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Abstract

Benders is one of the most famous decomposition tools for Mathematical Programming, and it is the method

of choice e.g., in Mixed-Integer Stochastic Programming. Its hallmark is the capability of decomposing

certain types of models into smaller subproblems, each of which can be solved individually to produce

local information (notably, cutting planes) to be exploited by a centralized “master” problem. As its name

suggests, the power of the technique comes essentially from the decomposition effect, i.e., the separability of

the problem into a master problem and several smaller subproblems. In this paper we address the question

of whether the Benders approach can be useful even without separability of the subproblem, i.e., when its

application yields a single subproblem of the same size as the original problem. In particular, we focus on

the capacitated facility location problem, in two variants: the classical linear case, and a “congested” case

where the objective function contains convex but non-separable quadratic terms. We show how to embed the

Benders approach within a modern branch-and-cut mixed-integer programming solver, addressing explicitly

all the ingredients that are instrumental for its success. In particular, we discuss some computational aspects

that are related to the negative effects derived from the lack of separability. Extensive computational results

on various classes of instances from the literature are reported, with a comparison with the state-of-the-art

exact and heuristic algorithms. The outcome is that a clever but simple implementation of the Benders

approach can be very effective even without separability, as its performance is comparable and sometimes

even better than that of the most effective and sophisticated algorithms proposed in the previous literature.
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1. Introduction

In this article we study the multiple-allocation (or multiple-source) Capacitated Facility Location (CFL)

problem and its quadratic variant known as the congested CFL problem. In both problems we are given

a set of customers and potential facility locations. Customers have to be served by open facilities, and

their demands have to be satisfied by the limited capacity of open facilities. Demand can be split and

a customer can be partially served by several locations. Multiple allocations arise, for example, when

customers correspond to population areas and not all the individuals from the same area have to be served

by the same facility. In the problem variant with linear objective function (known as classical CFL), the

solution cost, which is to be minimized, is defined as the sum of costs for opening facilities plus the costs

for allocating customer demands to open facilities. In congested CFL, introduced by Desrochers et al. [10],

possible congestions at open facilities imply diseconomies of scale expressed through convex cost functions.

These convex costs arise due to a possibly larger number of overtime workers, usage of more costly materials,

or by neglecting or postponing equipment maintenance schedules [20]. Hence, the goal is now to minimize

the sum of facility opening costs, customer allocation costs plus the congestion costs (typically defined

as service/production costs at facilities and/or waiting times at facilities). In congested CFL considered

throughout this paper, the convex cost are modeled using quadratic functions. In congested CFL, a more

balanced solution is sought after, i.e., a solution that takes into consideration expected waiting times such

that open facilities are not “overloaded” by customer demands. The congestion is usually not measured

in the same units as the opening and allocation costs (which can be easily expressed in currencies), hence,

it is not surprising that congestion costs (being quadratic), grow much faster than the remaining (linear)

part of the objective function. Consequently, it may happen that the optimal solution requires to open too

many facilities, so as to keep their load at minimum. Since decision makers prefer to have a control over the

number of open facilities, a p-median constraint is usually added to the problem formulation, where p is a

given input parameter.

Previous work. A large body of work is available for classical CFL. We address only a small portion of

published articles, and refer the reader to a more comprehensive literature overview available in [22] and

a more recent one in [12]. To the best of our knowledge, the state-of-the-art exact methods for CFL are:

1) a branch-and-cut-and-price algorithm (B&C&P) by Avella and Boccia [2], which is based on the idea of

reformulating CFL as a fixed charge network design problem, and separating the mixed dicut inequalities,

and 2) a Lagrangian-based branch-and-bound by Görtz and Klose [17]. State-of-the-art heuristics are those

proposed by Avella et al. [3] (a Lagrangian relaxation combined with a cutting plane method) and an

MIP-based heuristic called kernel search by Guastaroba and Speranza [18]. On the contrary, congested

CFL did not receive that much attention: besides the original article [10], in which the problem has been

approached by column generation and optimal solutions have been reported for very small instances, the
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problem has been only recently considered in the master thesis [27]. However, there are plenty of models

in which congestion issues at facilities are modeled using queuing theory, or considering different objective

functions. For more details, see e.g., a recent survey by Boffey et al. [7] and recent literature overviews given

in Aboolian et al. [1], Zhang et al. [31].

Main motivation and our contribution. Applying Benders decomposition to CFL appears very natural as

it follows the “recipe” given by Benders in the early 60’s [6]: keep the integer variables, and relax the

“complicated” continuous variables. A careful look into the recent literature suggests however that, since

the work of Wentges [30] in the 90’s, and despite a wide range of approaches applied to CFL, the Benders

decomposition method was not considered the solution method of choice.

The main motivation of the present article was therefore to rethink the well-known concept of Benders

decomposition for CFL, considering both linear and convex nonlinear objective functions. Our goal was to

provide guidelines for a modern implementation of Benders decomposition based on the MIP technology

which was not available back in the 70’s and 80’s when most of the related articles have been published.

For classical (i.e., linear) CFL, our method is competitive and sometimes better than the state-of-the-art

exact approaches available in the current literature: a branch-and-cut-and-price algorithm by Avella and

Boccia [2] and a Lagrangian-based branch-and-bound by Görtz and Klose [17]. For the largest available

CFL instances, our method has been run as a heuristic and successfully compared with the kernel search

heuristic by Guastaroba and Speranza [18], which was shown to beat all previous CFL heuristics. For

the congested case, we show how to obtain a much tighter convex Mixed-Integer Non-Linear Programming

(MINLP) formulation using the perspective reformulation [15, 19]. We then demonstrate that our new

decomposition approach computationally dominates the perspective reformulation solved using a state-of-

the-art commercial solver based on second-order cone cuts.

2. Mixed-Integer Programming models

More formally, CFL is stated as follows: Given a set J of potential facility locations, and a set I of

customers, let di ≥ 0 denote demand of a customer i ∈ I, and sj ≥ 0 capacity of a facility j ∈ J . Opening a

facility j ∈ J costs fj ≥ 0, and serving a single unit of demand of customer i by facility j costs cij ≥ 0, for

all i ∈ I, j ∈ J . The goal is to find a subset of facility locations to open, and to serve all customers, so that

the facility opening plus customer allocation costs are minimized. Let us assume without loss of generality

that each customer can be allocated to every facility (if this is not the case, we will assume cij =∞). In the

traditional compact Mixed-Integer Linear Programming (MILP) formulation for CFL, |J |+ |I| · |J | variables

are used to model the problem. For each j ∈ J , binary variable yj is set to one if facility j is open, and to

zero, otherwise. For each i ∈ I and j ∈ J , the continuous allocation variable xij ≥ 0 will denote the fraction

of the demand of customer i ∈ I served by facility j ∈ J .
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2.1. CFL with linear objective function

The classical CFL model reads

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij (1)

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (2)

xij ≤ yj ∀i ∈ I, j ∈ J (3)∑
i∈I

dixij ≤ sjyj ∀j ∈ J (4)

xij ≥ 0 ∀i ∈ I, j ∈ J (5)

yj ∈ {0, 1} ∀j ∈ J (6)

The objective is to minimize the sum of facility opening costs, plus the customer allocation costs. Assignment

constraints (2) make sure that complete customer demand is satisfied, and capacity constraints (4) make

sure that the capacity of an open facility cannot be exceeded. Constraints (3) state that allocation to a

facility j is only possible if this facility is open. They are redundant in the MILP formulation, but are known

to significantly strengthen the quality of Linear Programming (LP) relaxation bounds. Note that, because

of capacity constraints (4), the integrality condition on variables xij is not automatically satisfied by an

optimal solution, hence one should add it explicitly in case single-source CFL is considered—a variant not

covered in the present paper.

CFL is NP-hard, however, when a set of open facilities is fixed, the problem of finding optimal customer

allocations boils down to a transportation problem that can be solved efficiently using specialized algorithms

based on e.g., minimum-cost flows. Furthermore, the following well-known and very useful constraints are

sufficient to guarantee that a chosen subset of open facilities may produce a feasible solution:∑
j∈J

sjyj ≥
∑
i∈I

di.

These constraints turn out to be very important for our Benders reformulation as well.

2.2. Congested CFL with convex objective function

Similarly, congested CFL can be modeled as the following Mixed-Integer Non-Linear Program (MINLP)

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij+
∑
j∈J

F (
∑
k∈I

dkxkj)
∑
i∈I

dixij (7)

s.t.
∑
j∈J

yj = p (8)

(2) – (6)
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where F (.) is the penalty function, which is assumed to be nonnegative, continuous and convex for non-

negative arguments. This function penalizes every additional “unit” being served by a given facility. De-

pending on the application, function F is used here to model the service/production costs at the facilities or

the waiting times—both are expected to increase with the increasing demand in a convex fashion. Desrochers

et al. [10] show that, under these assumptions, the objective function remains convex in (x, y) for all non-

negative values of x, hence we are dealing with a convex MINLP. Throughout this paper, for the ease of

exposition, we will assume that F (t) is a linear function, say F (t) = at + b, with nonnegative input coeffi-

cients a and b, though our decomposition approach (cf. Section 3) can be extended to more general cases. To

prevent opening too many facilities and to allow the decision makers to control the number of open facilities,

p-median constraint (8) is added to the model [10].

Using aggregated variables to model the exact demand served by facility j (namely: vj =
∑

i∈I dixij , that

we will refer to as facility load), the congestion cost at a facility j ∈ F is given as F (vj) · vj . Consequently,

the objective function can be written as:

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij +
∑
j∈J

F (vj)vj

Our model then reads

min
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij+b
∑
j∈J

vj + a
∑
j∈J

v2j (9)

s.t.
∑
j∈J

yj = p (10)

∑
i∈I

dixij = vj j ∈ J (11)

∑
j∈J

xij = 1 ∀i ∈ I (12)

xij ≤ yj ∀i ∈ I, j ∈ J (13)

vj ≤ sjyj ∀j ∈ J (14)

xij ≥ 0 ∀i ∈ I, j ∈ J (15)

yj ∈ {0, 1} ∀j ∈ J (16)

To obtain a tighter model one can derive the so-called perspective reformulation [15, 19] of the problem,

in which each quadratic term v2j in the objective function is replaced by a nonnegative variable zj , namely:

min{
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

dicijxij + b
∑
j∈J

vj + a
∑
j∈J

zj | v2j ≤ zjyj ,∀j ∈ J, z ≥ 0, (10)-(16) } (17)
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The second-order cone (SOC) constraints v2j ≤ zjyj , together with the minimization of the objective

function, guarantee that the quadratic load v2j of a facility j is zero if the facility is closed, and it is zj if the

facility is open. Note that, for a given vj , the smaller yj > 0 the larger zj , meaning that small fractional

values of yj are penalized by the objective function. As a result, the model automatically tends to favor

integral values for the y variables, which explains why the perspective reformulation of a problem is typically

much tighter than the standard one (see, e.g. [15, 19]). We therefore use (17) in our computational study.

3. Modern Benders

In this section we describe the basic steps for the design of a Benders decomposition approach to be

embedded in a modern MIP solver.

3.1. An easy derivation of Benders cuts for convex problems

For the sake of generality, let the problem of interest (an MILP or a convex MINLP) be restated as

min f(x, y) (18)

s.t. g(x, y) ≤ 0 (19)

y integer (20)

where x ∈ Rm, y ∈ Rn, and functions f : Rm+n 7→ R and g : Rm+n 7→ Rp are assumed to be differentiable

and convex. Let Ay ≤ b denote the subset of linear inequalities in (19) that do not involve x, including

variable bounds on the y variables (if any). To simplify our treatment, we assume that

S := {y : Ay ≤ b}

is a nonempty polytope, while the convex sets X(y) := {x : g(x, y) ≤ 0} are nonempty, closed and bounded

for all y ∈ S, as it happens in our CFL case. Problem (18)-(20) can trivially be restated as the master

problem in the y space

minw (21)

s.t. w ≥ Φ(y) (22)

Ay ≤ b (23)

y integer (24)

where

Φ(y) := min
x∈X(y)

f(x, y)

is the convex function expressing the optimal solution value of the problem (18)-(20) as a function of y,

and w is a continuous variable that captures its value in the objective function. (Problems where X(y)
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can be empty for some y ∈ S can be handled similarly, by adding the feasibility condition 0 ≥ Ψ(y) :=

min{1T s | g(x, y) ≤ s, s ≥ 0} to (21)-(24).)

Note that Φ(y), though convex, is nonlinear even in case f and g are. For example, the toy continuous

problem min{x | x ≥ y, x ≥ −y, y ∈ [−1, 1]} leads to the master min{Φ(y) | y ∈ [−1, 1]} where Φ(y) = |y|

is clearly convex but nonlinear, and attains its minimum in y = 0, i.e., in a point that is not of vertex of

S = [−1, 1].

Master problem (21)-(24) is therefore a convex MINLP that can be solved by an LP-based branch-and-cut

approach where the integrality requirement on y is relaxed and Φ(y) is approximated by linear cuts to be

generated on the fly and added to the current LP-relaxation; see [8] for a recent introduction to modern

MINLP solution techniques. A crucial point is therefore the efficient generation of the approximation cuts,

whose correctness exploits the convexity assumption. To this end, consider a (possibly noninteger) solution

y∗ of the LP relaxation of the current master. Because of convexity, Φ(y) can be underestimated by a

supporting hyperplane at y∗, so we can write the following linear cut

w ≥ Φ(y) ≥ Φ(y∗) + ξ(y∗)T (y − y∗) (25)

Here ξ(y∗) denotes a subgradient of Φ in y∗ that can be computed (if constraint qualifications hold) as

ξ(y∗) = ∇yf(x∗, y∗) + u∗∇yg(x∗, y∗) (26)

where x∗ and u∗ are optimal primal and (Lagrangian) dual solutions of the convex problem obtained from

(18)-(20) by replacing y with the given y∗, and ∇y is the gradient operator with respect to the y variables;

see Geoffrion [16] for details.

The above formula involves the computation of partial derivatives of f and g with respect to the yj ’s, so

it is problem specific and sometimes cumbersome to apply. We next introduce a very simple reformulation

that makes its implementation straightforward. By definition, Φ(y) can be computed by solving the convex

problem (referred to as the slave problem in the literature)

Φ(y) = min f(x, q) (27)

s.t. g(x, q) ≤ 0 (28)

y − q = 0 (29)

The variable-fixing equation (29) is meant to be imposed as y ≤ q ≤ y by just modifying the lower and upper

bounds on the q variables, so it can be handled very efficiently by the solver in a preprocessing phase when

y is given.

By construction, y only appears in the trivial constraint (29), hence the subgradient in (26) is just

ξ(y∗) = r∗ (30)
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where r∗ is an optimal dual vector associated to (29), e.g., the vector of reduced costs when this constraint

is imposed as y∗ ≤ q ≤ y∗. This leads to the (generalized) Benders cut

w ≥ Φ(y∗) +

n∑
j=1

r∗j (yj − y∗j ) (31)

where each (possibly negative) reduced cost r∗j defines a lower bound on the increase of the objective function

Φ(y∗) when y∗j increases—note that each reduced cost r∗j is the optimal dual variable associated with the

bound constraint qj ≥ y∗j (if r∗j ≥ 0) or qj ≤ y∗j (if r∗j < 0).

3.2. Benders for CFL

Following Benders general recipe, all continuous variables are projected out of the model, and the overall

objective function is replaced by a single continuous variable w. The resulting master problem is then given

by

minw (32)

s.t. w ≥ Φ(y) (33)∑
j∈J

sjyj ≥
∑
i∈I

di (34)

yj ∈ {0, 1} ∀j ∈ J (35)

where Φ(y) in the convex function expressing the solution cost of the best-possible assignment compatible

with the given (possibly noninteger) y ∈ [0, 1]J . Of course, for congested CFL one needs to extend the

master problem by the p-median constraint (8).

Recall that constraint (34) guarantees that the overall capacity of open facilities is sufficient to accom-

modate the overall customer demand. This latter constraint plays a very important role in our model, as it

acts as a global feasibility cut ensuring that any solution y of the master admits a feasible x in the original

model, hence Φ(y) is well defined for any master (possibly noninteger) solution y. As a consequence, no

so-called Benders feasibility cuts are needed in our setting.

3.3. Benders cut separation

Within a modern MIP solver, cuts are possibly separated at every node of the branching tree. Besides

internal general-purpose cuts, the user can design his/her own separation function that receives a (possibly

noninteger) master solution (y∗, w∗) on input, and tries to generate a violated cut. In our setting, we are

interested in generating violated Benders cuts of the form (31) derived from the convex relaxation obtained

by removing integrality constraints on y variables. Separation of Benders cuts is therefore performed for

both, fractional and integer values of y∗. To this end, for the given y∗ the convex slave problem (27)-(29)

is solved for y = y∗ to get the optimal value Φ(y∗) and the associated reduced cost vector r∗. Note that
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the solution of the latter problem can be rather time consuming, as it does not decompose into smaller

subproblems as it happens in typical application of Benders decomposition. Nevertheless, as y is fixed,

the explicit constraints xij ≤ yj are automatically preprocessed and become just implicit upper bounds on

the x variables. In addition, for congested CFL the SOC constraints v2j ≤ zjyj become regular quadratic

constraints. As a consequence, the solution of the slave subproblem can be orders of magnitude faster than

the solution of the convex relaxation where y is not fixed and only the integrality requirement is relaxed,

making the Benders approach appealing.

We observe that the solution of the slave (27)-(29) for y = y∗ could take advantage of the specific structure

of the CFL problem. In particular, for linear CFL the slave is in fact a transportation problem that could be

solved by a specialized algorithm. According to our experience, however, using a general-purpose LP solver

such as the dual simplex method has the advantage of a better warm-start mechanism, so after some testing

we decided not to use any specialized code—thus making the overall implementation simpler.

3.4. Benders cuts selection

Many authors pointed out that the slave problem is typically dual degenerate, which means that many

optimal dual solutions exist (see, e.g., [25, 26, 28, 30]). Since each optimal dual solution leads to different

reduced costs and hence to a different Benders cut, the question on how to choose the “best” Benders cuts

to be inserted into the master is a key of an efficient implementation. In our implementation strategy, we

do not insist on generating Pareto optimal cuts (like e.g., in [25]) but just apply the very basic method of

the previous subsection. For linear CFL only, we apply the following simple recomputation of the optimal

reduced costs (and hence of the Benders cut coefficients) that according to our experience produced more

stable cuts.

Let u∗ be the vector of dual variables associated to assignment constraints (2) found by the LP solver

applied to the slave subproblem, i.e., to the original model (1)-(6) with the variable-fixing constraint

y∗ ≤ y ≤ y∗. Our idea is to fix u∗ and to recompute optimal reduced costs by solving a series of continuous

knapsack problems. Recall that Φ(y) denotes the optimal value of (1)-(6) as a function of y. As already

observed by many authors (see, e.g. [9]), by Lagrangian duality we can write

Φ(y) ≥
∑
i∈I

u∗i + min
0≤x≤1

∑
j∈J

fjyj +
∑
j∈J

∑
i∈I

(dicij − u∗i )xij | (3), (4)

 =
∑
i∈I

u∗i +
∑
j∈J

(fj + KPj
u∗) yj

where the |J | independent continuous knapsack problems

KPj
u∗ := min{

∑
i

(dicij − u∗i )zi |
∑
i∈I

dizi ≤ sj , 0 ≤ z ≤ 1}

can be solved very efficiently (and in a numerically very clean way) by a simple sorting algorithm. This leads
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to the Benders cut

w ≥
∑
i∈I

u∗i +
∑
j∈J

(fj + KPj
u∗) yj

Note that the above procedure would work for any vector u of Lagrangian multipliers associated with (2),

though the maximum cut violation is achieved for an optimal dual vector u∗ for the point y∗ to be separated.

3.5. Initial cuts before branch-and-cut

We have seen that the master problem (21)-(24) calls for the minimization of a convex function Φ(y)

over a nonempty polytope S, under the integrality requirement (24). Branch-and-cut solution methods relax

the integrality condition and use enumeration to enforce it. A crucial step is how to solve effectively, by

cutting planes, the convex problem miny∈S Φ(y) arising at the root node. As a matter of fact, in many cases

reported in the literature (and perhaps in many more not reported ones) such a solution approach turns out

to be so slow that it makes the overall Benders method simply impractical.

As already discussed, many authors attributed slow convergence to dual degeneracy, hence focused on

how to select a “best possible” Benders cut for the given y∗ at hand. According to our experience, however,

cut selection is important but the cut loop strategy adopted at the root node is the real culprit of inefficiency.

Following Kelley’s recipe [21], which is standard in MIP solvers, at each cut loop iteration one generates one

or more cuts that are violated by the current LP-optimal solution y∗, adds them to the current relaxation,

and reoptimizes it to get the new optimal solution y∗ to cut at the next iteration. This approach works

well in many cases, but it is known to be extremely inefficient when Φ and S have a shape that leads to a

zig-zagging y∗ trajectory, as it happens e.g. in Lagrangian dual optimization or in column generation [29].

In these cases, “stabilized” approaches such as the bundle method [24] are known to outperform Kelley’s

one by a large margin. Thus, the implementation of stabilized cutting plane (at least) at the root node is

expected to be of crucial importance in Benders decomposition, in particular when a single cut is separated

for each y∗ as it happens in our CFL implementation.

Following our previous proposal for uncapacitated facility location [14], we did not implement a bundle

method but a simple in-out variant very much in the spirit of [5, 13, 26]. The resulting cutting plane

procedure is applied before starting the branch-and-cut, i.e., before the root node. It is aimed at quickly

determining a hopefully small set of Benders cuts that brings the master LP relaxation value as close as

possible to the “real optimal value” miny∈S Φ(y).

At each cut loop iteration, we have two points in the y space: the optimal solution y∗ of the current

master LP (as in Kelley’s method), and a stabilizing point ỹ inside the convex feasible set S. This point is

initialized by solving the convex problem max{
∑

j∈J yj | y ∈ S} through an internal point method (barrier

without crossover).

10



At each iteration, we move ỹ towards y∗ by setting ỹ = α ỹ + (1 − α) y∗ and then apply our Benders-

cut separator to the “intermediate point” λ y∗ + (1 − λ) ỹ, where parameters λ ∈ (0, 1] and α ∈ (0, 1]

are discussed later on. The generated Benders cut is statically added to the current master LP. After

5 consecutive iterations in which the LP bound does not improve, parameter λ is reset to 1 (so we are

back to Kelley) and the cut loop continues. After 5 more consecutive iterations without improvement, the

procedure is aborted, the LP is solved once again and all cuts with a positive slack are removed. To speedup

computation, slack cuts in the current master LP are also removed at every 5-th iteration.

Our computational experience with CFL (both linear and congested) confirms the findings of [14], and

shows that the above stabilization approach—though very simple—works well and quickly produces lower

bounds very close to the best-possible one.

As to the choice of parameters α and λ, for congested CFL we adopted the values originally proposed

in [14], namely α = 0.5 and λ = 0.2. For linear CFL, instead, we noticed that an overall speedup can

be obtained by a more conservative approach producing a sequence of very similar points to be separated.

This is because, for the linear case, Benders cuts are generated by solving the slave subproblem through

the dual simplex method, each time starting from the optimal LP base of the previous separation. So, the

more similar the points to separate, the faster the cut generation. Hence we defined α = 0.9 and λ = 0.1

to increase the attraction grip of the internal point ỹ. A similar approach is instead not worthwhile for the

congested CFL, where the slave subproblem is nonlinear and is solved by using a barrier method that starts

from scratch at each call.

3.6. Enforcing slave separability by blurring

To mitigate the use of the time-consuming Benders cut separation that requires the solution of a single

but large slave problem, for the linear case we tested the following CFL-specific strategy that tries to

enforce slave separability in a heuristic way. To this end, we observe that slave decomposition into smaller

subproblems is inhibited by the presence of the capacity constraints (4): if we temporarily relax them, we

get an uncapacitated problem for which Benders cuts can be derived very efficiently by using simple ad-

hoc algorithms [14]. So we can think of a two-level cut strategy where “blurred” Benders cuts are quickly

generated from the uncapacitated model, and the generation of the capacitated Benders cuts is activated

only as a last resort, i.e., when the given solution y∗ is integer and is going to update the incumbent—in

which case we need the “real Benders cut” to assess the correct value of Φ(y∗). Of course, the approach

makes sense only for those instances where the capacity constraints (though non-redundant) are not very

tight, meaning that only a few “real Benders cuts” need to be generated. According to our computational

analysis, the approach is in fact very successful for just a few instances in our testbed, while it does not pay

off in general.
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4. Implementation details

In this section we describe some implementation details that play an important role in the design of an

effective code. The description is based on the actual MIP solver we used, namely IBM ILOG Cplex 12.6.1,

but it extends easily to other solvers.

4.1. Multi-threading

Modern MIP solvers exploit multi-threading, so it is important not to lose this important feature when

embedding user-specific functions such as Benders-cut generation. Cplex’s default is quite conservative, and

it switches to single-thread as soon as the user installs “potentially risky” callbacks. In our implementation,

we reset the number of threads to the one provided by the hardware, say NT (NT = 4 for our computer),

and select the opportunistic mode (CPX PARAM PARALLELMODE=-1) to better exploit parallelism. Also, to be

thread-safe, at startup we create NT copies (clones) of the slave problem (27)-(29), and let each thread

work on its own copy to produce its Benders cuts. As the clone is not destroyed but just modified at each

separation call, warm-start is automatically applied without the need of explicitly saving/loading optimal

LP bases (this of course applies to the linear case only). As to the cut initialization before branch-and-cut

described in Subsection 3.5, it is intrinsically sequential—in particular, for the linear case as the dual simplex

method does not exploit parallelization. So we decided to run NT multiple copies of it, in parallel, with

slightly modified α and λ parameters to produce different search paths. When the first such run terminates,

all other runs are aborted, and all the generated Benders cuts are statically added to the master which is

solved once again to obtain the final lower bound. Finally, slack cuts are purged to avoid overloading the

initial master.

4.2. Tree search strategy and heuristics

As already observed, in our setting the slave problem does not decompose into smaller pieces, so each

Benders cut separation is quite time consuming. As a matter of fact, for some large instances more than 90%

of the overall computing time can be spent within the cut separation function. This is a very unusual setting

for a general-purpose MIP solver, so one may expect that its default parameter tuning is inappropriate. In

particular, it makes sense to use very aggressive parameters for internal heuristics, and for exploiting time-

consuming strategies such as full strong branching and best-bound search that are not in the Cplex’s default.

To be more specific, in our implementation we set to 2 (aggressive) the level of all Cplex’s internal cuts.

We also selected the full-strong branching strategy (CPX PARAM VARSEL=3) and the pure best-bound search

strategy (CPX PARAM NODESEL=1, CPX PARAM BBINTERVAL=1, and CPX PARAM BTTOL=0.0). As to heuristics,

we decided to apply RINS heuristic at every node (CPX PARAM RINSHEUR=1) to feed our Benders-cut separator

with low-cost integer solutions.
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4.3. Tailing off

At each node of the branch-and-cut tree, we do not allow for more than 20 consecutive calls of the

Benders separation function (100 for the root node). This is obtained by maintaing a counter K (one for

each thread) which is reset to 0 when a node is first processed, and is increased by 1 before invoking the

separation function. To limit computing time, we apply the following give-up mechanism. After having

solved the current slave problem and possibly added the generated Benders cut to the master, we retrieve

the primal optimal value UB (say) of the slave problem that was just solved. As UB is an upper bound on

the best bound that can be obtained at the current node by Benders cuts, we set K = +∞ in case K ≥ 2

and UB is strictly smaller than the value of the current incumbent, meaning that we have no hope to prune

the current node (unless the incumbent is updated, which is a very rare event). This policy turned out to

speedup the overall computation, though we are aware of the fact that it prevents the generation of Benders

cuts that could be useful to improve the bound in other nodes. Even with the above setting, it may happen

that the fraction of computing time spent for separation is excessive, so we skip the separation of fractional

solutions (within the so-called usercut callback) when this fraction exceeds 50% of the current computing

time.

To ensure correctness, integer solutions that can update the incumbent are always separated (within the

so-called lazyconstraint callback) so their actual cost is recomputed exactly.

4.4. Restart

By design, our branch-and-cut scheme learns a lot of information (notably: Benders cuts and heuristic

solutions) during execution, and in particular after the root node. On the other hand, the root node

plays a special role for what concerns preprocessing, internal cut generation and initial heuristics, so the

more information is available at the root node the better. In particular, it is very important to start

with a very good heuristic solution and with a rich family of Benders cuts, to favor root-node variable

fixing and generation of internal cuts. As already mentioned, to escape Kelley’s cutting plane scheme we

implemented our own stabilized cutting plane procedure before branch-and-cut, so the generated Benders

cuts are immediately available at the root node. In addition, we found useful to increase the information

available at the root node by a simple restart mechanism. Namely, before entering the final branch-and-cut

run we stop the execution right after the root node (by setting CPX PARAM NODELIM=1), add the generated

Benders cuts (saved in our own data structure) as static cuts to the master model, update the incumbent,

and repeat. This restart mechanism is applied twice before entering the final run (CPX PARAM NODELIM=∞).

Internal parameters. For the master problem, we used the following numerical tolerances: CPX PARAM EPINT=

0.0, CPX PARAM EPRHS=1e-7, and CPX PARAM EPGAP=1e-6. To be consistent, for the slave we need an increased

precision so we set CPX PARAM EPRHS = CPX PARAM EPGAP=1e-9. In addition, when solving the slave problem
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for the congested CFL we had to set CPX PARAM CALCQCPDUALS=2 to skip some preprocessing reductions that

would inhibit the computation of the optimal dual solution (and reduced costs) needed to derive the Benders

cut.

5. Computational study

In this section we report on our computational experience on four classes of CFL instances from the

recent literature. When it comes to linear CFL, we compare the performance of our Benders approach

against state-of-the-art exact and heuristic methods published in the last few years. For congested CFL, we

compare our generalized Benders decomposition framework with the perspective reformulation solved by the

commercial solver IBM ILOG Cplex 12.6.1.

Our algorithm has been implemented in C, and derived on top of IBM ILOG Cplex 12.6.1 callable library.

The computational study is conducted on a cluster of identical machines each consisting of an Intel Xeon

E3-1220V2 @ 3.1GHz, with 16GB of RAM each. This processor was launched by Intel in 2012 and is

credited for 1,892 Mflop/s in the Linpack benchmark report of Dongarra [11]. Computing times reported are

wall-clock seconds and refer to 4-thread runs. The default timelimit is set to 50,000 seconds, unless stated

otherwise. In our Benders implementation, all Cplex parameters not mentioned in the previous section

were left at their default values. For Cplex stand-alone runs, e.g., the perspective reformulation, we set

CPX PARAM EPGAP=1e-6 and left all other parameters at their default values.

The following abbreviations are used in the tables presented throughout this section: the total computing

time in wall-clock seconds (t[s]), the time needed to solve the LP-relaxation at the root node (tr[s]), the total

number of enumerated branch-and-bound nodes (nodes), the percentage gap at the root node (gr[%]), and the

percentage gap obtained after reaching the timelimit (g[%]). The gaps are computed as 100(zUB−zLB)/zUB ,

where zUB is the optimal or best objective value found by our Benders approach and zLB is the appropriate

lower bound for the gap. This calculation of gaps is consistent with the one from the recent literature, see,

e.g., [18].

5.1. Benchmark instances

The following four sets of benchmark instances are considered in our study:

• cap*: This is a subset of non-trivial instances from the OR-Library [4]. The set consists of 12 instances

with |I| = 1, 000 and |J | = 100. Note that the remaining (smaller) instances available in this library

are left out, since they can be easily solved by modern MIP solvers in fractions of a second.

• GK: These instances have been generated by Görtz and Klose [17, 23] and tested by the branch-and-price

and Lagrangian-based branch-and-bound from [23] and [17], respectively. Instances are generated fol-

lowing the procedure proposed by Cornuéjols et al. [9]: customers and potential facilities are uniformly
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randomly placed in a unit square. Euclidean distances multiplied by 10 represent allocation costs per

unit of flow. Facility opening costs are generated as fj = U [0, 90]+U [100, 110]
√
sj , where U [a, b] stands

for a uniformly distributed random number from [a, b). Customer demands and capacities of facilities

are drawn uniformly at random from [5, 35] and [10, 160], respectively. Finally, the following scaling

factor is used to rescale the capacities and create different subclasses of instances:

r =
∑
j∈J

sj/
∑
i∈I

di.

Smaller instances from this set comprise a group of 75 instances with |J | × |I| ∈ {100 × 100, 100 ×

200, 100 × 500, 200 × 200, 200 × 500} and consider values of r ∈ {3, 5, 10}. Larger instances from this

set (introduced later in [17]) comprise a group of 120 instances with |J | × |I| ∈ {300 × 300, 300 ×

1500, 500 × 500, 600 × 1, 500, 700 × 700, 1, 000 × 1, 000} and the values of r ∈ {5, 10, 15, 20}. Instance

generator has been provided by [17] and is available online (http://home.imf.au.dk/aklose/CFLP/

generator.tgz).

• i*: These instances were used to test the branch-and-cut-and-price algorithm by Avella and Boccia [2]

and are available at http://www.ing.unisannio.it/boccia/CFLP.htm. They are generated following

the same procedure proposed in [9]: the set consists of 100 instances of size |J |×|I| ∈ {300×300, 300×

1500, 500× 500, 700× 700, 1, 000× 1, 000} and r ∈ {5, 10, 15, 20}.

• p*: These instances have been addressed by the heuristic algorithms of Avella et al. [3] and Guastaroba

and Speranza [18]. They consist of three groups, denoted by test bed A, B and C, containing 150, 145

and 150 instances, respectively. All test beds are with |J | × |I| ∈ {800× 4, 400, 1, 000× 1, 000, 1, 000×

4, 000, 1, 200× 3, 000, 2, 000× 2, 000} and r ∈ {1.1, 1.5, 2, 3, 5, 10}. The only difference between the test

beds concerns allocation costs: these are two orders of magnitude smaller than facility opening costs

for test bed A, one order of magnitude smaller than facility opening costs for test bed B, and of the

same order as the facility opening costs for test bed C. The first two test beds are publicly available at

http://wpage.unina.it/sforza/test/, the last one at http://or-brescia.unibs.it/instances/

instances_clfp. To the best of our knowledge, these instances were not solved to optimality by any of

the previously proposed approaches. Only heuristic results from Avella et al. [3] and Guastaroba and

Speranza [18] are available. Instances p* contain up to 2,000 facilities and 4,000 customers, hence the

underlying compact models consist of millions of variables and constraints. This is the first attempt

to solve the largest instances of this class to provable optimality.
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5.2. Results for classical CFL

Results on cap* instances

For this set of instances, aside from giving results for our Benders approach, we also present results

obtained by using our “blurred” option described in Section 3. Recall that the latter approach consists of

generating uncapacitated Benders cuts in the user-cutcallback and in the initial in-out procedure. To

ensure feasibility, capacitated Benders cuts are only separated in the lazy-cutcallback. Table 1 compares

the computing times and the number of branch-and-bound nodes for the following four approaches: compact

model solved by Cplex, Benders, “blurred” Benders, and the approach by Görtz and Klose [17]. We first

observe that Benders is one order of magnitude faster than Cplex, and that “blurred” Benders outperforms

Cplex by an even larger margin, with speedup factors between 10 and 90. This speedup is quite remarkable,

in particular after noticing that “blurred” Benders sometimes requires ten times more branch-and-bound

nodes than the remaining three approaches. There are two factors for the success of the “blurred” Benders in

case of cap* instances. First, uncapacitated Benders cuts are separated in a combinatorial fashion, thanks

to the separability of the slave, see [14], and the time-consuming separation of the unseparable slave is

performed only to cut off infeasible integer solutions. Second, the capacity requirements on facilities are, in

case of cap* instances, not very tight in the underlying optimal solutions. Hence, uncapacitated Benders

cuts successfully guide the branch-and-cut process, and allow for a faster exploration of the search space.

Unfortunately, the other instances considered in our study do not exhibit the same structure, and the success

of “blurring” was not confirmed in the remaining cases.

In Table 1 we also give the original computing times reported in Görtz and Klose [17], that refers to

an Intel Pentium D930 @ 3Ghz and IBM ILOG Cplex 8.0 (the latter being used as an LP solver, so it is

not much slower than our 12.6.1 version). According to [17], this hardware is comparable with an Intel

Pentium 4 @ 3.06GHz ranked at 1,414 Mflop/s in the Linpack benchmark report of Dongarra [11], while

our own hardware is ranked 1,892 Mflop/s. One can therefore conclude that Benders and Lagrangian-based

branch-and-bound are two competitive approaches for cap*.

Results on i* instances

This set of instances has been previously tested by the two best exact methods from the literature:

B&C&P by Avella and Boccia [2] and B&B by Görtz and Klose [17]. In Table 2 we compare our Benders

code with these two approaches, and with the compact model solved by IBM ILOG Cplex 12.6.1. Instances

are grouped according to their size and the value of r, each group thus contains five instances. Computing

times and number of branch-and-bound nodes, averaged per group, are reported. We again provide the

computing times as originally reported in the respective papers on slower systems: results from Avella and

Boccia [2] were obtained on an Intel Pentium IV @ 1.7GHz (credited for 796 Mflop/s in Dongarra [11]) and

IBM ILOG Cplex 8.1, while those for Görtz and Klose [17] were obtained on an Intel Pentium D930 @ 3GHz
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Table 1: Comparing the computing times in seconds and the number of branch-and-bound nodes for two Benders decomposition

settings, the compact model solved by IBM ILOG Cplex 12.6.1 and the approach by Görtz and Klose [17]. Computing times

for [17] refer to a slower hardware and to an earlier version of Cplex. Column nodes gives the number of branch-and-bound

nodes, and t[s] the computing time in seconds.

Cplex Benders “Blurred” Benders B&B [17]

name |J | |I| nodes t[s] nodes t[s] nodes t[s] nodes t[s]

capa1 100 1000 5 28.96 8 10.30 71 0.90 2 2.91

capa2 100 1000 0 12.50 2 6.52 31 0.96 7 2.89

capa3 100 1000 7 24.36 5 3.96 8 0.68 9 2.18

capa4 100 1000 0 6.76 0 1.34 0 0.65 1 0.84

capb1 100 1000 0 7.06 0 8.10 5 0.57 1 1.66

capb2 100 1000 23 108.67 33 10.34 344 4.20 27 11.06

capb3 100 1000 24 110.38 27 7.99 197 2.29 29 11.49

capb4 100 1000 15 54.09 6 3.42 61 0.66 17 4.32

capc1 100 1000 23 28.77 10 5.06 49 0.87 9 3.40

capc2 100 1000 55 66.80 33 5.55 199 1.55 50 12.63

capc3 100 1000 9 27.14 5 2.87 15 0.53 11 6.01

capc4 100 1000 5 11.68 0 1.77 8 0.52 5 2.40

(credited for 1,414 Mflop/s) and IBM ILOG Cplex 8.0. As already mentioned, our own results have been

obtained on an Intel Xeon E3-1220V2 @ 3.1GHz (credited for 1,892 Mflop/s) and IBM ILOG Cplex 12.6.1.

Surprisingly, IBM ILOG Cplex 12.6.1 solves all the i* instances to optimality. The remaining three

methods have difficulties with the largest ones of size 1, 000 × 1, 000. There are two instances with r = 15

that were not solved by Avella and Boccia [2] within their imposed timelimit of 100,000 seconds. One

instance with r = 5 was unsolved by Görtz and Klose [17]. Similarly, our method does not manage to prove

the optimality for a single instance with r = 15 (although its final gap remains below 0.08%). Following [17],

average computing times reported in Table 2 do not take in consideration these unsolved cases. Comparing

Benders and Cplex with respect to the average computing times and for instances of different sizes, we

observe that Benders is much faster than Cplex in all cases, except for size 1, 000× 1, 000 and r = 15 where

Benders and Cplex are comparable. We want to point out that it would be possible to tune our code to

speedup convergence for some special cases, but this was not the intention of our computational study.

Instead, we prefer to provide a stable and robust implementation, despite the unsatisfactory performance in

a very few cases.

The overall results for i* indicate that Benders often outperforms the B&C&P, and that it is compet-
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itive with Lagrangian-based B&B. The latter method is often faster than Benders, despite the fact that it

sometimes requires 10 times more branch-and-bound nodes for proving optimality. Indeed, B&B is faster in

exploring the search space because Lagrangian relaxation solved at each node of the B&B tree boils down to

a simple knapsack problem (of a small size) that can be efficiently solved in pseudo-polynomial time, whereas

Benders suffers from the non-separability of the slave.

Finally, it is interesting that B&B and Benders are complementary, when it comes to efficiency in solving

the largest among these instances. Whereas the most difficult among 1, 000× 1, 000 instances for B&B are

those with tight capacities (r = 5), they are the easiest ones for Benders, and vice versa, those with rather

lose capacities (r = 15) are the easiest for B&B and the most difficult ones for Benders. Instances with very

lose capacities (r = 20) are consistently the easiest ones for all four considered approaches.

Results on GK instances

For this family of instances, we first demonstrate the power of decomposition by comparing the computing

times required for solving the root node relaxation by Benders and Cplex. Figure 1a shows a performance

profile over 120 instances from this family: a point with coordinates (x, y) in this plot indicates that the

computing time of y instances was ≤ x seconds. Whereas for solving the LP-relaxation at the root node

Benders requires at most 170 seconds, for 13 instances Cplex requires more than one hour, and for 5 of them

even more than two hours. For about 50% of instances, Cplex and Benders at the root node are competitive,

but for the largest ones from this family with |J |× |I| ∈ {700×700, 600×1, 500, 1, 000×1, 000} Benders can

clearly draw an advantage from the decomposition, by projecting out a large number of allocation variables.

Accompanying Figure 1b reports performance profiles for the gaps obtained by Cplex and Benders at the

root node (denoted by Cplex-root and Benders-root, respectively). We observe that the obtained root

gaps are almost identical, which confirms the effectiveness of the initial cut selection strategy described in

Subsection 3.5. Notice that these instances exhibit extremely tight LP-relaxation gaps—more than 50% of

them have LP-relaxation gaps ≤ 0.5%, and the largest LP-relaxation gap is < 1%.

Besides comparing the root node relaxations, we also ran Benders and Cplex with a timelimit of 3,600

seconds; the obtained percentage gaps are also reported in Figure 1b. For 75% of the instances, after one

hour of computing time, Benders delivers solutions with optimality gaps ≤ 0.2%, whereas Cplex does not

manage to solve even the LP-relaxation for 13 out of 120 cases.

We recall that these instances were introduced by Görtz and Klose [17] who report optimal solutions for

all of them, obtained within a timelimit of 50,000 seconds. After running Benders with a timelimit of 50,000

seconds we did not manage to solve all the instances from this family to provable optimality. However,

the obtained gaps were extremely small: over all 120 instances, the average and the maximum gap that we

obtained are 0.08% and 0.4%, respectively. The main difficulty of the Benders approach remains closing the

last per-mills of the gap in most of the cases. More precisely, from 120 instances of this set, 38 instances are
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Table 2: Comparing Benders with the state-of-the-art approaches and IBM ILOG Cplex 12.6.1 on the set of i* instances.

Column nodes gives the average number of branch-and-bound nodes, and t[s] the average computing time in seconds per group.

Computing times for [17] and [2] refer to slower computers.

B&B[17] B&C&P[2] Benders Cplex

|J | |I| nodes t[s] nodes t[s] nodes t[s] nodes t[s]

r = 5

300 300 657 19.00 436 588.48 112 7.05 506 32.15

500 500 2867 209.33 1258 3098.64 261 38.56 1289 458.90

700 700 28709 3717.48 1696 9084.24 1061 182.65 1631 1682.41

1000 1000 46893 15635.69 4123 37439.57 9823 2636.25 4743 10152.00

300 1500 547 235.71 32 1672.66 159 49.47 76 56.32

r = 10

300 300 535 12.53 131 402.61 139 12.05 314 45.12

500 500 2431 120.56 476 1824.64 342 85.10 659 632.04

700 700 8729 899.63 808 11064.76 1511 721.01 2241 3699.03

1000 1000 26267 5096.53 3370 60865.83 5361 6053.80 4468 18705.30

300 1500 19 27.45 9 852.97 16 10.75 14 38.74

r = 15

300 300 239 4.82 52 178.47 55 5.82 110 28.24

500 500 358 18.69 65 669.44 146 34.64 166 185.24

700 700 8423 674.53 356 4991.52 1004 639.26 718 1328.44

1000 1000 47956 7323.29 2070 65974.26 4380 14182.78 3173 13024.17

300 1500 9 23.25 2 408.66 9 9.30 5 29.52

r = 20

300 300 60 1.75 18 142.42 27 3.35 35 18.07

500 500 264 13.13 47 481.54 85 19.65 116 105.16

700 700 221 22.83 40 1066.26 190 75.45 123 325.01

1000 1000 2362 328.71 354 9514.38 859 1469.08 638 2956.70

300 1500 3 14.82 2 293.97 2 5.96 1 23.96

solved to optimality, for 31 the gap is < 0.05%, for 40 the gap is between 0.05% and 0.2% and for only 11

of them, the gap is between 0.2% and 0.4%.
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Figure 1: GK instances: Comparing the performance of Benders and IBM ILOG Cplex 12.6.1 at the root node, and after a

timelimit of 3600 seconds.

Results on p* instances

This set represents the family of largest benchmark instances, with up to 2,000 facilities and 4,000

customers, that, prior to this work, were not tackled by exact approaches. For this family of 445 instances,

Benders was able to prove optimality in 210 cases (within our default timelimit of 50,000 seconds).

In the following, we first compare Benders with the kernel search heuristic of Guastaroba and Speranza

[18] (denoted by GS in the following), that was shown to significantly improve the previously published

heuristic results by Avella et al. [3]. For that purpose, we stop Benders after enumerating 10 branch-and-

bound nodes and report the obtained percentage gaps and computing times. Figure 2 shows performance

profiles considering the percentage gaps and the computing times, separated by test beds A, B and C. Results

for [18] have been obtained using an Intel Xeon @ 2.27GHz (which is about 30% slower than our computer)

and IBM ILOG Cplex 12.2. One observes that Benders always produces smaller gaps in shorter computing

times for all three test beds. The difference is especially pronounced for test bed C: the worst gaps obtained

by Benders are ≤ 2% (and in 80% of all instances even ≤ 1%), whereas GS gaps are > 2% for 70% of all

instances, and can be as large as 8%.

The idea of enumerating only 10 B&B nodes by Benders was mainly to demonstrate its ability to serve

as an efficient heuristic outperforming other state-of-the-art CFL heuristics. Even as a heuristic, Benders

manages to prove optimality for 5 (out of 150) instances of test bed A, for 0 (out of 145) instances of test

bed B and for 15 (out of 150) instances of test bed C. By increasing the timelimit to 3,600 seconds (50,000

seconds, respectively), Benders proves optimality for 86 (97) instances from test bed A, 22 (40) from test

bed B, and 68 (73) for test bed C.
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Figure 2: p∗ instances: Comparing the performance of Benders and the kernel search GS heuristic of Guastaroba and Speranza

[18]. Benders has been stopped after ten branch-and-bound nodes.

5.3. Results for congested CFL

To assess the efficacy and computational limitations of generalized Benders decomposition for congested

CFL, we consider the group of i* instances introduced above with up to 1,000 facilities and 1,000 customers.

The number of open facilities p, which is specified as part of the input, is defined as p = bπ |J | c, where π ∈

{0.4, 0.6, 0.8}. Since no previous computational studies are available, we focus on comparing the performance

of Benders against the perspective reformulation (cf. Section 2.2) which is solved by IBM ILOG Cplex 12.6.1
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using second order cone constraints. Tables 3 and 4 summarize the obtained results. Each line corresponds

to the first instance from the i* group with a fixed scaling ratio r ∈ {5, 10, 15, 20} (namely, instances

i* 1, i* 6, i* 11, and i* 16) and a fixed value of π. For each instance we report the optimal solution

value, the percentage gap and the computing time at the root node, plus the final percentage gap and the

overall computing time. Runs for which the timelimit of 50,000 seconds is reached, are marked with TL

in the computing-time column. Note that some runs for the perspective reformulation were aborted due to

memory problems before any meaningful output was produced, in which case “–” entries are shown in the

tables.

Recall that the relative tolerance CPX PARAM EPGAP for the master in Benders and for Cplex is set to 1e-6

in our experiments, i.e., as soon as the percentage gap between the lower and upper bound is < 0.0001%, the

corresponding method terminates and reports the obtained solution as optimal. The OPT values reported

in the tables are those obtained by Benders.

The obtained results indicate that Benders beats the perspective reformulation by a large margin: out of

the 60 considered instances, Benders solves 45 to optimality, and for the remaining 15 it reaches the timelimit

with the final gaps ≤ 0.3%. On the contrary, the perspective reformulation delivers optimal solutions for

only 21 cases, while for 23 instances the timelimit is reached with final gaps as large as 35%, and for 16

instances memory problems are experienced (and no lower or upper bounds have been reported by Cplex).

Besides, the performance of Cplex is quite unstable, with differences in computing times (for instances of the

same size) varying by a factor of 100 or more (cf. the first two lines of Table 3). On the contrary, Benders’

performance remains stable with gaps at the root node being ≤ 0.3% and the root node computing times

staying below two hours in most of the cases.

Finally, to test the effects of the cardinality constraint (8) on the algorithmic performance, we provide

Table 5 in which the perspective reformulation is compared with our Benders decomposition on the same

set of benchmark instances, but without the constraint (8). One observes that in terms of the obtained

final gaps and the overall CPU time, there is no significant difference in the performance of Benders, when

compared to the results shown in Tables 3 and 4. Only for the instances of size 300 × 1500, the problem

becomes easier (for both approaches), which can be explained by the fact that the optimal solution requires

to open all available facilities, which is not the case for the remaining instances.

6. Conclusions

This paper provides a computational study of a modern implementation of Benders decomposition,

applied to two problems with non-separable slaves: linear capacitated facility location, and its non-linear

but convex variant known as congested CFL.

Our Benders implementation is rather simple and general, and was not tweaked for the specific application
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at hand. In particular, we introduced a simplified way of deriving optimality generalized Benders cuts for

convex problems, that works well in practice and is straightforward to implement.

The resulting method is simpler and more efficient than some of the state-of-the art exact and heuristic

approaches for linear CFL. The only exact method that remains competitive with Benders is another rela-

tively simple approach proposed by Görtz and Klose [17] and based on a Lagrangian relaxation. As pointed

out by its authors, this Lagrangian-based branch-and-bound can work surprisingly well because of the fast

way of solving the Lagrangian relaxation in combination with an effective branching strategy. In such a

setting, Benders decomposition is intrinsically penalized because of the large overhead imposed by the non-

decomposable LP/QP slaves. Nevertheless, the obtained results indicate our simple Benders decomposition

can be considered one of the state-of-the-art solution approaches for CFL.

As to the congested CFL problem, Benders clearly qualifies as the best-available solution method.
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Table 3: Comparing perspective reformulation and Benders decomposition for congested CFL, 1/2. Column OPT gives the

optimal solution value, gr[%] the percentage gap at the root node, tr[s] the computing time at the root node, g[%] the final

gap, and t[s] the overall computing time. Runs reaching the timelimit of 50,000 seconds are indicated by TL, runs aborted due

to memory limit with −−.

Perspective reformulation Benders

inst. |J | |I| π OPT gapr[%] tr[s] gap[%] t[s] nodes gapr[%] tr[s] gap[%] t[s] nodes

1 300 300 0.4 257315.7360 0.1186 149 0.0000 233 130 0.0031 319 0.0000 383 10

1 300 300 0.6 214609.8293 0.0050 5057 0.0000 25115 17 0.0050 373 0.0000 594 30

1 300 300 0.8 219221.1886 0.4101 80 0.0000 155 49 0.0001 226 0.0000 236 0

6 300 300 0.4 273308.0002 0.0044 5675 0.0000 36598 28 0.0056 347 0.0000 583 32

6 300 300 0.6 225383.3635 0.0015 2329 0.0000 11696 9 0.0015 290 0.0000 299 3

6 300 300 0.8 228139.1799 0.0006 1825 0.0000 6196 5 0.0006 144 0.0000 165 0

11 300 300 0.4 259294.8204 0.0019 4936 0.0000 26260 17 0.0020 257 0.0000 271 3

11 300 300 0.6 216415.5633 0.0001 2257 0.0000 2257 0 0.0001 159 0.0000 167 0

11 300 300 0.8 224171.5836 0.0007 1842 0.0000 5273 5 0.0005 248 0.0000 254 0

16 300 300 0.4 256734.9041 0.0011 7417 0.0000 44495 33 0.0012 230 0.0000 281 8

16 300 300 0.6 220241.5213 0.0018 3063 0.0000 9463 6 0.0016 238 0.0000 250 3

16 300 300 0.8 231623.9657 0.0001 2888 0.0000 4641 3 0.0001 106 0.0000 115 0

1 500 500 0.4 433836.6527 2.3892 667 0.0000 1311 294 0.0017 1265 0.0000 2282 32

1 500 500 0.6 361323.3070 0.0006 50130 0.0006 TL 0 0.0007 1259 0.0000 1435 5

1 500 500 0.8 368022.2916 0.0000 17071 0.0000 17071 0 0.0000 587 0.0000 587 0

6 500 500 0.4 465717.4928 0.0005 4255 0.0005 TL 4 0.0005 823 0.0000 901 5

6 500 500 0.6 384364.0093 0.0004 11594 0.0004 TL 4 0.0006 975 0.0000 1430 12

6 500 500 0.8 393072.8259 0.0001 3000 0.0000 19734 3 0.0001 506 0.0000 532 0

11 500 500 0.4 420862.4354 0.0025 11074 0.0025 TL 5 0.0028 971 0.0000 2027 133

11 500 500 0.6 353185.6836 0.0009 3296 0.0009 TL 6 0.0010 962 0.0000 1664 32

11 500 500 0.8 366081.6812 0.0001 2698 0.0000 2698 0 0.0001 768 0.0000 814 0

16 500 500 0.4 398241.0995 0.0009 7310 0.0009 TL 5 0.0009 766 0.0000 946 9

16 500 500 0.6 345164.2574 0.0008 4956 0.0008 TL 5 0.0008 1061 0.0000 1719 17

16 500 500 0.8 367401.3250 0.0001 2984 0.0000 19396 3 0.0001 589 0.0000 639 0

1 300 1500 0.4 5307601.4506 – – – – – 0.1473 4520 0.1449 TL 242

1 300 1500 0.6 3620282.1081 – – – – – 0.0553 5284 0.0533 TL 187

1 300 1500 0.8 2807005.7213 0.0707 524 0.0000 26949 25822 0.0263 5074 0.0247 TL 391

6 300 1500 0.4 5657154.9641 41.6630 1114 16.8989 TL 1484 0.2638 4167 0.2610 TL 250

6 300 1500 0.6 3853223.4698 19.3752 592 0.0233 TL 3436 0.0881 4132 0.0862 TL 172

6 300 1500 0.8 2986886.5396 – – – – – 0.0235 4397 0.0211 TL 771

11 300 1500 0.4 5298861.8966 40.8702 930 35.3372 TL 2185 0.3654 3716 0.3635 TL 281

11 300 1500 0.6 3607873.1868 17.5410 699 0.3231 TL 2375 0.0842 4504 0.0812 TL 154

11 300 1500 0.8 2795126.8112 – – – – – 0.0291 4287 0.0279 TL 519

16 300 1500 0.4 5653309.6360 42.4055 914 26.0423 TL 1784 0.2974 4105 0.2962 TL 242

16 300 1500 0.6 3853536.5921 21.8576 428 5.7238 TL 2148 0.1387 4404 0.1351 TL 154

16 300 1500 0.8 2986872.5066 – – – – – 0.0247 4403 0.0223 TL 2183
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Table 4: Comparing perspective reformulation and Benders decomposition for congested CFL, 2/2. Column OPT gives the

optimal solution value, gr[%] the percentage gap at the root node, tr[s] the computing time at the root node, g[%] the final gap

and t[s] the overall computing time. Runs reaching the timelimit of 50,000 seconds are indicated by TL, runs aborted due to

memory limit with −−

Perspective reformulation Benders

inst. |J | |I| π OPT gapr[%] tr[s] gap[%] t[s] nodes gapr[%] tr[s] gap[%] t[s] nodes

1 700 700 0.4 608104.4400 0.4047 1760 0.0000 3106 345 0.0007 2306 0.0000 4485 128

1 700 700 0.6 511852.0282 0.0002 49519 0.0002 TL 1 0.0003 2495 0.0000 2532 2

1 700 700 0.8 528832.2478 0.0005 11270 0.0005 TL 7 0.0005 2274 0.0000 3117 6

6 700 700 0.4 590223.9309 0.0009 17338 0.0009 TL 5 0.0009 2126 0.0000 3093 20

6 700 700 0.6 491995.9402 0.0001 12952 0.0001 TL 7 0.0002 2196 0.0000 2600 4

6 700 700 0.8 512486.5658 0.0001 11506 0.0000 11506 0 0.0001 1195 0.0000 1307 0

11 700 700 0.4 588518.4248 0.0017 50117 0.0017 TL 0 0.0021 2342 0.0000 19450 2630

11 700 700 0.6 496861.5248 0.0011 12357 0.0011 TL 7 0.0012 2462 0.0000 11539 528

11 700 700 0.8 514897.8446 0.0005 11357 0.0003 TL 8 0.0005 2327 0.0000 3175 8

16 700 700 0.4 591092.0635 0.0010 15292 0.0010 TL 6 0.0012 2326 0.0000 5530 382

16 700 700 0.6 498257.7984 0.0004 14950 0.0004 TL 6 0.0004 2002 0.0000 2294 5

16 700 700 0.8 515610.2532 0.0001 11468 0.0000 TL 8 0.0001 1227 0.0000 1332 0

1 1000 1000 0.4 831618.2005 1.0782 5785 0.0000 12826 705 0.0015 7245 0.0006 TL 3649

1 1000 1000 0.6 700140.6641 – – – – – 0.0006 6102 0.0000 19435 237

1 1000 1000 0.8 720445.3031 – – – – – 0.0004 8256 0.0000 11922 7

6 1000 1000 0.4 884498.8703 – – – – – 0.0007 5849 0.0000 10162 90

6 1000 1000 0.6 739680.3837 – – – – – 0.0002 6640 0.0000 10429 13

6 1000 1000 0.8 765867.8192 – – – – – 0.0002 6829 0.0000 7263 2

11 1000 1000 0.4 808297.2103 – – – – – 0.0012 6003 0.0001 TL 2666

11 1000 1000 0.6 692675.4305 – – – – – 0.0003 4907 0.0000 8085 22

11 1000 1000 0.8 729765.8357 – – – – – 0.0002 5631 0.0000 6353 3

16 1000 1000 0.4 852614.2315 – – – – – 0.0015 4697 0.0005 TL 4700

16 1000 1000 0.6 719272.2322 – – – – – 0.0003 5503 0.0000 9205 37

16 1000 1000 0.8 744746.7001 – – – – – 0.0001 3098 0.0000 3208 2
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Table 5: Comparing perspective reformulation and Benders decomposition for the congested CFL without constraint (8).

Column OPT gives the optimal solution value (OPT), gr[%] the percentage gap at the root, tr[s] the computing time at the

root, g[%] the final gap and t[s] the overall computing time. Runs reaching the timelimit of 50 000 seconds are indicated by

TL, runs which crashed due to memorylimit with −−.

Perspective reformulation Benders

inst. |J | |I| OPT gapr[%] tr[s] gap[%] t[s] nodes gapr[%] tr[s] gap[%] t[s] nodes

1 300 300 211070.0381 0.0018 138 0.0000 152 12 0.0015 449 0.0000 507 3

6 300 300 222243.8724 – – – – – 0.0005 203 0.0000 213 0

11 300 300 2529554.9391 – – – – – 0.0000 295 0.0000 368 0

16 300 300 219566.4352 0.0006 4438 0.0000 11135 7 0.0003 236 0.0000 260 3

1 300 1500 2529554.9567 6.6603 1695 0.0000 1695 1 0.0000 239 0.0000 300 0

6 300 1500 2361077.7437 0.0000 1539 0.0000 1941 11 0.0000 318 0.0000 398 0

11 300 1500 214763.8218 0.0000 569 0.0000 839 17 0.0008 347 0.0000 416 7

16 300 1500 2352252.4237 0.0000 611 0.0000 1017 17 0.0000 224 0.0000 282 0

1 500 500 355776.2393 0.0016 458 0.0000 727 37 0.0004 1121 0.0000 1359 8

6 500 500 380401.4018 – – – – – 0.0004 1066 0.0000 1120 3

11 500 500 350559.5589 – – – – – 0.0002 658 0.0000 690 1

16 500 500 344701.1085 0.0002 8663 0.0002 TL 5 0.0001 861 0.0000 877 0

1 700 700 506905.1205 0.0027 1458 0.0000 2367 71 0.0004 1791 0.0000 1960 0

6 700 700 488584.4417 0.0004 23214 0.0000 48525 5 0.0004 2495 0.0000 2884 6

11 700 700 493751.8204 0.0009 24636 0.0009 TL 5 0.0008 2618 0.0000 6364 117

16 700 700 494914.6701 0.0003 26437 0.0003 TL 3 0.0001 2248 0.0000 2248 2

1 1000 1000 693170.4984 0.0009 5048 0.0000 8743 269 0.0005 9504 0.0000 30432 245

6 1000 1000 734986.4967 – – – – – 0.0001 5036 0.0000 5321 0

11 1000 1000 690997.7121 – – – – – 0.0005 6443 0.0000 17972 164

16 1000 1000 714499.4930 – – – – – 0.0003 5702 0.0000 8745 10
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