
Mathematical Programming Computation manuscript No.
(will be inserted by the editor)

An integrated local-search/set-partitioning refinement
heuristic for the Capacitated Vehicle Routing Problem

Francesco Cavaliere · Emilio Bendotti ·
Matteo Fischetti

June 14, 2022

Abstract In this paper, an effective heuristic algorithm for large-scale instances
of the Capacitated Vehicle Routing Problem is proposed. The technique consists
in a local search method entangled with a restricted Set Partitioning problem op-
timization. Helsgaun’s LKH-3 algorithm has been used for the local search phase,
with a number of implementation improvements. The restricted Set Partitioning
formulation is solved by means of an exact commercial Integer Liner Program-
ming solver. The resulting algorithm is able to consistently improve the solutions
obtained by a state-of-the-art heuristic from the literature, as well as some of the
best-know solutions maintained by the CVRPLIB website.

Keywords Capacitated Vehicle Routing Problem, Heuristics, Local Search, Set
Partitioning, Computational Analysis.

1 Introduction

Firstly introduced by Dantzig and Ramser [10], Vehicle Routing Problems (VRPs)
are a class of problems calling for a minimum-cost set of vehicle routes to serve a
given set of customers with known demands.

The Capacitated Vehicle Routing Problem (CVRP) is one of the most studied
VRP versions, in which the transportation request consists of the distribution of
goods from a single depot to a set of customers using homogeneous vehicles with a
limited capacity. In the symmetric case, it can be defined on a complete undirected
graph G = (V,E) with edge costs ce’s and a special depot node d. Each customer

Francesco Cavaliere
Department of Electrical, Electronic, Information Engineering “Guglielmo Marconi” - DEI,
University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy, E-mail: f.cavaliere@unibo.it

Emilio Bendotti
AzzurroDigitale, via della Croce Rossa 42, 35129 Padova, Italy, E-mail:
emilio.bendotti@azzurrodigitale.com

Matteo Fischetti
Department of Information Engineering, University of Padua, via Gradenigo 6/A, 35100
Padova, Italy, E-mail: matteo.fischetti@unipd.it

2 Francesco Cavaliere et al.

node i ∈ N = V \ {d} is characterized by its demand qi ≥ 0 which represents the
amount of goods requested, while each vehicle route must start and finish at d
and has to visit a set of customers whose total demand does not exceed a given
capacity C. The overall number of vehicles to be used is often fixed in advance.

Historically, many mathematical formulations have been proposed for this
problem [26, 41]. Particularly relevant for our work is the so-called Set-Partitioning
(SP) formulation, common to many other VRP variants. In the SP formulation,
the objective is to find the best combination of feasible routes that partitions the
customer nodes of the graph, minimizing the overall cost, i.e.:

min
∑
p∈Ω

cpθp (1a)

∑
p∈Ω

θp = k (1b)

∑
p∈Ωi

θp = 1, ∀i ∈ N (1c)

θp ∈ {0, 1}, p ∈ Ω (1d)

where Ω is the set of feasible routes for the CVRP, cp is the cost associated to
each route p ∈ Ω, Ωi ⊂ Ω is the subset of routes that visit the customer i ∈ N , k is
the required number of routes, and θp is a binary variable which is 1 if the route
p is in the optimal solution, 0 otherwise.

An important aspect of the SP formulation is its generality, as it easily extends
to all VRP variants where the additional constraints only affect the feasibility of
the routes, hence they are implicitly represented by the route set Ω. However, a
main drawback is represented by the cardinality of Ω, which grows exponentially
with the number of customers. To tackle this issue, only a subset of potentially-
relevant routes is explicitly generated, and optimization techniques like Column
Generation [11, 14] or Branch and Price [17, 31] are used. Within these schemes,
a Restricted SP (RSP) formulation is iteratively solved, containing only a subset
of routes.

Although several advanced mathematical programming decomposition algo-
rithms have been proposed in the last few decades, only relatively small instances—
containing only few hundred customers—have been solved to optimality [41]. Prob-
lems encountered in real-life scenarios are often substantially larger, thus efficient
heuristic algorithms are the only option available to obtain good-quality solutions
within acceptable computing times.

The aim of our paper is to design a powerful (yet time consuming) refinement
heuristic which is able to improve top-quality solutions. Thus, our method is meant
to be used on top of a state-of-the-art heuristic, more than to replace it. This is
very much is the spirit of other refinement heuristics from the literature, whose
quality is certified by the capability of improving state-of-the-art solutions in a
final post-processing step.

The paper is organized as follows. Previous literature on CVRP heuristics is
sketched in Section 2. In Section 3, the comprehensive strategy of our algorithm
is described, along with the modifications and improvements applied. Extensive
computational results are reported in Section 4, showing that our method is able to

An integrated local-search/set-partitioning refinement heuristic for CVRP 3

consistently improve the solutions obtained by a state-of-the-art heuristic from the
literature, as well as some of the best-know solutions maintained in the CVRPLIB
website [30]. Some conclusions are finally drawn is Section 5.

2 Previous work

A brief outline of the CVRP heuristics that are most relevant for our work follows.
Helsgaun’s [20, 21] heuristic, LKH-3 (whose code can be found in the dedicated

website [18]), is a penalty-based extension of the famous Lin and Kerninghan [27]
heuristic (LK), able to tackle many VRP variants. Although less efficient with
respect to other state-of-the-art CVRP heuristics, LKH-3 (from now on, just LKH)
plays a prominent role in our work in that it is the building block of our local-search
phase, so we next give a brief description of this method.

Originally designed for the Traveling Salesperson Problem (TSP), the LKH
algorithm is based on the concept of r-Opt moves and r-optimality. In a r-Opt
move, r edges from the current solution are replaced by other r edges in such a
way that another solution is obtained [20]. A solution is said to be r-optimal if it
is impossible to obtain a shorter tour by means of any r-Opt move [20]. It is also
intuitive that, for 0 ≤ r′ ≤ r, an r-optimal tour is also r′-optimal, and for a tour
of n city to be optimal, it must also be n-optimal. Furthermore, is also reasonable
that the probability for a r-optimal tour to be optimal grows with r [20]. However,
the number of possible r-Opt moves grows rapidly with the number of nodes of the
graph, making it impossible to fully explore the available moves for large values of
r. For this reason, r is usually set to 2 or 3, as the algorithm rapidly loses efficiency
for larger numbers. To overcome this limit, the LK heuristic introduces a scheme
where the r value is decided at run-time, iteration after iteration. Initially, r is
set to 2, its minimal value, and then it is gradually increased searching for new
potential pairs with the following rationale: starting from the most “out-of-place”
pair, the algorithm iterates searching for the new most “out-of-place” pairs of the
remaining set, repeating the search multiple times [27]. If an improvement is found,
the search restarts from scratch, while it stops otherwise. For further information,
the reader can refer to [20] for a brief explanation, or to the original Lin and
Kernighan’s paper [27].

Vidal et al. [43] propose HGS, a hybrid genetic algorithm combining the ef-
fectiveness of their population based method with the Local-Search exploration of
neighborhoods defined from a set of operators.

Arnold and Sörensen’s [5] knowledge-guided local search (KGLS) is an effective
Local-Search heuristic which adopts three different neighborhood-defining opera-
tors along with a knowledge based penalization to avoid local optima.

Christiaens and Vanden Berghe [8] develop a simple yet effective algorithm
named Slack Induction by String Removals (SISR), consisting in a ruin-and-recreate
local search heuristic.

In their recent work, Accorsi and Vigo [2] propose FILO, a very efficient and
effective iterated local search heuristic, which through the combination of acceler-
ation and localization techniques is able to find state-of-the-art solutions for very
large scale CVRP instances in a short computing time. The algorithm adopts a
large number of operator-defined neighborhoods and a combination of a ruin-and-
recreate scheme coupled with simulated annealing.

4 Francesco Cavaliere et al.

Sharing some similarities with the work presented in the present paper, Sub-
ramanian et al. [39] propose Iterated Local Search with Set Partitioning (ILS-SP), a
hybrid algorithm merging the effectiveness of a competitive iterated local search
heuristic along with the optimization a SP formulation that tries to heuristically
find the best combination of the explored routes. The adoption of a SP optimiza-
tion phase has been also studied for many other heuristic techniques, as in the
works of Foster et al. [15], Ryan et al. [38], Rochat et al. [36], Kelly et al. [24], De
Franceschi et al. [12], or Monaci and Toth [29] for the Bin-Packing Problem.

Finally, Queiroga et al. [35] propose a heuristic working as a refinement tech-
nique to improve the solution obtained by other heuristics. Exploring a large so-
lution neighborhood, their algorithm is able to consistently improve near-optimal
solutions. The adopted technique is POPMUSIC [40], a matheuristic [13] based
on the VRPSolver [32, 33] exact solver for VRPs.

3 Algorithm Outline

The overall scheme of our approach can be subdivided into three main phases.

1. The LKH heuristics is executed, in parallel; from the solutions generated at the
end of each “trial” of the core LK algorithm, routes are extracted to populate
a pool (called the “route pool”).

2. Considering the Linear Programming (LP) relaxation of the SP formulation, a
column-generation pricing procedure is applied to “filter” the most meaningful
routes from the pool.

3. The RSP formulation, considering only the selected routes, is solved with a
given time limit.

The three phases above are iterated until a global time limit expires—or a maxi-
mum number of repetitions is reached.

The described algorithm has been called Local Search - Column Generation

Heuristic (LS-CGH) since it uses the LKH heuristic to generate good candidate
routes that are then fed to the RSP optimization.

To better differentiate between the different types of iterations (one nested into
the other), the following terms will be used:

– in accordance with the naming adopted by the LKH algorithm, the term “trial”
refers to a single pass of the core Lin-Kerninghan algorithm, ending when no
more improving r-Opt moves can be found.

– A “run” is a set of successive “trials”, each starting from the perturbed solution
of the previous one.

– The sequence of a single execution of LKH, followed by Column Generation
filtering and the RSP optimization, has been named “round”.

Our LS-CGH algorithm then consists in a number of “rounds”, repeating the
three-phase scheme multiple times. Each round is linked to the next one as it
exploits the best solution found as its initial solution, and also because the route
pool is maintained between rounds.

A high-level representation of the three main phases of the algorithm is given
in Algorithm 1. In the pseudocode, the following functions are used:

An integrated local-search/set-partitioning refinement heuristic for CVRP 5

– LKH: Calls the LKH-based heuristic described in Section 3.1 and in Algorithm
2. Returns the best solution found by the algorithm (S), along with a populated
route pool (P).

– CGFilter: Applies the column-generation inspired filtering (described in Sec-
tion 3.2) to the route pool.

– SolveRSP: Solves the restricted Set Partitioning formulation with a black-box
Integer Linear Programming (ILP) solver; see Section 3.3.

Algorithm 1: High-level pseudocode for the LS-CGH algorithm.

Input : Initial solution S.
Output: The best solution found.

1 function LS-CGH(S)
2 begin
3 for Round← 1 to n Rounds do
4 S, P ←LKH(S);
5 P ′ ← CGFilter(P);
6 S ← SolveRSP(P ′, S)

7 end
8 return S;

9 end

3.1 Phase 1: Lin, Kernighan and Helsgaun Heuristic

To integrate the LKH algorithm with our LS-CGH scheme—which has been imple-
mented as multi-thread C++ project—and also to improve its efficiency, a number
of customizations have been applied to the original Helsgaun’s code available at
[18]. A summary of the most relevant changes are reported next.

– Due to the extensive use of global variables and non-reentrant primitives in the
C code, the algorithm was not “out-of-the-box” ready to be encapsulates into
a multi-thread scheme. Therefore we have systematically modified all global
variables storage making them “thread local”, and we have substituted all the
non-reentrant C primitives with their corresponding reentrant versions. After
these changes, we were able to synchronize the code by means of a step-by-step
execution implemented upon pthread barrier.

– An improved synchronization has been implemented to equalize the duration
of parallel “runs”.

– The Jonker and Volgenant’s mTSP-to-TSP transformation has been imple-
mented to adapt solutions generated by the RSP optimisation and make them
compatible with the current LKH instance.

– A basic control interface has been added to control the execution of the LKH
algorithm and to let successive LKH calls execute one after the other with a
reduced overhead.

– A route extraction function has been implemented to obtain a suitable amount
of diversified routes to fill the route pool.

– The caching system already adopted within the algorithm has been extended
and slightly improved.

6 Francesco Cavaliere et al.

– The CVRP penalty function has been redesigned, improving its speed while
maintaining the exact same behaviour as the original one.

– A Simulated Annealing (SA) scheme has been added on top of the original
solution acceptance test, to improve the performance of the original algorithm
and to perturb the initial solution in the attempt of escaping from local optima.

For the sake of clarity, in what follows we will call “newLKH” our modified
version of the LKH. To give a clearer idea of the structure of the newLKH algorithm
and of the introduced changes, a sketch of this variant is given in Algorithm 2.
The overall scheme resembles the original LKH, since most of its logic is not
affected by our changes. The two main additions are the route-extraction step
(ExtractRoutes), and the Simulated Annealing acceptance test (SATest) called
on every solution returned by the LinKernighan function. To be more specific,
the following functions appear in the pseudocode:

– Cost: Returns the cost of the input solution.
– Kick: Perturbs the input solution; see Section 3.1.3.
– LinKernighan: Calls Helsgaun’s implementation of the Lin-Kernighan heuris-

tic on the input solution, possibly refining it; see Algorithm 3 for a simplified
overview of the main steps of this phase.

– ExtractRoutes: Given a (possibly infeasible) tour, returns all its feasible
routes.

– SATest: Manages the current solution update according to the Simulated An-
nealing metaheuristic approach described in Section 3.1.3.

– TimeLimitReached: Simple test that returns true if the given time limit for
the phase 1 of the LS-CGH has been reached, false otherwise.

Algorithm 2: High-level pseudocode for the LKH algorithm.

Input : Initial solution Sinit.
Output: The populated route pool P and the best solution found S∗.

1 function LKH(Sinit)
2 begin
3 for Run← 1 to n Runs do
4 S∗ ← S ← Sinit;
5 for Trial← 1 to n Trials do
6 S ← Kick(S);
7 S ← LinKernighan(S);
8 P ← ExtractRoutes(S);
9 if Cost(S) < Cost(S∗) then

10 S∗ ← S
11 end
12 S ← SATest(S∗, S);
13 if TimeLimitReached() then
14 return S∗, P
15 end

16 end

17 end
18 return S∗, P

19 end

An overview of the LinKernighan function is provided in Algorithm 3, high-
lighting the positions of the “Penalty” and “Flip” functions (to be described in

An integrated local-search/set-partitioning refinement heuristic for CVRP 7

Section 3.1.2 and Section 3.4.1, respectively). The functions that appear in the
pseudocode are as follows.

– BestSpecialOptMove: Original LKH function which, given a solution, searches
for a r-Opt move that improves it, considering a restrict set of moves special-
ized for routing problems. An array MrOpt[1..r] of 2-Opt moves and its size r
are returned. The proposed move is thus represented as a sequence of r 2-Opt
moves to be applied, in sequence, to produce the final r-Opt move; see Sections
3.1.2 and 3.4.1 for further details.

– Flip: Original (for CVRP) or modified (for asymmetric problems) function
that applies a single 2-Opt move to a solution; see Section 3.4.1 for details.

– Penalty: Modified version of the original “Penalty” function that, given a
solution, returns its infeasibility level; see Section 3.1.2 for details.

Algorithm 3: Simplified representation of the LinKernighan function
inside the LKH algorithm

Input : Initial solution S.
Output: The refined solution S.

1 function LinKernighan(S)
2 begin
3 P ← Penalty(S);
4 C ← Cost(S);
5 MrOpt, r ←BestSpecialOptMove(S);
6 do
7 Improved← false;
8 for t← 1 to r do
9 S ← Flip (S,MrOpt[t])

10 end
11 P ′ ←Penalty(S);
12 C′ ← Cost(S);
13 if (P ′ < P) OR (P ′ = P AND C′ < C) then
14 P ← P ′;
15 C ← C′;
16 Improved← true

17 else
18 for t← r downto 1 do
19 S ←Flip(S,MrOpt[t])
20 end

21 end

22 while Improved ;
23 return S

24 end

Our newLKH version containing all the speed-related optimizations (namely:
the new Penalty function, the caching system and the new Flip function) is freely
available, for research purposes, at https://github.com/c4v4/LKH3.

3.1.1 Speed improvements

Some of the most relevant changes aimed at speeding up the execution of the
original LKH code are outlined next.

8 Francesco Cavaliere et al.

Cost function: To reduce the overhead related to the computation of distances
between vertices, the LKH algorithm uses, since its first version, a clever caching
system proposed by Bentley [6]. This caching system works with two arrays of
the same size: one array is used to save the used distances, while in the other
one the smaller of the two node indices is saved as a signature. The position of
each distance-signature pair in their respective arrays is chosen with a fast hash
function. Thanks to this simple mechanism, both Helsgaun and Bentley report
that the time with TSP problems can be halved or more [6, 20].

In the LKH original cost function, several checks are performed before calling
the computationally expensive distance function. Indeed, depending on the VRP
version and other internal parameters, the required distance might have already
been stored by previous operations. Thus, before calling the distance function,
all these fields are checked. The cache is checked as a last step, only if none
of the fields contains the required value. Even though the performed checks are
usually less expensive than a call to the distance function, searching all the places
where the distance could have been stored (which are not located adjacently in
memory) can be slower than a direct check of the cache which, very often, already
contains the actual value required. For this reason, we have modified the original
cost function moving the cache check ahead, in a small prologue (often inlined by
the compiler even without linking time optimization, since it is defined in a shared
header file) that first checks if the requested cost is already stored inside the
cache. Only when this step fails, it proceeds by calling the remaining part of the
cost function, performing all the field checks and, eventually, the final call to the
distance function. Furthermore, since distance and signature are always accessed
together, the subdivision into two distinct array have been modified into a single
array containing the signature and its distance adjacent in memory, to improve
the cache-locality of this system.

Forbidden function: The “Forbidden” function tells if a given edge is part or not
of the given instance. A simple example of forbidden edges is the set of edges
between depot copies—note that, in the Jonker and Volgenan’s mTSP-to-TSP
transformation [23], multiple copies of the depot are introduced. This function
is heavily used by the algorithm, as shown by our profiling. Since the caching
mechanism proved to be a really effective improvement for the cost function, we
have implemented an analogous mechanism for the Forbidden function, using again
a small prologue to possibly skip not only all the checks made by the original one,
but also the function-call overhead.

Balanced workload: As previously described, we have modified the original LKH
source code to make it reentrant. The reason for this extensive modification has
been the need of enabling a parallel execution of multiple instances of the LKH
algorithm. However, running different threads in parallel, synchronized only at the
beginning and at the end of each LKH call, often leads to an unbalanced situation
where some threads take less time than others. This difference varies randomly
with the status of the algorithm. To avoid the waste of potential computational
resources, all the threads are synchronized such that each parallel run ends only
when the slowest one has ended. In this way, fast runs (which sometimes are even
twice as faster as the slowest one), can carry on with their “trials”, avoiding to
reach the phtread barrier early and then wait for the others to finish.

An integrated local-search/set-partitioning refinement heuristic for CVRP 9

Some utility procedures have also been implemented to connect LKH with the
remaining part of our LS-CGH scheme. We next describe two main components of
such an interface: the route pool and the Jonker and Volgenant’s solution trans-
formation.

Route Pool: To store the routes extracted by the solutions generated by the LKH
we have implemented a simple route pool. We have decided to use a data structure
inheriting from C++ STL std::unordered set to avoid duplicates while keeping the
best version of each route within the same group of nodes. Every route is dis-
tinguished from the others by the set of visited customers (which are saved as a
sorted list), while the actual customer sequence and the length of the routes are
updated every time a better “duplicate” is found.

Jonker and Volgenant’s solution transformation: An important transformation, pro-
posed by Jonker and Volgenant [23] and applied in LKH, is the mTSP-to-TSP
conversion which transforms an instance with m salespersons into a TSP instance
with m − 1 copies of the depot. This transformation is used to reduce the search
space, decreasing the symmetry of mTSP and other problems with multiple routes
(e.g., CVRP). It is easy to see that when m − 1 identical copies of the depot are
introduced into the graph, for each tour there exists m! equivalent tours which
only differ by the order of the depot copies. This transformation deletes part of
the edge of the graph, by assigning to some selected nodes two depot copies to
which they are allowed to be connected with, and by forbidding the edges to the
other depot copies—thus reducing the number of possible route permutations.

A problem we encountered interfacing the RSP phase with the LKH one, con-
cerns the compatibility of the CVRP solutions produced. Indeed, the combination
of routes with the Set-Partitioning ILP optimization does not consider the Jonker
and Volgenant’s mTSP-to-TSP transformation [23] applied within the LKH algo-
rithm. When the ILP optimization generates CVRP solutions, the transformation
is applied to avoid the use of the forbidden edges. Our algorithm follows the general
directives advised in the original Jonker and Volgenant’s paper [23], namely:

1. Starting from a general CVRP solution, the routes are extracted and the depot
is removed, obtaining a list of chains of customers.

2. The depot is copied, obtaining a number of depots equal to the number of
vehicles.

3. All the chain endpoints (two for each chain) are considered. Accordingly to
the transformation already in place within the current LKH instance, for each
end point that results to be a special customer (in the sense of the Jonker and
Volgenant’s paper: a customer for which the transformation has assigned only
two depot copies) the required depots are assigned.

4. Then the main cycle of the transformation begins. Starting from one, all the
chains are concatenated one after the other, ensuring that all the special cus-
tomers are not linked with forbidden depot copies.

3.1.2 New Penalty Function

Although quite effective in practice, the above improvements are of a minor theo-
retical relevance since they simply accelerate the algorithm without modifying its

10 Francesco Cavaliere et al.

original scheme—or provide an interface for other modules to interact with it more
freely. On the other hand, the Penalty function modification has been character-
ized by a more prominent re-design of one of the main bottleneck functions. LKH
is characterized by a hard division between the penalty value of a solution, which
correlates to a measure of the “amount of constraint violation”, and the actual
cost of the objective function. At run-time, LKH gives higher priority to the im-
provement (i.e., decrease) of the penalty, considering the edge-cost gain achieved
by the proposed r-Opt move only when the penalty variation is zero.

For any given solution, the Penalty function computes the penalty value with
a computational complexity linear in the size of the CVRP solution. Inside LKH,
such a solution is represented by a TSP tour containing a number of depot copies
equal to the number of vehicles (following the Jonker and Volgenant [23] symmetry-
breaking transformation). In what follows, the term “tour” will refer to this inter-
nal representation and it will not be a synonym for “route”, which instead refers
to the cycle covered by a singe vehicle.

The Penalty function is called inside the LKH to check a new proposed solution
in the following way:

1. A new r-Opt move is found and stored (decomposed as a series of 2-Opt moves)
within the LK function.

2. The move is applied to the best tour found in the current “trial”, named current

tour, obtaining a new proposed tour.
3. The penalty function is called to check the proposed tour.
4. If the proposed tour improves the penalty of the current tour, or keeps the

penalty unchanged while improving its cost, it becomes the new current tour,
otherwise the saved r-Opt move is reversed to obtain the original current tour.

Notice that, at any given time, the proposed and current tours are abstract concepts
used to explain their role, while the tour stored in memory is actually one which
is first modified and then eventually restored if it does not improve the previous
one.

However, due to its strict policy requiring that the infeasibility level can never
increase, the Penalty function frequently rejects new candidates solutions. As a
matter of fact, in almost all our tests the function rejects the proposed tour more
than 95% of the times, thus representing one of the main bottlenecks for the entire
algorithm. This observation enabled us to optimize the original LKH scheme by
speeding-up the frequent “rejecting” case, introducing a rarely executed “update”
step, thus resulting in a significant performance improvement. Indeed, the main
change to the original penalty function has been the restriction of the penalty
checks to only the routes “touched” by the proposed r-Opt move. Since the penalty
function is called at every new potential change of the tour, these are the only
routes modified between successive calls of the penalty function.

As in the original code there is no route-related data structure, a basic one
has been implemented to store the route penalty for the current tour. Then, for
each node, a reference to its route-data is stored, in accordance to the current
CVRP solution. Thanks to this additional information, one can efficiently retrieve
the current penalties of the routes touched by the proposed r-Opt move, as they
appear in the current tour.

As a further optimization, we observe that route penalties need to be stored
only if the current tour penalty is not yet zero. Indeed, when a feasible CVRP solu-

An integrated local-search/set-partitioning refinement heuristic for CVRP 11

tion has been found (and the current penalty is, therefore, zero), then the previous
cumulative penalty of any subset of routes is also zero. Therefore the previously
described step can be completely avoided to further speed up the function.

Finally, when a proposed tour is accepted, an update procedure needs to be
executed to restore route-data consistency.

3.1.3 Simulated Annealing

To avoid to get stuck in local optima, the original LKH algorithm uses a so-called
“kick” strategy, i.e., every time a “trial” of the core LK procedure cannot find any
other move that improves the current solution, a random r-Opt move (usually a
double bridge 4-Opt move [3, 4, 19, 28]) is applied to the current solution and
the LK procedure is called again. As previously explained, a single iteration of
such scheme is named “trial” in the LKH context. This technique has however two
shortcomings:

– When LK is applied over a TSP instance that maps the VRP one, the additional
constraints applied through the penalties make the search space very sparse.
Therefore, although effective with true TSP instances, it can result to be not
powerful enough to perturb the solution and move from the current VRP local-
optima.

– When a warmstart is provided to the algorithm, LKH starts from a potentially
very good local optimum from which it is not able to move (especially if such
a warmstart has been produced by previous iterations of the LKH algorithm
itself). Therefore, a perturbing strategy able to lead the search trajectory away
from this starting point and to explore new solution neighborhoods is needed.

As in the recent FILO heuristic [2], we decided to integrate a Simulated An-
nealing (SA) [25] scheme into LKH, motivated also by the compatibility of the
original penalty-based scheme with such a technique.

Two overlapping SA schemes have been implemented, one based on the num-
ber of “trials”, and one based on the LKH time limit. During the execution, the
temperature is decreased for both the SAs and the smaller one is considered for
the actual SA acceptance test. In this way, when both the trial and the time limits
are given, the algorithm can automatically adapt to fit the tighter of the two.

Inspired again by the SA implementation in FILO [2], we have set up our SA
scheme as follows:

– The ratio between the initial temperature and the final one has been fixed to
100.

– Adopting the terminology introduced in Section 3.1, let z be the cost of the
proposed solution, z′ be the cost of the current solution used as a starting point,
and T t be the temperature at the “trial” t of the algorithm. The solution z is
accepted as new current solution if

z − z′ < T t · ln(U [0, 1])

where U [0, 1] is a uniform random variable in the [0, 1] range.

12 Francesco Cavaliere et al.

– Two distinct temperatures are maintained during the execution, namely: T ttrial
which represent the trial-based SA temperature, and T ttime which is the tem-
perature of the time-based one. The actual temperature T t is computed as the
minimum of the two. Therefore, the update formulas are:

T t+1
trial = 0.011/MTRIAL · T ttrial

T t+1
time = 0.01∆t/TMAX · T ttime

T t+1 = min{T t+1
trial, T

t+1
time }

where MTRIAL is the maximum number of “trials”, ∆t is the time lasted from
“trial” t and “trial” t+ 1, and TMAX is the time limit for the “run”.

– Finally, the initial temperature is computed as the value of the best solution
obtained after 50 “trials”, multiplied by a factor c (say) defined as follows. As
we aim for long runs, we have distinguished the initial part of the algorithm
(where the objective is to find a good solution without getting stuck into local
optima) from the second one (which tries to find improvements to the given
initial solution). For the first part a factor cz (say) has been used to scale the
initial temperature when no initial solution is provided to the algorithm, while
cw (say) is the same factor when an initial solution is present—because provided
externally or from previous rounds of the algorithm. After some preliminary
computational tests, we have fixed cz = 2.5 · 10−3 and cw = 5 · 10−4.

3.2 Phase 2: Column Generation Filtering

The number of routes generated during the LKH execution is typically exceedingly
large, hence a technique to select the best routes is essential for the efficiency of
the whole algorithm.

Considering our heuristic context, we need to balance two aspects: efficiency of
the column generation phase, and RSP optimization speed. To achieve the former,
a set of policies built around the common objective of finding a good and relatively
small subset of routes has been defined, from which the RSP optimization could
start. The initial core set of candidate routes consists in the selection of the “best”
8, 000 routes from the ordered list of all routes, sorted by non-decreasing solution
costs.

(Indeed, in our computational tests we have seen that values between 5, 000
and 10, 000 are adequate for fast runs where the Set-Partitioning phase needs to
be fast to avoid introducing large slow-down for the whole LS-CGH algorithm.)

Starting from this core set, the following filtering techniques are applied:

1. The LP relaxation of the RSP containing only the initial set of route is itera-
tively solved using the dual simplex algorithm. At each iteration, the reduced
costs of the routes still in the route pool are computed, saving the value of
the most negative one, say cmin < 0. At this point, the routes with a reduced
cost less than 0.8 · cmin are added to the RSP, therefore inserting a number
of potentially useful columns at each iteration. This pricing procedure stops
when all reduced costs are nonnegative, or when a time limit is reached.

An integrated local-search/set-partitioning refinement heuristic for CVRP 13

2. Since the previous policy often does not select enough routes, we also use a
filtering criterion akin to the one proposed by Caprara et al. [7] for the solution
of large-scale set covering problems. At every pricing iteration we also select,
for each customer, the ten routes with smallest (possibly positive) reduced
costs. The pricing procedure stops when the time limit is reached or when
the cumulative sum of the reduced costs added during the previous iteration,
becomes nonnegative.

To handle the case in which the pricing procedure selects too many routes, we
have set as a hard bound value equal to 16, 000, i.e., twice the initial set size.

3.3 Phase 3: Restricted Set Partitioning Problem Optimization

The final step of our scheme consists in the solution of the RSP formulation. For
this task we used a state-of-the-art commercial MIP solver (IBM ILOG CPLEX
12.10). Although this is an exact algorithm, it has been successfully integrated in
our heuristic scheme by setting an aggressive time limit and by an early activation
of its “polishing procedure” [37].

It is worth observing that, as an alternative to the SP formulation, a Set Cov-
ering formulation might be used, that would allow for route overlaps. (Note that
multiple customer visits can be removed by a short-cut post-processing procedure,
that for instances with costs satisfying the triangle property would even reduce
the final solution cost.) However, as reported by Rochat and Taillard [36], and
confirmed by our own computational tests, the Set Covering formulation is sig-
nificantly slower to solve by our MIP solver, so we preferred to stay with the SP
formulation.

3.4 VRP Taxonomy

To position our technique within the VRP scientific literature and to give a clearer
idea of its applicability to other VRP variants, we make use of the Pillac et al.
[34] VRP taxonomy. Broadly speaking, VRPs can be classified by the point of
view of the instance data evolution, in this sense that we have static problems
where all the information is known beforehand, vs. dynamic problems where the
information regarding the instance is known only during the optimization. Then,
we have deterministic vs. stochastic problems: in the former, all information is
known exactly, while in the latter the input data is modelled in the form of random
variables. From the product of this two classifications, one obtains four different
classes:

– static and deterministic;
– dynamic and deterministic;
– static and stochastic;
– dynamic and stochastic.

The technique proposed in the present work specifically aims at problems of the
first category: static and deterministic, as this is the nature of our local search and
set partitioning phases.

14 Francesco Cavaliere et al.

More precisely, our scheme can readily be extended to all the VRP variants
characterized by solutions with independent routes (i.e., variants that can be rep-
resented through the SP formulation, needed for the SP-phase of our algorithm)
and supported by LKH. Here is a brief list of possible candidates:

– Multiple Travelling Salesman Problem (m-TSP)
– Capacitated Vehicle Routing Problem (CVRP)
– Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)
– Vehicle routing problem with backhauls (VRPB)
– Vehicle routing problem with backhauls and Time Windows (VRPBTW)
– Vehicle routing problem with mixed pickup and delivery (VRPMPD)
– Vehicle routing problem with simultaneous pickup and delivery (VRPSPD)
– Vehicle routing problem with mixed pickup and delivery and time windowsb

(VRPMPDTW)
– Vehicle routing problem with simultaneous pickup and delivery and time win-

dows (VRPSPDTW)

Of course, for any such VRP variant one needs to implement a specialized feasi-
bility check for the routes found in the LKH solutions, to ensure that only feasible
routes are inserted into the route pool.

One could also extend our technique to other variants which are compatible
with the TSP–tour representation and the LKH penalty system. In this case,
the implementation would be more involved than in the previously cited vari-
ants (which are already supported by Helsgaun’s algorithm) since, along with the
definition of the Penalty function, also the the internal data structure should be
modified and extended. Similarly, all prepossessing steps (including the instance
file parsing, the application of potential reductions or other preprocessing opera-
tions that can simplify the search) should be revised to account for the new variant.

3.4.1 New Flip Function

Within LKH, most VRP variants undergo an ATSP-to-TSP transformation [22],
hence in what follows we will use the symmetric and asymmetric terms not to refer
to the cost of the arcs in the original problem formulation, but to the cost of the
arcs of the LKH internal representation of the problem. For instance, a symmetric
CVRPTW instance is converted to an asymmetric one so as to remove all the
finite-cost arcs which are not feasible due to the time-window constraints. In this
sense, among the above-mentioned variants, only the “m-TSP” and the “CVRP”
variants are viewed as symmetric problems, while all the others are asymmetric.

Within the LKH algorithm, whenever a 2-Opt move is applied, a function
named Flip is called to copy a portion (segment) of the TSP tour representation
in its reversed order. The operation is part of every 2-Opt move, although some-
times it could be avoided by applying more complex r-Opt moves that maintain
the orientation of every part of the solution. Within LKH, every r-Opt move is
decomposed into a sequence of 2-Opt moves, hence every r-Opt move must go
through different “flips”. If naively implemented, each flip operation has a O(n)
complexity, and is often the main bottleneck of any r-Opt move-based algorithm.

To improve its overall performance, LKH exploits a clever data structure due
to Fredman et al. [16]. Three versions of the Flip function are implemented, with

An integrated local-search/set-partitioning refinement heuristic for CVRP 15

complexity O(n) (naive doubled-linked list version), O(
√
n) (two-level tree), and

O(3
√
n) (three-levels tree), respectively. In particular, the second one is usually

adopted since it is able to maintain a good trade-off with the size of common
instances.

We observed that most of the proposed r-Opt are rejected by the Penalty

function. As the Flip function is called every time an r-Opt move is applied, in the
very likely “rejection” case the solution undergoes two “flip” operations: one to
produce a proposed tour, and another to restore the current tour. As a result, this
function can be optimized by introducing an “update” step when a better solution
is found, with a significant speedup for the most-common “rejection” case.

4 Computational Results

In the present section, we address the following questions:

– How effective are our improvements to the original LKH implementation, in
particular in terms of speed?

– Is our overall refinement heuristic able to improve the solutions found, in long
computing times, by a state-of-the-art CVRP heuristic such as FILO?

– Are we able to improve some best-known solutions from CVRPLIB library, thus
providing an implicit comparison will the best methods from the literature—
that arguably have been applied to the instances of this well-known library?

In the computational tests that follow, the Uchoa et al. [42] X dataset has been
used. Following Queiroga et. al [35], this dataset was restricted to its largest 57
instances (called 57-X in what follows).

For speedup evaluation and for the final tests with the FILO heuristic, we
also considered the XXL set [5] which contains 10 instances of size up to 30, 000
customers.

All the tests have been performed on Intel Xeon E3-1220 V2 CPUs, using up
to 4 threads. We will refer to the Gap of a solution with respect to the currently
Best-Known Solution (BKS), defined as:

Gap :=
Solution value−BKS value

BKS value
.

When not available, an initial solution can be obtained by using one of several
constructive methods that LKH provides. In its default setting, a pseudo-random
procedure is selected that takes into account the possible presence of some re-
strictions on the edges of the graph, like the presence of “fixed” edges. Another
useful constructive CVRP algorithm implemented within LKH is the Clarke and
Wright (CW) saving algorithm [9]. Our computational experience shows that, for
the X dataset, the final solution quality does not depend too much on the selected
constructive heuristic. For the bigger XXL instances,instead, CW is often superior
to the pseudo-random one, as it starts from a solution that, even when infeasible,
is of better quality. Thus, for the single-thread speedup tests described in Section
4.1 we use CW for the initialization. For the comparison with the original LKH
in Section 4.2, instead, we use CW for the first thread, while for the remaining
threads we use the pseudo-random one to help increasing route pool variability.
Notice that, for both newLKH and LS-CGH, only the very first round makes use

16 Francesco Cavaliere et al.

400 600 800 1,000 1,200

2

3

4

5

Size

S
p

ee
d

u
p

Speedup for instances 57-X instances

0 1 2 3

·104

0

20

40

60

Size

S
p

ee
d

u
p

Speedup for instances 57-X and 10 XXL instances

Fig. 1 On the left, the average speedup of the “New” LKH with respect to the original
version for 5 random seeds on the 57-X set. On the right the same chart including the 10 XXL
instances.

of such an initialization, while the best solution found is used in the other rounds.

4.1 Original LKH vs New LKH

In this section, the original LKH is compared with our modified version. The
comparison only addresses the LKH phase of LS-CGH (i.e., without RSP and
route extraction), both run in single-thread for the same number of “trials”. As
the implemented LKH changes do not alter the search trajectory between the
original version and the new one (when run in single-thread mode and when the
same random seed is used), the two versions visit the same solutions sequence and
perform the same algorithmic steps, hence producing the same final solution.

In Table 1 the speedup achieved by the new version is reported along with the
size of the instance. (Since inside the LKH each solution in represented by a TSP
tour of length equal to the number of customers plus the number of vehicles, we
report this figure as the size of the instance.) Along with the 57-X test-bed, the 10
XXL instances of the Belgium data-set has been considered in order to evaluate
the behaviour of the algorithm for a broader range of sizes.

For each test a single “run” of the LKH was executed, starting from a near-
optimal warmstart. The number of “trials” has been set to 10, 000 and 5 random
seeds where tried for each instance. The reported speedup is the average of the 5
speedups obtained by each seed.

Figure 1 (left) shows how the speedup scales with the size of the instance of
the 57-X set. The linear increase of the speedup with the size of the instances is
further confirmed in Figure 1 (right) where also the very large XXL instances are
considered.

An integrated local-search/set-partitioning refinement heuristic for CVRP 17

Table 1 Speedups of the modified LKH (newLKH) with respect to the original one. The size
of the instances is computed as the number of customers plus the number of vehicles. Results
are for the 57-X and XXL sets. (*) For the Flanders2 instance, the number of “trials” has been
halved, since in the original algorithm 10, 000 “trials” would have been computationally too
expensive.

Instance Size LKH Time newLKH Time SpeedUp

X-n303-k21 323 86 49 1.78
X-n308-k13 320 69 40 1.73
X-n313-k71 384 732 335 2.19
X-n317-k53 369 165 87 1.89
X-n322-k28 349 166 89 1.87
X-n327-k20 346 73 41 1.78
X-n331-k15 345 51 29 1.76
X-n336-k84 421 788 330 2.39
X-n344-k43 386 163 84 1.94
X-n351-k40 390 377 180 2.09
X-n359-k29 387 153 77 1.98
X-n367-k17 383 91 48 1.92
X-n376-k94 469 210 96 2.19
X-n384-k52 436 606 263 2.31
X-n393-k38 430 146 70 2.08
X-n401-k29 429 231 108 2.13
X-n411-k19 429 109 55 1.99
X-n420-k130 549 262 94 2.79
X-n429-k61 490 398 166 2.39
X-n439-k37 475 64 32 2.02
X-n449-k29 477 400 170 2.36
X-n459-k26 484 182 82 2.21
X-n469-k138 607 894 270 3.31
X-n480-k70 549 275 103 2.66
X-n491-k59 549 518 190 2.72
X-n502-k39 540 108 47 2.32
X-n513-k21 533 60 27 2.22
X-n524-k153 678 812 206 3.94
X-n536-k96 631 1145 353 3.25
X-n548-k50 597 185 69 2.68
X-n561-k42 602 130 50 2.59
X-n573-k30 602 248 87 2.83
X-n586-k159 744 571 149 3.82
X-n599-k92 691 2184 611 3.57
X-n613-k62 674 397 127 3.12
X-n627-k43 669 322 102 3.16
X-n641-k35 675 398 131 3.04
X-n655-k131 785 211 66 3.20
X-n670-k130 802 944 231 4.08
X-n685-k75 759 499 141 3.53
X-n701-k44 744 328 96 3.41
X-n716-k35 750 417 128 3.25
X-n733-k159 892 343 83 4.13
X-n749-k98 846 845 211 4.01
X-n766-k71 836 863 207 4.17
X-n783-k48 830 528 144 3.67
X-n801-k40 840 234 68 3.45
X-n819-k171 990 1791 373 4.81
X-n837-k142 978 582 129 4.50
X-n856-k95 950 186 53 3.52
X-n876-k59 934 760 182 4.16
X-n895-k37 932 950 235 4.04
X-n916-k207 1122 811 150 5.41
X-n936-k151 1092 884 172 5.13
X-n957-k87 1043 239 60 4.00
X-n979-k58 1036 919 209 4.39
X-n1001-k43 1043 434 101 4.32
Antwerp1 6342 1052 77 13.62
Antwerp2 7119 1992 129 15.43
Brussels1 15511 4287 157 27.34
Brussels2 16181 7660 240 31.98
Flanders1 20683 7037 215 32.80
Flanders2 30255 17166 306 56.01
Ghent1 10484 2028 106 19.07
Ghent2 11109 4469 226 19.75
Leuven1 3202 670 69 9.77
Leuven2 4045 710 102 6.94

18 Francesco Cavaliere et al.

4.2 Original LKH vs new LKH vs LS-CGH

In order to asses the effectiveness of the proposed scheme, three different variants
have been compared. All the tests have been executed with the same time limit
of 200 minutes, using 4 threads for both the LKH “runs” and the CPLEX solver
(when used).

In Table 2 we compare the original LKH, the new LKH and our LS-CGH
methods, and report the best gap reached (w.r.t the BKS) after 200 minutes. The
“LKH” columns give the performance of the original LKH algorithm, without the
proposed improvements and executed without the “round” subdivision adopted
in our scheme. Four parallel threads with “runs” of 10, 000 “trials” have been
executed, until the time limit was reached. The “newLKH” columns give instead
the solutions obtained by our new LKH scheme, without the SP phase. All the
improvements applied to the original algorithm have been activated and the LKH
“runs” (with 50, 000 “trials” each and a time limit of 2000 seconds for each “run”)
have been subdivided into “rounds” of 4 parallel “runs”, providing each round with
the best solution found by the previous one. Finally, in the “LS-CGH” columns
the results for our complete LS-CGH algorithm are reported, thus including the
same setup as in the newLKH columns with the addition of the SP phase.

Both newLKH and LS-CGH show a significant decrease in the average gap, as
well as a consistently lower gap for each instance in the 57-X set.

It is worth noting that the LKH algorithm involves a large number of pa-
rameters to tune: in our tests, we used the default values provided in the scripts
available in Helsgaun’s website. In Table 2, a significant improvement is shown
already by our own version of LKH (namely, newLKH). This is due to three main
factors.

– The improved time performance of the algorithm allowed for the exploration
of a larger number of r-Opt moves with respect to the original LKH.

– The SA in the first round, applied with a high initial temperature, takes better
advantage of a large number of “trials”. The search descent is therefore less
steep (w.r.t. the number of “trials”), and also less prone to get stuck into local
optima.

– The adopted “round” subdivision, in which the best solution obtained is used as
warmstart for the next “round”, greatly improves the efficacy of the algorithm
to refine the solutions in long runs.

Finally, with the addition of CG filtering and RSP optimization, further im-
provements have been obtained.

4.3 Statistical analysis of LS-CGH

A statistical analysis of percentage gaps obtained for multiple runs on a represen-
tative subset of the studied instances has been carried out. From the 57-X dataset,
we have chosen seven representative instances selected as suggested by Queiroga
et al. [35] so as to cover all the different characteristics considered during the
generation of the whole X dataset. As to the Belgium data set, two (Antwerp1
and Flanders1) out of the ten instances have been randomly chosen. For these
two instances, simulated annealing has been disabled because, for these sizes, the

An integrated local-search/set-partitioning refinement heuristic for CVRP 19

Table 2 Comparison between the solution obtained in 200 minutes runs by: the original LKH
algorithm, Helsgaun’s LKH with our changes and inserted in our scheme (newLKH), and our
final LS-CGH algorithm (i.e., newLKH followed by RSP optimization). The best result for
each instance is highlighted in boldface.

Instance
LKH newLKH LS-CGH

Sol Gap Sol Gap Sol Gap

X-n303-k21 21877 0.65% 21803 0.31% 21805 0.32%
X-n308-k13 25995 0.53% 25900 0.16% 25919 0.23%
X-n313-k71 96097 2.18% 95330 1.37% 94604 0.60%
X-n317-k53 78409 0.07% 78361 0.01% 78355 0.00%
X-n322-k28 30061 0.76% 29968 0.45% 29850 0.05%
X-n327-k20 27800 0.97% 27640 0.39% 27619 0.32%
X-n331-k15 31289 0.60% 31103 0.00% 31103 0.00%
X-n336-k84 143175 2.92% 142122 2.16% 141194 1.50%
X-n344-k43 42417 0.87% 42201 0.36% 42156 0.25%
X-n351-k40 26343 1.73% 26133 0.92% 26016 0.46%
X-n359-k29 51807 0.59% 51652 0.29% 51579 0.14%
X-n367-k17 22955 0.62% 22824 0.04% 22814 0.00%
X-n376-k94 147807 0.06% 147720 0.00% 147713 0.00%
X-n384-k52 67082 1.73% 66403 0.71% 66389 0.68%
X-n393-k38 38519 0.68% 38335 0.20% 38260 0.00%
X-n401-k29 66485 0.50% 66481 0.49% 66373 0.33%
X-n411-k19 19890 0.90% 19780 0.34% 19756 0.22%
X-n420-k130 108247 0.42% 107946 0.14% 107798 0.00%
X-n429-k61 66135 1.05% 65742 0.45% 65460 0.02%
X-n439-k37 36559 0.46% 36402 0.03% 36422 0.09%
X-n449-k29 56118 1.60% 55569 0.61% 55363 0.24%
X-n459-k26 24508 1.53% 24226 0.36% 24176 0.15%
X-n469-k138 223542 0.77% 222320 0.22% 222021 0.09%
X-n480-k70 90031 0.65% 89698 0.28% 89566 0.13%
X-n491-k59 67355 1.31% 66739 0.39% 66894 0.62%
X-n502-k39 69317 0.13% 69254 0.04% 69226 0.00%
X-n513-k21 24428 0.94% 24268 0.28% 24275 0.31%
X-n524-k153 154662 0.04% 154616 0.01% 154605 0.01%
X-n536-k96 95924 1.14% 95224 0.40% 95032 0.20%
X-n548-k50 87031 0.38% 86836 0.16% 86762 0.07%
X-n561-k42 42998 0.66% 42854 0.32% 42794 0.18%
X-n573-k30 51053 0.75% 50835 0.32% 50799 0.25%
X-n586-k159 191487 0.62% 190593 0.15% 190482 0.09%
X-n599-k92 115113 6.14% 111324 2.65% 110475 1.87%
X-n613-k62 60467 1.57% 60136 1.01% 59736 0.34%
X-n627-k43 63000 1.34% 62395 0.37% 62356 0.31%
X-n641-k35 64551 1.36% 64205 0.82% 64109 0.67%
X-n655-k131 106943 0.15% 106857 0.07% 106780 0.00%
X-n670-k130 147052 0.49% 146812 0.33% 146407 0.05%
X-n685-k75 69310 1.62% 68554 0.51% 68474 0.39%
X-n701-k44 82933 1.23% 82521 0.73% 82344 0.51%
X-n716-k35 44186 1.87% 43637 0.61% 43603 0.53%
X-n733-k159 137622 1.05% 136477 0.21% 136359 0.13%
X-n749-k98 78682 1.83% 77863 0.77% 77738 0.61%
X-n766-k71 115728 1.15% 114910 0.43% 114776 0.31%
X-n783-k48 73497 1.53% 72822 0.60% 72704 0.44%
X-n801-k40 73976 0.92% 73469 0.22% 73484 0.24%
X-n819-k171 161871 2.37% 159287 0.74% 159101 0.62%
X-n837-k142 195666 1.00% 194453 0.37% 194269 0.27%
X-n856-k95 89473 0.57% 89036 0.08% 89102 0.15%
X-n876-k59 100297 1.01% 99930 0.64% 99986 0.69%
X-n895-k37 56497 4.90% 54827 1.80% 54575 1.33%
X-n916-k207 331620 0.74% 330093 0.28% 329643 0.14%
X-n936-k151 134163 1.09% 133169 0.34% 133146 0.32%
X-n957-k87 86197 0.86% 85606 0.16% 85526 0.07%
X-n979-k58 120354 1.16% 119977 0.84% 119685 0.60%
X-n1001-k43 74142 2.47% 72820 0.64% 72966 0.84%
Average 1.16% 0.48% 0.32%

20 Francesco Cavaliere et al.

time limit is not enough to get stuck into local optima. Thus, the use of simulated
annealing would only make local search slower without the benefit of the broader
exploration that would happen with a much longer time limit. For each instance,
ten runs with different random seeds have been executed, and the corresponding
box-plots are reported in Figure 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

X-n393-k38

X-n469-k138

X-n561-k42

X-n670-k130

X-n716-k35

X-n801-k40

X-n979-k58

Antwerp1

Flanders1

Percentage Gap

Percentage Gaps for a Representative Set of Instances

Fig. 2 Statistical analysis of percentage gap w.r.t. the best-known solution, on a representative
subset of the 57-X and Belgium datasets.

According to the plot, a low variation is experienced for the Belgium in-
stances. This can be explained by the fact that, for these very large problems,
the 200-minute time limit is quite restrictive, hence the algorithm had less time
to find local optima in which getting stuck. For the seven instances from the
57-X dataset, instead, the computing time allowed let the algorithm reach sev-
eral local optima, hence the higher variance due to implemented diversification
mechanisms—exceptional cases being the X-n469-k138 and X-n979-k58 instances
with their outliers.

Figures 3 and 4 report a similar analysis for the ten instances in Table 2 for
which LS-CGH got the best and worst relative gaps, respectively.

4.4 LS-CGH as a refinement tool for FILO

To asses the ability of improving the solution obtained by state-of-the-art heuristic
algorithms, our proposed scheme has been tested starting from the best solution

An integrated local-search/set-partitioning refinement heuristic for CVRP 21

0 0.1 0.2 0.3 0.4 0.5

X-n317-k53

X-n367-k17

X-n376-k94

X-n420-k130

X-n502-k39

X-n655-k131

X-n331-k15

X-n524-k153

X-n429-k61

X-n322-k28

Percentage Gap

Percentage Gaps for a Representative Set of Instances

Fig. 3 Statistical analysis of percentage gap w.r.t. the best-known solution, on the ten in-
stances of Table 2 where LS-CGH performed best in terms of relative gap.

0 0.2 0.4 0.6 0.8 1 1.2

X-n749-k98

X-n491-k59

X-n819-k171

X-n641-k35

X-n384-k52

X-n876-k59

X-n1001-k43

X-n895-k37

X-n336-k84

X-n599-k92

Percentage Gap

Percentage Gaps for a Representative Set of Instances

Fig. 4 Statistical analysis of percentage gap w.r.t. the best-known solution, on the ten in-
stances of Table 2 where LS-CGH performed worst in terms of relative gap.

22 Francesco Cavaliere et al.

obtained by FILO [2]. As previously described, FILO is a recent fast and effective
heuristic, especially designed for instances of very large size as those in the XXL
dataset. The solutions obtained by FILO on a very large number of instances from
the literature are available online [1].

Our test consisted in a long run (200 minutes) of our algorithm starting from
the best solutions obtained by the 10M-iteration runs of FILO. For each instance,
we selected the best solution among those produced by FILO in 10 runs with
different random seeds.

As shown in Tables 3 and 4, our LS-CGH algorithm is consistently able to
improve many of the solution produced by FILO, lowering the average gap to
0.076% for the largest 57 instances of the X data-set, and to 0.079% for the XXL
data-set.

4.5 CVRPLIB best-known solution improvements

During the months preceding the writing of the paper, our LS-CGH algorithm was
consistently and repeatedly able to improve the best-known solutions (BKSs) for
a number of instances from the literature, competing with many other algorithms
developed by different groups around the world. The current BKSs are maintained
in the CVRPLIB website [30], where the history of the obtained improvements is
also reported. As stated in the website, everyone can submit new BKSs, without a
description of the applied techniques. This fact has enabled a number of different
“competitors” to submit many improvements, especially for the difficult instances
of the X and XXL datasets. Different techniques have been applied to these in-
stances, both refining heuristic starting from the previous BKS, and “standalone”
ones starting from scratch.

In our case, for 30 large-scale well-studied instances from the CVRPLIB, we
have been able to improve the BKSs from literature several times, providing a total
of 105 improved BKSs. At the time of writing (March 2021), 14 BKSs produced by
our LS-CGH heuristic are still unbeaten; see Table 5. After an initial testing phase
where the ensemble of proposed techniques was still incomplete, all the new BKS
have been obtained using the same parameter setting, with the only exception
of the overall time limit which was set to infinity. Thus, for each instance we
“manually” monitored the time lasted from the last improvement, and aborted
the code when no improvement was found in the least 24 hours.

5 Conclusions

In this work a new CVRP refining heuristic, LS-CGH, has been proposed. We use
a custom parallel and optimized version of the Lin-Kerninghan-Helsgaun heuristic
to generate a large pool of feasible CVRP routes, and exploit an LP-based pricing
procedure to “filter” the most meaningful ones to feed a Set Partitioning model
producing the final CVRP solution. Our optimized version of the LKH heuristic
is available, for research purposes, at https://github.com/c4v4/LKH3.

The LS-CGH algorithm succeeded in improving several of the best solutions
obtained by a recent state-of-the-art heuristic (FILO) in 10M iterations. In addi-
tion, a log of the best-known solutions obtained in the past months by our method

An integrated local-search/set-partitioning refinement heuristic for CVRP 23

Table 3 Best result for 10 runs of FILO with 10 million iterations for the largest 57 instances
of the X data-set along with the improvement obtained after 200 minuted by our LS-CGH
algorithm. For the XXL instances, SA was disabled due to their extremely large size. Entries
in boldface highlight the cases where LS-CGH was able to improve the FILO solution.

Instance
FILO-10M LS-CGH

Sol Gap Sol Gap

X-n303-k21 21744 0.037% 21744 0.037%
X-n308-k13 25862 0.012% 25862 0.012%
X-n313-k71 94084 0.044% 94084 0.044%
X-n317-k53 78355 0.000% 78355 0.000%
X-n322-k28 29854 0.067% 29854 0.067%
X-n327-k20 27556 0.087% 27556 0.087%
X-n331-k15 31103 0.003% 31103 0.003%
X-n336-k84 139249 0.099% 139195 0.060%
X-n344-k43 42064 0.033% 42064 0.033%
X-n351-k40 25936 0.154% 25922 0.100%
X-n359-k29 51507 0.004% 51505 0.000%
X-n367-k17 22814 0.000% 22814 0.000%
X-n376-k94 147713 0.000% 147713 0.000%
X-n384-k52 66024 0.130% 65996 0.088%
X-n393-k38 38287 0.071% 38269 0.024%
X-n401-k29 66187 0.050% 66187 0.050%
X-n411-k19 19756 0.223% 19755 0.218%
X-n420-k130 107825 0.025% 107798 0.000%
X-n429-k61 65502 0.081% 65455 0.009%
X-n439-k37 36395 0.011% 36395 0.011%
X-n449-k29 55312 0.143% 55280 0.085%
X-n459-k26 24141 0.008% 24140 0.004%
X-n469-k138 222363 0.243% 222038 0.096%
X-n480-k70 89471 0.025% 89457 0.009%
X-n491-k59 66529 0.069% 66491 0.012%
X-n502-k39 69227 0.001% 69226 0.000%
X-n513-k21 24201 0.000% 24201 0.000%
X-n524-k153 154607 0.009% 154605 0.008%
X-n536-k96 95343 0.524% 95278 0.453%
X-n548-k50 86707 0.008% 86704 0.005%
X-n561-k42 42751 0.080% 42751 0.080%
X-n573-k30 50736 0.124% 50736 0.124%
X-n586-k159 190694 0.199% 190686 0.194%
X-n599-k92 108612 0.148% 108609 0.145%
X-n613-k62 59618 0.139% 59572 0.062%
X-n627-k43 62189 0.040% 62184 0.032%
X-n641-k35 63740 0.088% 63735 0.080%
X-n655-k131 106780 0.000% 106780 0.000%
X-n670-k130 147066 0.502% 146481 0.102%
X-n685-k75 68339 0.196% 68318 0.165%
X-n701-k44 81951 0.034% 81950 0.033%
X-n716-k35 43424 0.118% 43417 0.101%
X-n733-k159 136274 0.064% 136265 0.057%
X-n749-k98 77430 0.208% 77399 0.168%
X-n766-k71 114638 0.193% 114638 0.193%
X-n783-k48 72464 0.108% 72457 0.098%
X-n801-k40 73311 0.008% 73307 0.003%
X-n819-k171 158734 0.388% 158703 0.367%
X-n837-k142 193967 0.119% 193948 0.109%
X-n856-k95 89001 0.040% 88966 0.001%
X-n876-k59 99412 0.114% 99412 0.114%
X-n895-k37 53906 0.085% 53898 0.071%
X-n916-k207 329789 0.185% 329660 0.146%
X-n936-k151 133019 0.229% 132999 0.214%
X-n957-k87 85467 0.002% 85467 0.002%
X-n979-k58 119043 0.056% 119043 0.056%
X-n1001-k43 72414 0.082% 72405 0.069%
Average 0.101% 0.076%

24 Francesco Cavaliere et al.

Table 4 Best result for 10 runs of FILO with 10 million iterations for the XXL dataset along
with the improvement obtained after 200 minuted by our LS-CGH algorithm.

Inst
FILO-10M LS-CGH
Sol Gap Sol Gap

Antwerp1 477619 0.072% 477598 0.067%
Antwerp2 291528 0.054% 291493 0.042%
Brussels1 502278 0.102% 502217 0.090%
Brussels2 345747 0.056% 345706 0.044%
Flanders1 7248491 0.106% 7246624 0.080%
Flanders2 4382341 0.163% 4380571 0.122%
Ghent1 469894 0.077% 469860 0.070%
Ghent2 258118 0.122% 258090 0.111%
Leuven1 192915 0.035% 192909 0.032%
Leuven2 111544 0.130% 111541 0.127%
Average 0.092% 0.079%

Table 5 CVRPLIB best-known solution improvements by date. For the current best at the
time of writing (March 2021), the following code identifies the authors of the algorithm: (1)
Francesco Cavaliere, Emilio Bendotti, and Matteo Fischetti; (2) Eduardo Queiroga, Eduardo
Uchoa, and Ruslan Sadykov; (3) Vińıcius R. Máximo and Mariá C.V. Nascimento; (4) Thibaut
Vidal; (5) Quoc Trung Dinh, Dinh Quy Ta, Duc Dong Do.

Instance Prev.BKS 3-May-20 18-May-20 17-June-20 30-July-20 8-Aug-20 20-Aug-20 10-Oct-20 15-Dec-20 30-Jan-21 BKS Authors

X-n351-k40 25928 25919 25896 2
X-n384-k52 65943 65941 65938 3
X-n459-k26 24141 24140 24139 4
X-n536-k96 94950 94921 94846 2
X-n561-k42 42722 42717 42717 1
X-n573-k30 50717 50708 50673 50673 1
X-n641-k35 63737 63723 63684 63684 1
X-n670-k130 146446 146332 146332 1
X-n685-k75 68252 68245 68205 4
X-n716-k35 43414 43412 43373 43373 1
X-n766-k71 114487 114456 114417 114417 1
X-n783-k48 72393 72386 72386 1
X-n801-k40 73311 73305 73305 1
X-n819-k171 158249 158247 158121 2
X-n876-k59 99331 99330 99303 99299 4
X-n895-k37 53946 53935 53928 53870 53860 4
X-n936-k151 132907 132881 132812 132715 2
X-n957-k87 85478 85474 85465 4
X-n979-k58 119008 118996 118976 2
X-n1001-k43 72402 72397 72369 72355 2
Antwerp1 479021 478775 478674 478091 478019 477535 477277 2
Antwerp2 294319 293953 293802 292597 292511 291468 291450 291400 291387 291371 291371 1
Brussels1 504392 504175 504023 503407 503350 502144 501916 501854 501767 501767 1
Brussels2 353285 352658 352012 349602 348740 345627 345616 345565 345553 345551 5
Flanders1 7273695 7272444 7270362 7256529 7256400 7245214 7242182 7241290 7240845 7240845 1
Flanders2 4480972 4469477 4455217 4405678 4402841 4378434 4377986 4377626 4377524 4375193 4375193 1
Ghent1 471084 470902 470818 470329 470306 469838 469602 469586 469532 4
Ghent2 261676 260987 260553 259712 259486 258010 258002 257958 257954 257802 257802 1
Leuven1 193343 193244 193220 193092 193059 192894 192848 4
Leuven2 112751 112378 112280 111860 111794 111499 111489 111447 111399 111399 1

is publicly available on the CVRPLIB website [30], witnessing its ability to improve
105 solutions obtained by the best CVRP heuristics internationally competing on
the same testbed.

In future work, our proposed method can be adapted to other routing prob-
lems, including the Capacitated Vehicle Routing Problem with Time Windows
(CVRPTW), the Capacitated Arc Routing Problem (CARP), the Vehicle Rout-
ing Problem with Backhauls (VRPB), and many others. Since LKH itself is able to
address some of these VRP variants, it can be used as route generator as suggested
in the present work.

An integrated local-search/set-partitioning refinement heuristic for CVRP 25

Acknowledgements

This work was partially supported by MiUR, Italy. We thank three anonymous
referees for their constructive comments.

References

1. Accorsi, L., Vigo, D.: FILO repository. https://github.com/acco93/filo
2. Accorsi, L., Vigo, D.: A fast and scalable heuristic for the solution of large-scale

capacitated vehicle routing problems. Transportation Science 55(4), 832–856
(2021)

3. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Finding tours in the TSP.
Tech. rep., University of Bonn, Germany (1999)

4. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling
salesman problems. INFORMS Journal on Computing 15(1), 82–92 (2003)

5. Arnold, F., Gendreau, M., Sörensen, K.: Efficiently solving very large-scale
routing problems. Computers & Operations Research 107, 32–42 (2019)

6. Bentley, J.L.: K-d trees for semidynamic point sets. In: Proceedings of the
sixth annual symposium on Computational geometry, pp. 187–197 (1990)

7. Caprara, A., Fischetti, M., Toth, P.: A heuristic method for the set covering
problem. Operations Research 47(5), 730–743 (1999)

8. Christiaens, J., Vanden Berghe, G.: Slack induction by string removals for
vehicle routing problems. Transportation Science 54(2), 417–433 (2020)

9. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research 12(4), 568–581 (1964)

10. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Management
Science 6(1), 80–91 (1959)

11. Dantzig, G.B., Wolfe, P.: The decomposition algorithm for linear programs.
Econometrica: Journal of the Econometric Society pp. 767–778 (1961)

12. De Franceschi, R., Fischetti, M., Toth, P.: A new ILP-based refinement heuris-
tic for vehicle routing problems. Mathematical Programming 105(2), 471–499
(2006)

13. Fischetti, M., Fischetti, M.: Matheuristics. In: R. Mart́ı, P.M. Pardalos,
M.G.C. Resende (eds.) Handbook of Heuristics, pp. 121–153. Springer Inter-
national Publishing, Cham (2018)

14. Ford Jr, L.R., Fulkerson, D.R.: A suggested computation for maximal multi-
commodity network flows. Management Science 5(1), 97–101 (1958)

15. Foster, B.A., Ryan, D.M.: An integer programming approach to the vehicle
scheduling problem. Journal of the Operational Research Society 27(2), 367–
384 (1976)

16. Fredman, M.L., Johnson, D.S., McGeoch, L.A., Ostheimer, G.: Data structures
for traveling salesmen. Journal of Algorithms 18(3), 432–479 (1995)

17. Fukasawa, R., Longo, H., Lysgaard, J., De Aragão, M.P., Reis, M., Uchoa, E.,
Werneck, R.F.: Robust branch-and-cut-and-price for the capacitated vehicle
routing problem. Mathematical Programming 106(3), 491–511 (2006)

18. Helsgaun, K.: LKH-3. http://akira.ruc.dk/ keld/research/LKH-3

26 Francesco Cavaliere et al.

19. Helsgaun, K.: An effective implementation of k-opt moves for the Lin-
Kernighan TSP heuristic. Ph.D. thesis, Roskilde University. Department of
Computer Science (2006)

20. Helsgaun, K.: General k-opt submoves for the Lin–Kernighan TSP heuristic.
Mathematical Programming Computation 1(2), 119–163 (2009)

21. Helsgaun, K.: An extension of the Lin-Kernighan-Helsgaun TSP solver for
constrained traveling salesman and vehicle routing problems (2017). DOI
10.13140/RG.2.2.25569.40807

22. Jonker, R., Volgenant, T.: Transforming asymmetric into symmetric travel-
ing salesman problems: erratum. Operations Research Letters 5(4), 215–216
(1986)

23. Jonker, R., Volgenant, T.: An improved transformation of the symmetric mul-
tiple traveling salesman problem. Operations Research 36(1), 163–167 (1988)

24. Kelly, J.P., Xu, J.: A set-partitioning-based heuristic for the vehicle routing
problem. INFORMS Journal on Computing 11(2), 161–172 (1999)

25. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. science 220(4598), 671–680 (1983)

26. Laporte, G., Nobert, Y., Desrochers, M.: Optimal routing under capacity and
distance restrictions. Operations Research 33(5), 1050–1073 (1985)

27. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Operations Research 21(2), 498–516 (1973)

28. Martin, O., Otto, S.W., Felten, E.W.: Large-step markov chains for the TSP
incorporating local search heuristics. Operations Research Letters 11(4), 219–
224 (1992)

29. Monaci, M., Toth, P.: A set-covering-based heuristic approach for bin-packing
problems. INFORMS Journal on Computing 18(1), 71–85 (2006)

30. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: CVRPLIB - Updates.
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/updates

31. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for
capacitated vehicle routing. Mathematical Programming Computation 9(1),
61–100 (2017)

32. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: VRPSolver.
https://vrpsolver.math.u-bordeaux.fr/

33. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: A generic exact solver
for vehicle routing and related problems. Mathematical Programming 183,
483–523 (2020)

34. Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic
vehicle routing problems. European Journal of Operational Research 225(1),
1–11 (2013)

35. Queiroga, E., Sadykov, R., Uchoa, E.: A POPMUSIC matheuristic for the
capacitated vehicle routing problem. Computers & Operations Research 136,
105475 (2021)

36. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in
local search for vehicle routing. Journal of heuristics 1(1), 147–167 (1995)

37. Rothberg, E.: An evolutionary algorithm for polishing mixed integer program-
ming solutions. INFORMS Journal on Computing 19(4), 534–541 (2007)

38. Ryan, D.M., Hjorring, C., Glover, F.: Extensions of the petal method for
vehicle routeing. Journal of the Operational Research Society 44(3), 289–296
(1993)

An integrated local-search/set-partitioning refinement heuristic for CVRP 27

39. Subramanian, A., Uchoa, E., Ochi, L.S.: A hybrid algorithm for a class of
vehicle routing problems. Computers & Operations Research 40(10), 2519–
2531 (2013)

40. Taillard, É.D., Helsgaun, K.: POPMUSIC for the travelling salesman problem.
European Journal of Operational Research 272(2), 420–429 (2019)

41. Toth, P., Vigo, D.: Vehicle routing: problems, methods,
and applications. SIAM, Philadelphia, PA (2014). URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594

42. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New
benchmark instances for the capacitated vehicle routing problem. European
Journal of Operational Research 257(3), 845–858 (2017)

43. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Operations
Research 60(3), 611–624 (2012)

