we propose
to guide the (local) search by learning to control the neigh-
borhood size at an instance-wise level. To identify promis-
ing solution neighborhoods, our method exploits not only
the static features of the problem, but also the dynamic fea-
tures collected during the solving process as a sequential ap-
proach.

In the literature, there has also been an effort to learn algo-
rithms for solving specific combinatorial optimization prob-
lems (Hottung and Tierney 2019; Nazari et al. 2018; Kool
et al. 2018; Dai et al. 2017; Bello et al. 2016). For a detailed
overview of “learn to optimize”, see (Bengio et al. 2021).

3 Preliminaries
3.1 Local Branching
We consider a MILP problem with 0–1 variables of the form

(P) min cTx (1)
s.t. Ax ≤ b, (2)

xj ∈ {0, 1}, ∀j ∈ B, (3)

xj ∈ Z+, ∀j ∈ G, xj ≥ 0, ∀j ∈ C, (4)
where the index set of decision variables N := {1, . . . , n}
is partitioned into B,G, C, which are the index sets of binary,
general integer and continuous variables, respectively.

Note that we assume the existence of binary variables, as
one of the basic building blocks of our method—namely,
the local branching heuristic—is based on this assumption.
However, this constraint can be relaxed and the local branch-
ing heuristic can be extended to deal with general integer
variables, as proposed in (Bertacco et al. 2007).

Let x̄ be a feasible incumbent solution for (P), and let
S = {j ∈ B : x̄j = 1} denote the binary support of x̄. For
a given positive integer parameter k, we define the neigh-
borhood N(x̄, k) as the set of the feasible solutions of (P)
satisfying the local branching constraint

∆(x, x̄) =
∑
j∈B\S

xj +
∑
j∈S

(1− xj) ≤ k. (5)

In the relevant case in which solutions with a small binary
support are considered (for example, in the famous travel-
ing salesman problem only n or the O(n2) variables take
value 1), the asymmetric form of local branching constraint
is suited, namely

∆(x, x̄) =
∑
j∈S

(1− xj) ≤ k. (6)

The local branching constraint can be used in an exact
branching scheme for (P). Given the incumbent solution x̄,
the solution space with the current branching node can be
partitioned by creating two child nodes as follows:

Left: ∆(x, x̄) ≤ k, Right: ∆(x, x̄) ≥ k + 1.

3.2 The Neighborhood Size Optimization
Problem

For a neighborhood size parameter k ∈ Z+, the LB algo-
rithm obtained from choosing k can be denoted asAk. Given
a MILP instance p, with its incumbent solution x̄, the neigh-
borhood size optimization problem over k for one iteration
of Ak is defined as

min C(p, x̄;Ak) (7)

s.t. k ∈ Z+, (8)

where C(p, x̄;Ak) measures the “cost” of Ak on instance
(p, x̄) as a trade-off between execution speed and solution
quality.

In practice, a run of the LB algorithm consists of a se-
quence of LB iterations. To maximize the performance of
the LB algorithm, a series of the above optimization prob-
lems need to be solved. Since the cost function is unknown,
those problems cannot be solved analytically. In general, the
common strategy is to evaluate some trials of k and select the
most performing one. This is often done by using black-box
optimization methods (Audet and Hare 2017). As the eval-
uation of each setting involves a run of Ak and the best k
is instance-specific, those methods are not computationally
efficient enough for online use. That is why the original LB
algorithm initializes k with a fixed small value and adapts it
conservatively by a deterministic strategy.

Currently, learning from experiments and transferring the
learned knowledge from solved instances to new instances
is of increasing interest and somehow accessible. In the next
section, we will introduce a new strategy for selecting the
neighborhood size k by using data-driven methods.

4 Methodology
Next, we present our framework for learning the neighbor-
hood size in the LB scheme. The original LB algorithm
chooses a conservative value for k as default, with the aim of
generating a easy-to-solve subproblem for general MILPs.
However, as discussed in Section 1, our observation shows
that the “best” k is dependent on the particular MILP in-
stance. Hence, in order to optimize the performance of the
LB heuristic, we aim at devising new strategies to learn to
tailor the neighborhood size for a specific instance. In par-
ticular, we investigate the dependencies between the state
of the problem (defined by a set of both static and dynamic
features collected during the LB procedure, e.g., context of
the problem, incumbent solution, solving status, computa-
tion cost, etc.) and the size of the LB neighborhood.

Our framework consists of a two-phase strategy. In the
first phase, we define a regression task to learn the neigh-
borhood size for the first LB iteration. Within our method,
this size is predicted by a pretrained regression model. For
the second phase, we leverage reinforcement learning (RL)
(Sutton et al. 1998) and train a policy to dynamically adapt
the neighborhood size at the subsequent LB iterations. The
exploration of each LB neighborhood is the same as the orig-
inal LB framework, and a generic MILP solver is used to up-
date the incumbent solution. The overall scheme is exact in
nature although turning it into a specialized heuristic frame-
work is trivial (and generally preferrable).

4.1 Scaled Regression for Local Branching
For intermediate LB iterations, the statistics of previous iter-
ations (e.g., value of the previous k, solving statistics, etc.)
are available. One can take advantage of this information and
exploit the learning methods based on dynamic program-
ming (e.g., reinforcement learning). Section 4.2 will address
the case. However, for the first LB iteration, there is no his-
torical information available as input. In this section, we will
show how to define a regression task to learn the first k from
the context of the problem and the incumbent solution.

Let S denote the set of available features of the MILPs
before the first LB iteration. We aim to train a regression
model f : S 7→ R that maps the features of a MILP instance
s to k∗0 , the label of best k0. However, the label k∗0 is un-
known, and we do not have any existing method to compute
the exact k∗0 . To generate labels, we first define a metric for
assessing the performance of a LB algorithm Ak, and then
use black-box optimization methods to produce approxima-
tions of k∗0 as labels.

Approximation of the Best k0 To define a cost metric for
Ak, we consider two factors. The first factor is the computa-
tional effort (e.g., CPU time) to solve the sub-MILP defined
by the LB neighborhood, while the second factor is the so-
lution quality (e.g., the objective of the best solution). To
quantify the trade-off of speed and quality, the cost metric
can be defined as

ck0 = α ∗ tk0scaled + (1− α) ∗ ok0scaled, (9)

where tk0scaled ∈ [0, 1] is the scaled computing time for solv-
ing the sub-MILP, ok0scaled ∈ [0, 1] is the scaled objective of

sub-MILP, and α is a constant.
Given ck0 , the label k∗0 can be defined as

k∗0 = argmin
k0

ck0 , (10)

and it is usually evaluated through black-box optimization
methods: Given the time limit and a collection of training
instances of interest, one evaluates the LB algorithm intro-
duced in Section 3 with different values of k0, and k∗0 is
estimated by choosing the value with the best performance
assessed by (9), which is typically the largest k0 such that the
resulting sub-MILP can still be solved to optimality within
the time limit. Since the evaluation process for each instance
is quite expensive, we propose to approximate it through re-
gression.

Regression for Learning k0 With a collected datasetD =
(si, k

∗
0i)

N
i=1 with N instances, a regression task can be ana-

lyzed to learn a mapping from the state of the problem to the
estimated k∗0 . The regression model fθ(s) can be obtained
by solving

θ∗ = argmin
θ∈Θ

1

N

N∑
i=1

L(fθ(s), k∗0i), (11)

where L(fθ(s), k∗0i) defines the loss function, a typical
choice for regression task being the mean squared error.

The Scaled Regression Task Let x′ be the optimal linear
programming (LP) fractional solution without local branch-
ing constraint, and k′ be the value of the left-hand side of the
local branching constraint evaluated using x′. Specifically,
k′ is computed by

k′ = ∆(x′, x̄). (12)

As discussed in (Fischetti and Monaci 2014), any k ≥ k′

is likely to be useless as the LP solution after adding the LB
constraint would be unchanged. Hence, k′ provides an upper
bound for k.

We can therefore parametrize k as

k = φ k′, (13)

where φ ∈ (0, 1). Now, we define the regression task over a
scaled space φ ∈ (0, 1) instead of directly over k.

Given k∗0 and k′0, the label is easily computed by

φ∗0 =
k∗0
k′0
. (14)

The regression problem reduces to

θ∗ = argmin
θ∈Θ

1

N

N∑
i=1

L(fθ(s), φ
∗
0i), (15)

where L(fθ(s), φ
∗
0i) defines the loss function.

Feature Design We represent the state s as a bipartite
graph (C,E,V) (Gasse et al. 2019). Given a MILP instance,
let n be the number of variables with d features for each vari-
able,m be the number of constraints with q features for each
constraint. The variables of the MILP, with V ∈ Rn×d be-
ing their feature matrix, are represented on one side of the
graph. On the other side are nodes corresponding to the con-
straints with C ∈ Rm×q being their feature matrix. A con-
straint node i and a variable node j are connected by an edge
(i, j) if variable i appears in constraint j in the MILP model.
Finally, E ∈ Rm×n×e denotes the tensor of edge features,
with e being the number of features for each edge.

Algorithm 1: LB with Scaled Regression
Input: instance dataset P = {pi}Mi=1
for instance pi ∈ P do

0. initialize the state s with an initial solution x̄
1. solve the LP relaxation and get solution x′

2. compute k′ = ∆(x′, x̄)
3. predict φ0 = fθ(s) by the regression model
4. compute k0 = φ0 k

′

5. apply k0 to execute the first LB iteration
6. update the incumbent x̄ and continue LB algorithm
with its default setting
repeat

execute the next LB iteration
until termination condition is reached;

end
return x̄

Regression Model Given that states are represented as
graphs, with arbitrary size and topology, we propose to use
graph neural networks (GNNs) (Gori et al. 2005; Hamilton
et al. 2017) to parameterize the regression model. Indeed,
GNNs are size-and-order invariant to input data, i.e., they
can process graphs of arbitrary size, and the ordering of the
input elements is irrelevant. Another appealing property of
GNNs is that they exploit the sparsity of the graph, which
makes GNNs an efficient model for embedding MILP prob-
lems that are typically very sparse (Gasse et al. 2019).

Our GNN architecture consists of 3 modules: the input
module, the convolution module, and the output module. In
the input layer, the state s is fed into the GNN model. The
input module embeds the features of the state s. The convo-
lution module propagates the embedded features with graph
convolution layers. In particular, our graph convolution layer
applies the message passing operator, defined as

v
(h)
i = f

(h)
θ

v
(h−1)
i ,

∑
j∈N (i)

g
(h)
φ

(
v

(h−1)
i ,v

(h−1)
j , ej,i

) ,

(16)

where v
(h−1)
i ∈ Rd denotes the feature vector of node i

from layer (h− 1), ej,i ∈ Rm denotes the feature vector of
edge (j, i) from node j to node i of layer (h − 1), f (h)

θ and
g

(h)
φ denote the embedding functions in layer h.

For a bipartite graph, a convolution layer is decomposed
into two half-layers: one half-layer propagates messages
from variable nodes to constraint nodes through edges, and
the other one propagates messages from constraint nodes to
variable nodes. The output module embeds the features ex-
tracted from the convolution module and then applies a pool-
ing layer, which maps the graph representation into a single
neuron. The output of this neuron is the prediction of φ0.

LB with Scaled Regression Our refined LB heuristic, LB
with scaled regression, is obtained when k0 is predicted by
the regression model. The pseudocode of the algorithm is
outlined in Algorithm 1.

4.2 Reinforced Neighborhood Search
In this section, we leverage reinforcement learning (RL) to
adapt the neighborhood size iteratively. We first formulate
the problem as a Markov Decision Process (MDP) (Howard
1960). Then, we propose to use policy gradient methods to
train a policy model.

Markov Decision Process Given a MILP instance with an
initial feasible solution, the procedure can be formulated as
a MDP, wherein at each step, a neighborhood size is selected
by a policy model and applied to run a LB iteration. In prin-
ciple, the state space S is the set of all the features of the
MILP model and its solving statistics, which is combinato-
rial and arbitrarily large. To design an efficient RL frame-
work for this problem, we choose a compact set of features
from the solving statistics to construct the state. These fea-
tures characterize the progress of the optimization process
and are instance-independent, allowing broader generaliza-
tion across instances.

For the action space State(A), instead of directly selecting
a new k, we choose to adapt the value of k of the last LB
iteration. The set of possible actions consists of four options

{+kstep, 0,−kstep; reset}, (17)

where +kstep means increasing k by kstep, −kstep means
decreasing k by kstep, 0 denotes keeping k without any
change and reset means resetting k to a default value. The
policy π maps a state to one of the four actions. The step size
kstep is a hyperparameter of the algorithm.

The compact description of states and actions offers sev-
eral advantages. First of all, it simplifies the MDP formula-
tion and makes the learning task easier. In addition, it allows
the use of simpler function approximators, which is critical
for speeding up the learning process. In Section 5, we will
show by training a simple linear policy model using the off-
the-shelf policy gradient method that the resulting policy can
significantly improve the performance of the LB algorithm.

By applying the updated k, the next LB iteration is ex-
ecuted with time limit tlimit. Then, the solving sub-MILP
statistics are collected to create the next state. In principle,
the reward r is formulated according to the outcome of the
last LB iteration, e.g., the computing time and the quality of
the incumbent solution.

To maximize the objective improvement and minimize the
solving time of the LB algorithm, we define the combinato-

rial reward as
r = oimp ∗ (tmax − telaps), (18)

where oimp denotes the objective improvement obtained
from the last LB iteration, tmax is the global time limit of
the LB algorithm, and telaps is the cumulated running time.

The definition above is just one possibility to build a MDP
for the LB heuristic. Actually, defining a compact MDP for-
mulation is critical for constructing efficient RL algorithms
for this problem.

Learning Strategy For training the policy model, we use
the reinforce policy gradient method (Sutton et al. 2000),
which allows a policy to be learned without any estimate of
the value functions.

The refined LB heuristic, reinforced neighborhood search
is obtained when the neigborhood size k is dynamically
adapted by the RL policy. The pseudocode of the algorithm
is outlined in Algorithm 2.

Algorithm 2: Reinforced Neighborhood Search
Input: instance dataset P = {pi}Mi=1
for instance pi ∈ P do

0. initialize the state s with an initial solution x̄
1. compute k0 by the procedure in Algorithm 1 or set
k0 by a default value.
2. apply k0 to execute the first LB iteration
3. collect the new state s and the incumbent x̄
repeat

update k by the policy π(s)
apply k and execute the next LB iteration
collect the new state s with the incumbent x̄

until termination condition is reached;
end
return x̄

5 Experiments
In this section, we present the details of our experimental
results over five MILP benchmarks. We compare different
settings of our approach against the original LB algorithm,
using SCIP (Gamrath et al. 2020) as the underlying MILP
solver.

5.1 Data Collection
MILP Instances We evaluate on five MILP benchmarks:
set covering (SC) (Balas and Ho 1980), maximum indepen-
dent set (MIS) (Bergman et al. 2016), combinatorial auction
(CA) (Leyton-Brown et al. 2000), generalized independent
set problem (GISP) (Hochbaum and Pathria 1997; Colombi
et al. 2017), and MIPLIB 2017 (Gleixner et al. 2021). The
first three benchmarks are used for both training and eval-
uation. For SC, we use instances with 5000 rows and 2000
columns. For MIS, we use instances on Barabási–Albert ran-
dom graphs with 1000 nodes. For CA, we use instances with
4000 items and 2000 bids. In addition, to evaluate the gen-
eralization performance on larger instances, we also use a
larger dataset of instances with doubled size for each bench-
mark, denoted by LCA, LMIS, LCA. The larger datasets are
only used for evaluation.

For GISP, we use the public dataset from (Chmiela et al.
2021). For MIPLIB, we select binary integer linear program-
ming problems from MIPLIB 2017. Instances from GISP
and MIPLIB are only used for evaluation.

For each instance, an initial feasible solution is required to
run the LB heuristic. We use two initial incumbent solutions:
(1) the first solution found by SCIP; (2) an intermediate so-
lution found by SCIP, typically the best solution obtained by
SCIP at the end of the root node computation, i.e., before
branching.

Data Collection for Regression To collect data for the
scaled regression task, one can use black-box optimiza-
tion methods to produce the label φ∗0. As the search space
has only one dimension, we choose to use the grid search
method. In particular, given a MILP instance, an initial in-
cumbent x̄, the LP solution x′, and a time limit for a LB
iteration, we evaluate φ0 from (0, 1) with a resolution limit
0.01. For each φ0, we compute the actual neighborhood size
by k0 = k′ φ0, where k′ = ∆(x′, x̄). Then, k0 is applied
to execute an iteration of LB. From all the evaluated φ0, the
one with best performance is chosen as a label φ∗0.

The state s consists of context features of the MILP model
and the incumbent solution. The state s together with the
label k∗ construct a valid data point (s, k∗).

5.2 Experimental Setup
Datasets For each reference set of SC, MIS and CA prob-
lems, we generate a dataset of 200 instances, and split each
dataset into training (70%), validation (10%), and test (20%)
sets. For larger instances, we generate 40 instances of LSC,
LMIS and LCA problems, separately. The GISP dataset con-
tains 35 instances. For MIPLIB, we select 29 binary MILPs
that are also evaluated by the original LB heuristic (Fischetti
and Lodi 2003).

Training and Evaluation For the regression task, the
model learns from the features of the MILP formulation and
its incumbent solution. We train the regression model with
two scenarios: the first one trains the model on the training
set of SC, MIS and CA separately, the other one trains a sin-
gle model on a mixed dataset of the three training sets. The
models trained from the two scenarios are compared on the
three test sets. For the RL task, we only use the instance-
independent features selected from solving statistics, so the
RL policy is only trained on the training set of SC, and eval-
uated on all the test sets.

To further evaluate the generalization performance with
respect to the instance size and the instance type, the RL
policy (trained on the SC dataset) and the regression model
(trained on the SC, MIS and LCS datasets) are evaluated on
GISP and MIPLIB datasets.

Evaluation Metrics We use two measures to compare the
performance of different heuristic algorithms. The first in-
dicator is the primal gap. Let x̃ be a feasible solution , and
x̃opt be the optimal (or best known) solution. The primal
gap (in percentage) is defined as

γ(x̃) =
|cT x̃opt − cT x̃|
|cT x̃opt|

× 100,

where we assume the denominator is nonzero.
For the second measure, we use the primal integral pro-

posed by (Berthold 2013), which takes into account both the
quality of solutions and the solving time required to find
them. To define the primal integral, we first consider a pri-
mal gap function p(t) as a function of time, defined as

p(t) =

{
1, if no incumbent until time t,
γ̄(x̃(t)), otherwise,

where x̃(t) is the incumbent solution at time t, and γ̄(·) ∈
[0, 1] is the scaled primal gap defined by

γ̄(x̃) =

0, if cT x̃opt = cT x̃ = 0,
1, if cT x̃opt · cT x̃ < 0,
|cT x̃opt−cT x̃|

max{|cT x̃opt|, |cT x̃|} , otherwise.

Let tmax > 0 be the time limit. The primal integral of a run
is then defined as

P (tmax) =

∫ tmax

0

p(t) dt.

5.3 Results
Algorithmic Comparisons We perform the evaluations of
our framework on the following four settings:
• lb-sr: Algorithm 1 with regression model trained by a

homogenous dataset of SC, MIS, CA, separately;
• lb-srm: Algorithm 1 with regression model trained by a

mixed dataset of SC, MIS, CA;
• lb-rl: Algorithm 2 with setting k0 by a default value;
• lb-srmrl: Hybrid algorithm using regression from Algo-

rithm 1 (with regression model trained by mixed dataset
of SC, MIS, CA) and RL from Algorithm 2.

We use the original local branching algorithm as the base-
line. All the algorithms use SCIP as the underlying MILP
solver. More details of the experiment environment are in
the appendices.

The evaluation results for the basic SC, MIS, CA datasets
are shown in Table 1 and Table 2. Our first observation is
that all the algorithms of our framework significantly out-
perform the original LB algorithm. Both the primal integral
and the final primal gap of the four LB variants are smaller
than those of the baseline, showing improved heuristic be-
havior. Here, we just highlight that, although the regression
model trained by using supervised learning and the policy
model trained by RL can be used independently, they bene-
fit from being used together. As a matter of fact, the hybrid
algorithm lb-srmrl combining both methods achieves a solid
further improvement and outperforms the other algorithms
for most cases.

We also evaluate the impact of the choice of training set
for the regression model. By comparing lb-sr and lb-srm, we
observe that the regression model trained on a mixed dataset
of SC, MIS, CA shows performance very close to that of the
model trained on a homogeneous dataset. Indeed, the GNN
networks we used embed the features of the MILP problem
and its incumbent solution. In particular, one significant dif-
ference between our method and those of previous works is

that, instead of training a separate model for each class of in-
stances, our method is able to train a single model yielding
competitive generalization performances across instances.
This is because our models predict the neighborhood size
at a instance-wise level, rather than making predictions on
variables.

Table 1: Average primal integral for SC, MIS, CA problems

SC MIS CA

Algo. first root first root first root

lb-base 56.641 4.831 4.986 4.840 7.523 2.777
lb-sr 3.282 1.625 1.575 3.279 5.400 1.712
lb-srm 3.910 1.673 1.473 3.352 5.427 1.839
lb-rl 16.490 3.691 2.179 2.239 3.700 1.857
lb-srmrl 2.874 1.462 1.125 2.121 2.780 1.389

Table 2: Average final primal gap (in percentage) for SC,
MIS, CA problems

SC MIS CA

Algo. first root first root first root

lb-base 1136.74 1.16 0.28 0.20 2.64 1.06
lb-sr 1.21 0.96 0.26 0.18 2.12 0.79
lb-srm 1.44 0.96 0.25 0.18 2.07 0.90
lb-rl 7.05 1.11 0.37 0.18 0.49 0.26
lb-srmrl 1.15 0.69 0.25 0.23 0.40 0.27

Broader Generalization Next, we evaluate the general-
ization performance with respect to the size and the type of
instances. Let us formally restate that the regression model
is trained on a randomly mixed dataset of SC, MIS and CA
problems, and the RL policy is only trained on the train-
ing set of SC. We evaluate the trained models on larger in-
stances (LSC, LMIS, LCA) and new MILP problems (GISP,
MIPLIB). The results of evaluation on larger instances are
shown in Table 3 and Table 4, whereas the results on GISP
and MIPLIB datasets, are shown in Table 5 and Table 6.

Table 3: Average primal integral for LSC, LMIS, LCA prob-
lems

LSC LMIS LCA

Algo. first root first root first root

lb-base 59.306 20.278 23.626 23.951 27.598 11.636
lb-srm 3.065 2.571 4.377 7.704 18.121 5.838
lb-rl 43.876 7.562 5.097 6.097 15.326 7.715
lb-srmrl 2.424 1.904 1.653 5.011 9.047 4.796

Overall, all of our learning-based LB algorithms out-
perform the baseline, and the hybrid algorithm lb-srmrl
achieves the best performance on most datasets. These re-
sults show that our models, trained on smaller instances,
generalize well both with respect to the instance size and,
remarkably, across instances.

Table 4: Average final primal gap (in percentage) for LSC,
LMIS, LCA problems

LSC LMIS LCA

Algo. first root first root first root

lb-base 8128.58 5.00 15.04 8.20 21.21 3.57
lb-srm 1.52 1.41 0.21 0.38 13.00 1.16
lb-rl 393.27 3.41 0.30 0.16 2.79 0.89
lb-srmrl 0.72 0.52 0.19 0.16 1.57 0.20

Table 5: Average primal integral for GISP and MIPLIB
problems

GISP MIPLIB

Algo. first root first root

lb-base 22.176 18.677 14.984 7.363
lb-srm 15.170 11.059 10.891 6.739
lb-rl 18.840 15.751 13.247 6.758
lb-srmrl 13.786 9.591 11.655 5.408

Table 6: Average final primal gap (in percentage) for GISP
and MIPLIB problems

GISP MIPLIB

Algo. first root first root

lb-base 27.21 20.65 2380.27 7.25
lb-srm 14.42 7.89 99.93 5.22
lb-rl 19.00 15.55 2338.42 6.03
lb-srmrl 9.44 4.82 72.25 6.22

6 Discussion
In this work, we have looked at the local branching paradigm
by using a machine learning lens. We have considered the
neighborhood size as a main factor for quantifying high-
quality LB neighborhoods. We have presented a learning
based framework for predicting and adapting the neighbor-
hood size for the LB heuristic. The framework consists of a
two-phase strategy. For the first phase, a scaled regression
model is trained to predict the size of the LB neighborhood
at the first iteration through a regression task. In the second
phase, we leverage reinforcement learning and devise a re-
inforced neighborhood search strategy to dynamically adapt
the size at the subsequent iterations. We have computation-
ally shown that the neighborhood size can indeed be learned,
leading to improved performances and that the overall al-
gorithm generalizes well both with respect to the instance
size and, remarkably, across instances. Our framework relies
on the availability of an initial solution, thus it can be inte-
grated with other refinement heuristics. For future research,
it would be very interesting to design more sophisticated hy-
brid frameworks that learn to optimize multiple refinement
heuristics in a more collaborative way.

7 Acknowledgments
We would like to thank Maxime Gasse for helpful discus-
sions on the project. This work was supported by Canada

Excellence Research Chair in Data Science for Real-Time
Decision-Making at Polytechnique Montréal. We are in-
debted to the anonymous reviewers for their helpful feed-
back.

References
Audet, C.; and Hare, W. 2017. Derivative-Free and Black-
box Optimization. Springer.
Balas, E.; and Ho, A. 1980. Set covering algorithms using
cutting planes, heuristics, and subgradient optimization: a
computational study. In Combinatorial Optimization, 37–
60. Springer.
Balcan, M.-F. o. 2018. Learning to branch. In International
conference on machine learning, 344–353. PMLR.
Bello, I.; et al. 2016. Neural combinatorial optimization with
reinforcement learning. arXiv preprint arXiv:1611.09940.
Bengio; et al. 2021. Machine learning for combinatorial
optimization: a methodological tour d’horizon. European
Journal of Operational Research, 290(2): 405–421.
Bergman, D.; et al. 2016. Decision diagrams for optimiza-
tion, volume 1. Springer.
Bertacco, L.; et al. 2007. A feasibility pump heuristic for
general mixed-integer problems. Discrete Optimization,
4(1): 63–76.
Berthold, T. 2013. Measuring the impact of primal heuris-
tics. Operations Research Letters, 41(6): 611–614.
Chmiela, A.; et al. 2021. Learning to Schedule Heuristics in
Branch-and-Bound. arXiv preprint arXiv:2103.10294.
Colombi, M.; et al. 2017. The generalized independent set
problem: Polyhedral analysis and solution approaches. Eu-
ropean Journal of Operational Research, 260(1): 41–55.
Dai, H.; et al. 2017. Learning combinatorial optimization
algorithms over graphs. arXiv preprint arXiv:1704.01665.
Ding, J.-Y.; et al. 2020. Accelerating Primal Solution Find-
ings for Mixed Integer Programs Based on Solution Predic-
tion. Proceedings of the AAAI Conference on Artificial In-
telligence, 34(02): 1452–1459.
Fey, M.; and Lenssen, J. E. 2019. Fast graph represen-
tation learning with PyTorch Geometric. arXiv preprint
arXiv:1903.02428.
Fischetti, M.; and Lodi, A. 2003. Local branching. Mathe-
matical programming, 98(1-3): 23–47.
Fischetti, M.; and Lodi, A. 2010. Heuristics in mixed integer
programming. Wiley Encyclopedia of Operations Research
and Management Science.
Fischetti, M.; and Monaci, M. 2014. Proximity search for
0-1 mixed-integer convex programming. Journal of Heuris-
tics, 20(6): 709–731.
Fischetti, M.; et al. 2005. The feasibility pump. Mathemati-
cal Programming, 104(1): 91–104.
Gamrath, G.; et al. 2020. The SCIP Optimization Suite 7.0.
Technical report, Optimization Online.
Gasse, M.; et al. 2019. Exact combinatorial optimization
with graph convolutional neural networks. In Advances in
Neural Information Processing Systems, 15554–15566.

Gendreau, M.; et al. 2010. Handbook of metaheuristics, vol-
ume 2. Springer.
Gleixner, A.; et al. 2021. MIPLIB 2017: data-driven compi-
lation of the 6th mixed-integer programming library. Math-
ematical Programming Computation, 1–48.
Gori, M.; et al. 2005. A new model for learning in graph
domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., volume 2, 729–734.
IEEE.
Hamilton, W. L.; et al. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint
arXiv:1709.05584.
He, H.; et al. 2014. Learning to search in branch and bound
algorithms. Advances in neural information processing sys-
tems, 27: 3293–3301.
Hochbaum, D. S.; and Pathria, A. 1997. Forest harvesting
and minimum cuts: a new approach to handling spatial con-
straints. Forest Science, 43(4): 544–554.
Hottung, A.; and Tierney, K. 2019. Neural large neigh-
borhood search for the capacitated vehicle routing problem.
arXiv preprint arXiv:1911.09539.
Howard, R. A. 1960. Dynamic programming and markov
processes.
Khalil, E.; et al. 2016. Learning to branch in mixed integer
programming. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30.
Khalil, E. B.; et al. 2017. Learning to Run Heuristics in Tree
Search. In IJCAI, 659–666.
Kool, W.; et al. 2018. Attention, learn to solve routing prob-
lems! arXiv preprint arXiv:1803.08475.
Land, A. H.; et al. 2010. An automatic method for solv-
ing discrete programming problems. In 50 Years of Integer
Programming 1958-2008, 105–132. Springer.
Leyton-Brown, K.; et al. 2000. Towards a universal test suite
for combinatorial auction algorithms. In Proceedings of the
2nd ACM conference on Electronic commerce, 66–76.
Maher, S.; et al. 2016. PySCIPOpt: Mathematical Program-
ming in Python with the SCIP Optimization Suite. In Math-
ematical Software – ICMS 2016, 301–307. Springer Interna-
tional Publishing.
Nair, V.; et al. 2020. Solving mixed integer programs using
neural networks. arXiv preprint arXiv:2012.13349.
Nazari, M.; et al. 2018. Reinforcement learning for
solving the vehicle routing problem. arXiv preprint
arXiv:1802.04240.
Paszke, A.; et al. 2019. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural in-
formation processing systems, 32: 8026–8037.
Song, J.; et al. 2020. A general large neighborhood search
framework for solving integer linear programs. arXiv
preprint arXiv:2004.00422.
Sonnerat, N.; et al. 2021. Learning a Large Neighbor-
hood Search Algorithm for Mixed Integer Programs. arXiv
preprint arXiv:2107.10201.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural infor-
mation processing systems, 1057–1063.
Sutton, R. S.; et al. 1998. Introduction to reinforcement
learning, volume 135. MIT press Cambridge.
Tang, Y.; et al. 2020. Reinforcement learning for integer
programming: Learning to cut. In International Conference
on Machine Learning, 9367–9376. PMLR.

A Appendix
A.1 Details of Experimental Settings
For training the regression model, we used the mean squared error as the loss function. For tuning the learning rate, we have
experimented different learning rates from 10−5 to 10−1 and have chosen a learning rate of 10−4. We trained the model with a
limit of 300 epochs.

For training the RL policy, we used the same method to tune the learning rate and have chosen a learning rate of 10−2. We
trained the RL policy with a limit of 300 epochs and stop the training when the average return converges and does not improve
for 5 epochs.

For the hyperparameters, we have chosen α = 0.5 as a trade-off between speed and quality for the cost metric for k0. We used
kstep = 0.5 for the action design in Section 4.2. We set a time limit of 10 seconds for each LB iteration for all the compared
algorithms. The global time limit for all algorithms is set to 60 seconds.

Our code is written in Python 3.7 and we use Pytorch 1.60 (Paszke et al. 2019), Pytorch Geometric 1.7.0 (Fey and Lenssen
2019), PySCIPOpt 3.1.1 (Maher et al. 2016), SCIP 7.01 (Gamrath et al. 2020) for developing our models and sovling MILPs.

A.2 Model Architecture
For the regression task, we applied the GNNs model described in the paper with three modules. For the input module, we
applied 2-layer perceptions with the rectified linear unit (Relu) activation function to embed the features of nodes. For the
convolution module, we used two half-layers, one from nodes of variables to nodes of constraints, and the other one from
nodes of constraints to nodes of variables. For the output module, we applied 2-layer perceptions with the Relu activation
function. The pooling layer uses the sigmoid activation function. All the hidden layers have 64 neurons. For the bipartite graph
representation, we referenced the model used in Gasse et al. (2019). The features in the bipartite graph are listed in Table 7. In
practice, if the instance is a pure binary MILP, one can choose a more compact set of features to accelerate the training process
(for example, the features describing the type and bound of the variables can be removed).

Table 7: Description of the features in the bipartite graph s = (C,E,V).

Tensor Feature Description
C bias Bias value, normalized with constraint coefficients.

E coef Constraint coefficient, normalized per constraint.

V

coef Objective coefficient, normalized.

binary Binary type binary indicator.

integer Integer type indicator.

imp integer Implicit integer type indicator

continuous continuous type indicator.

has lb Lower bound indicator.

has ub Upper bound indicator.

lb Lower bound.

ub Upper bound.

sol val Solution value.

For the RL policy, we use a linear model with seven inputs and four outputs. The feature used by the RL policy is listed in
Table 8.

Table 8: Description of the input features of the RL policy.

Feature Description
optimal Indicating the subproblem is solved to optimal and an improving solution is found.

infeasible Indicating the subproblem is proven infeasible.

improved Indicating the subproblem is not solved but an improving solution is found

not improved Indicating the subproblem is not solved and no improving solution is found.

diverse no improving solution is found for two consecutive iterations.

t available time available before the time limit of the subproblem is reached

obj improve improvement of objective.

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Local Branching
	3.2 The Neighborhood Size Optimization Problem

	4 Methodology
	4.1 Scaled Regression for Local Branching
	4.2 Reinforced Neighborhood Search

	5 Experiments
	5.1 Data Collection
	5.2 Experimental Setup
	5.3 Results

	6 Discussion
	7 Acknowledgments
	A Appendix
	A.1 Details of Experimental Settings
	A.2 Model Architecture

