
Mathematical Programming manuscript No.
(will be inserted by the editor)

Matteo Fischetti · Domenico Salvagnin ·
Arrigo Zanette

Minimal Infeasible Subsystems and
Benders’ cuts

Received: date / Revised Sept. 2009 /Accepted: date

Abstract In this paper we propose a new cut selection criterion for Benders’
cuts, based on the correspondence between minimal infeasible subsystems of
an infeasible LP and the vertices of the associated alternative polyhedron.
The choice of the “most effective” violated Benders’ cut corresponds to the
selection of a suitable vertex of the alternative polyhedron, hence a clever
choice of the dual objective function is crucial—whereas the classic Benders’
approach uses a completely random selection policy, at least when feasibility
cuts are generated. Computational results are presented, showing that our
new cut selection policy can yield a considerable speedup with respect to the
standard ones.

We also prove that finding a violated optimality Benders’ cut is a strongly
NP-hard problem when violated feasibility cuts exist, thus giving a theoreti-
cal explanation of the practical difficulty of handling optimality and feasibil-
ity cuts together.

Keywords Benders’ Decomposition, Cutting Planes, Mixed-Integer
Programs, Computational Analysis

1 Introduction

There are situations in mathematical programming where cutting planes can
be generated by solving a certain Cut Generation Linear Program (CGLP)
whose feasible solutions define a family of valid inequalities for the problem

M. Fischetti
DEI, University of Padova E-mail: fisch@dei.unipd.it

D. Salvagnin
DMPA, University of Padova E-mail: dominiqs@gmail.com

A. Zanette
DMPA, University of Padova E-mail: zanettea@math.unipd.it

2

at hand. Disjunctive cuts [4] and Benders’ cuts [5] are two familiar examples
arising when solving Mixed-Integer Programs (MIPs)

Benders’ cuts were originally proposed as a machinery to convert a generic
MIP involving integer variables x and continuous variable y into an integer
program involving the x variables only, possibly plus a single continuous vari-
able η taking into account the overall contribution to the objective function
of the continuous variables (say dT y). The continuous y variables are removed
by a standard projection technique based on dynamic cutting-plane genera-
tion. At each iteration, one solves the current master problem relaxation in
the (x, η) space, and sends the optimal solution (x∗, η∗) to the so-called slave
problem. This is an LP in the y space that tries to define a suitable vector
y∗ such that (x∗, y∗) is feasible for the original problem, and η∗ = dT y∗. If
the slave problem is feasible, we are done. Otherwise, a so-called (feasibility
or optimality) Benders’ cut in the (x, η) space is generated by using Farkas’
characterization of infeasible LPs, the cut is added to the master problem,
and the method is iterated.

The effective use of the cuts is a major issue in any cutting plane method,
as three main topics need to be addressed:

i) When to cut? Possible answers range from “only when an integer super-
optimal solution is available” (as in the original Benders’ proposal where
cuts are applied only to cut an optimal integer solution of the current
master problem) to “whenever a fractional (or integer infeasible) solution
is available” (as in modern branch-and-cut frameworks).

ii) What to cut? The usual choice in cutting plane methods for integer pro-
gramming is to cut an optimal vertex of an LP relaxation. However this
may lead to an unstable behavior and slow convergence, hence internal
points to be cut may be preferred as, e.g., in the method recently de-
scribed in [20]. Alternatively, stabilization through penalty functions may
be applied, following a common practice, e.g., in bundle methods.

iii) How to choose the cut? Given the point x∗ to be separated, choose the
“best possible” cut(s) among the violated ones; see [6,8] for recent pa-
pers on this topic in the context of disjunctive programming, and also
[23] where a weighted combination of the dual solutions is taken before
generating the actual Benders’ cut.

All three points above play a crucial role in the design of an effective
solution method. In the present paper we focus on (iii), and in particular we
address the topic of selecting Benders’ cuts for general MIPs in an effective
way. More specifically, we aim at understanding the properties that qualify
a single Benders’ cut as “a good one”.

The present paper is organized as follows. In Section 2 we briefly review
the theory behind the Benders approach. In Section 3 we investigate some
fundamental implementation issues. In Section 4 we prove that finding a
violated optimality Benders’ cut is a strongly NP-hard problem (assuming
violated feasibility cuts can exist), and propose a new selection criterion for
Benders’ cuts. Our approach is based on the correspondence between minimal
infeasible subsystems of an infeasible LP, and the vertices of the associated
alternative polyhedron. The choice of the “most effective” violated Benders’
cut then corresponds to the selection of a suitable vertex of the alternative

3

polyhedron, and a clever choice of the dual objective function is of crucial
importance. Computational results are presented in Section 5, showing that
our new cut selection criterion often allows for a considerable speedup with
respect to the standard ones. Some conclusions are finally drawn in Section 6.

An extended abstract of a previous version of the present paper was
presented at the Combinatorial Optimization meeting held in Oberwolfach,
November 2008 [12].

2 The Benders approach

Suppose we are given a generic MIP of the form

min cTx+ dT y

Ax ≥ b
Tx+Qy ≥ r

x ≥ 0 integer
y ≥ 0

(1)

where x ∈ Rn, y ∈ Rt, and matrix Q has m rows. The standard Benders’
approach starts by reformulating the MIP above as

min cTx+ η

Ax ≥ b
η ≥ uT (r − Tx), u ∈ U
vT (r − Tx) ≤ 0, v ∈ V

x ≥ 0, x integer

(2)

where the additional continuous variable η takes into account the objective
function term dT y, while sets U and V contain the vertices and extreme rays
(respectively) of the polyhedron D defined by:

πTQ ≤ dT

π ≥ 0
(3)

Formulation (2) has exponentially many inequalities, so an iterative so-
lution method based on cutting planes is applied. The original Benders’ pro-
posal can be outlined as follows.

1. Solve the following master problem:

min cTx+ η

Ax ≥ b
< previously generated Benders’ cuts >

x ≥ 0, x integer

(4)

including (some of) the Benders cuts generated so far (none at the very
beginning). By construction, the master problem is a relaxation of the

4

original MIP reformulation (2), that however keeps the integrality re-
quirement on the x variables. Let (x∗, η∗), with integer x∗, be an optimal
solution of the master problem, found, e.g., by an enumerative algorithm.

2. Solve the following dual slave problem, that acts as a CGLP:

maxπT (r − Tx∗)
πTQ ≤ dT

π ≥ 0

(5)

3. If the dual slave problem is unbounded, choose any unbounded extreme
ray π, add the following Benders’ feasibility cut

πT (r − Tx) ≤ 0

to the master, and repeat from Step 1. Otherwise, let z∗ and π denote
the optimal value and an optimal vertex of the dual slave problem, re-
spectively. If z∗ ≤ η∗ then stop: the current (x∗, η∗) is feasible and hence
optimal for (2). Otherwise, add the following Benders’ optimality cut

η ≥ πT (r − Tx)

to the current master problem, and repeat from Step 1.

Modifications of the above scheme lead to variants that are often refereed
to, in a wide sense, as “Benders’ methods”. E.g., by removing the integrality
requirement on the x variables in the master, the method leads to a pure
cutting plane scheme for solving the LP relaxation of the original MIP (2). In
this framework, an optimal (fractional) solution (x∗, η∗) of the LP relaxation
of the current master is used, in Step 2, to generate a violated valid inequality
to be added to the relaxation—the resulting approach can be significantly
faster than solving directly the original LP, mainly in the cases where the
dual slave problem decomposes into a series of independent subproblems as,
e.g., in scenario-based Stochastic Programming. In addition, the condition to
be added to the master need not to be obtained by just solving an LP, but it
can exploit an ad-hoc infeasibility analysis [7], possibly based on Constraint
Programming [22], or can even be described by logic conditions (instead
of linear inequalities) as in the Logic Benders’ method pioneered by John
Hooker [14,15].

Coming back to the original Benders’ scheme, some observations are in
order. First of all, at each iteration MIP (4) needs to be exactly solved, a
task that becomes more and more difficult as new cuts are added. Secondly,
according to the scheme, at each iteration a single cutting plane is gener-
ated and added to the master. Much of the research on the Benders method
has been devoted to fix the two issues above. McDaniel and Devine [17] ob-
served that Benders’ cuts can be generated also from solutions obtained by
solving the linear relaxation of (4), thus providing a set of cutting planes to
warm start the method. Analogously, Benders’ cuts can be generated from
any feasible (but not necessarily optimal) integer master solutions. Following
the above observation, Rei, Cordeau, Gendreau, and Patrick [21] recently
used a local branching scheme [10] to generate multiple solutions (and hence
multiple cuts) for a same master problem.

5

Example

To illustrate how Benders’ cuts can fit into different solution schemes, suppose
to apply Benders’ method to solve the well-known Asymmetric Traveling
Salesman Problem (ATSP). A standard compact MIP formulation involves
binary variables xij associated with the arcs (i, j) of a digraph G = (V,A),
and continuous flow variables ykij that describe a flow of value 1 from a
fixed source node (say node 1) to sink node k, for all k ∈ V \ {1}. In this
example, system Ax ≥ b corresponds to in- and out-degree restrictions on
the arc binary variables, whereas system Tx + Qy ≥ r is made by |V | − 1
independent blocks corresponding to the flow-conservation equations for each
k, plus the coupling constraints ykij ≤ xij for all k ∈ V \ {1} and (i, j) ∈ A.
In this example, the slave problem decomposes nicely into n−1 independent
flow problems. Benders’ cuts are of the feasibility type only, and correspond
to the classical Subtour Elimination Constraints (SECs) in their cut form∑

(i,j)∈δ+(S) xij ≥ 1 with 1 ∈ S ⊂ V . These cuts are known to be facet-
defining for the convex hull of the integer points in the x space (assuming G
is a complete digraph). Now, there are two search schemes that can be seen
as different implementations of the Benders idea.

(a) [the original Benders’ method] keep the integrality requirement on the
binary arc variables in the master, and solve it to proven optimality by
using an external MIP (actually, ILP) solver: if the optimal solution x∗

corresponds to a single circuit, then it gives an optimal ATSP solution;
otherwise, find a Benders’ cut (SEC) to break one of the subtours asso-
ciated to x∗, add it to the master, and repeat.

(b) [a modern branch-and-cut method] relax the integrality requirement on
the x variables, and solve the current master by using an LP solver: if
the optimal (possibly fractional) solution x∗ violates any SEC, then add
a violated SEC to the master LP problem and repeat. If no violated SEC
exists and x∗ is integer, then we have a provable optimal ATSP solution;
otherwise, the only missing requirement for x∗ is integrality, that can be
enforced by branching.

Note that in this specific example, scheme (b) above is typically more effective
than (a), but there are cases where the opposite holds.

Of course, hybrid search techniques can also be designed, e.g., by im-
plementing a scheme akin to (a) where the ILP solver is not viewed as a
black-box but generates violated SECs (if any) on the fly, each time the in-
cumbent integer solution is updated (as suggested by Miliotis [18,19]). Or by
using a truncated version of scheme (b) as a preprocessing tool for scheme
(a), so as to start with a significant set of SECs generated in a computation-
ally cheap way (very much in the spirit of the general proposal of McDaniel
and Devine [17]). �

In the example, both Benders’ methods (a) and (b) lack a sensible cut
selection criterion: once a violated SEC exists the dual slave becomes un-
bounded and any violated SEC can be returned by the separation procedure—

6

whereas we know that SEC density (among other characteristics) plays a
crucial role in speeding-up the overall convergence.

The choice of good optimality Benders’ cuts was addressed by Magnanti
and Wong in [16], who proposed to accelerate the convergence of the method
by generating Pareto-optimal cuts. Their method only works with optimality
cuts, namely η ≥ πT (r−Tx), and requires the availability of a core-point q in
the relative interior of the convex hull of the feasible solutions of (2). Given
the master point x∗ to be separated, one first looks for a Benders’ cut that is
maximally violated by x∗ by solving the standard CGLP (5). If alternative
optimal solutions of the dual slave exist, the actual cut to be generated is
the one with minimum slack with respect to q. It is easy to see that this
policy is equivalent to finding a maximally-violated cut with respect to a
new “slightly interior” point where x∗ is replaced by (1− ε)x∗+ εq for a very
small ε > 0. Besides the nice theoretical properties described in [16], this
change in the point to be cut has the important effect of avoiding dealing
with zero components. Indeed, these components do not contribute to cut
violation and hence can lead to uncontrolled cut coefficients in the generated
cut—a similar beneficial effect could be obtained by slightly increasing the
zero entries in x∗, a simple yet effective trick often used for the separation of
other classes of MIP cuts.

In practice, the Magnanti and Wong procedure has some potential draw-
backs:

– The procedure requires the dual slave to have a bounded optimal value,
hence it cannot be applied in a completely general context involving fea-
sibility cuts.

– The user has to provide a point in the relative interior of the master fea-
sible set. This may be a simple task if the master has a special structure,
as in the cases addressed by Magnanti and Wong in their study, but it is
NP-hard in general if the problem is a MIP, because we need a point in
the relative interior of the convex hull of the integer feasible points.

– The method may be computationally heavy because it requires to solve
two LPs to generate a single cut, the second LP being often quite time-
consuming due to the presence of an additional equation that fixes the
degree of violation of the cut in (x∗, η∗)—for fractional x∗, this equation
may be quite dense and numerically unstable. A possible remedy is to
use a technique recently exploited by Zanette, Fischetti and Balas [24]
in the context of lexicographic optimization, where the second separation
LP does not contain an explicit constraint to fix the violation in x∗, but
just fixes to zero all the nonbasic variables (including slacks) that have a
nonzero reduced cost in the first separation LP.

– The criterion benefits from the existence of several equivalent optimal
solutions of the dual slave problem (i.e., several maximally-violated opti-
mality cuts), which is unlikely to be the case when fractional (as opposed
to integer) points of the master have to be cut.

7

3 Implementing the Benders scheme

Any implementation of the Benders approach has to face a number of imple-
mentation issues that heavily affect the overall performance of the method.
Though major modifications of the big picture are usually well documented
[16,17,21], there are apparently minor implementation choices that may have
a large impact on the practical performance of the method.

A first naive approach is to implement Benders’ separation as described
in Section 2, i.e., by maximizing the violation of the given point x∗. Although
straightforward, this implementation has serious drawbacks:

– As already mentioned, there is no criterion at all for the choice of the
unbounded ray used to generate a violated feasibility cut. This means
picking violated feasibility cuts in a very blind way, which is a serious
issue on some classes of problems where feasibility cuts play an important
role.

– As long as a violated feasibility cut exists, the dual slave is unbounded and
no optimality cut can be generated, though these cuts may be essential
for improving the lower bound and one would like to generate them as
early as possible.

A simple way to mitigate the last drawback was proposed by Benders
himself in his seminal paper [5]: if we solve the dual slave with the primal
simplex method, when we discover an unbounded ray we are “sitting on
a vertex” of polyhedron D, hence we can generate also the optimality cut
corresponding to this dual vertex, with no additional computational effort.
Note however that the optimality cut produced is by no means guaranteed to
be violated, and in any case its choice is quite random as the corresponding
vertex is not necessarily a one maximizing a certain quality index such as cut
violation, depth, etc. Nevertheless, the effect of the additional optimality cut
can be quite substantial on some cases, as we verified in our computational
tests.

Since feasibility cuts seem to be the Achilles’ heel of the method, a solution
would be to truncate polyhedron D into a polytope D(M) := {u ∈ D :∑
i πi ≤ M} for a sufficiently large M > 0, so as to work with optimality

cuts only. This corresponds to the addition of an artificial continuous variable
z with a large cost M in the primal slave, that becomes min{dT y + Mz :
Qy + ez ≥ r − Tx∗, y, z ≥ 0}, where e = (1, · · · , 1), and the modified slave
reads:

maxπT (r − Tx∗)
πTQ ≤ dT

πT e ≤M
π ≥ 0

(6)

Working with the modified formulation one can therefore apply the Magnanti-
Wong procedure, hence the choice of the violated cut is no longer arbitrary.
However, a number of potential drawbacks arise:

8

– A big-M coefficient has been introduced. This is quite tricky and poten-
tially dangerous for the correctness of the method, not to mention the
associated numerical issues.

– Feasibility cuts are replaced by “surrogate” optimality cuts that are how-
ever inherently weaker, because they depend on M and involve the contin-
uous variable η, with the risk of losing a possible combinatorial structure
of their feasibility counterpart.

The issues above were also addressed in the original Benders’ paper, where
a variant of the separation LP that works directly with the primal slave is
described. This variant can be rephrased in the dual space as follows:

– Dynamically update the big M coefficient whenever there is evidence that
it is too small. Such an evidence can readily be found by standard LP
sensitivity analysis; in particular, the current value for M is not too small
if the current basis remains optimal when M → +∞.

– Decompose the optimal vertex u(M) of D(M) into u(M) = u+λv, where
u ∈ U , v ∈ V and λ ≥ 0, so as to generate both an optimality and a
feasibility cut for the original problem before truncation. This is always
possible due to the tight correlation between D and D(M), and requires
at most one additional pivot operation; see [5] for details.

4 Benders’ cuts and Minimal Infeasible Subsystems

An important aspect for the practical effectiveness of Benders’ cuts is the
relative contribution of optimality and feasibility cuts. Indeed, according to
our computational experience, feasibility and optimality cuts behave quite
differently for two important respects:

– For many problems where term dT y gives a significant contribution to
the overall optimal value, optimality cuts can be much more effective in
improving the bound than feasibility cuts, because they involve the η
variable explicitly.

– Optimality cuts are typically quite bad from a numerical point view be-
cause they tend to exhibit a higher density and dynamism (ratio between
the maximum and minimum absolute value of the cut coefficients) with
respect to the feasibility ones.

In this section we propose a new selection criterion for Benders’ cuts that
leads to a more clever choice of the separated cuts, in particular when both
feasibility and optimality violated cuts exist. To emphasize the intrinsic diffi-
culty of handling violated optimality and feasibility cuts together, we observe
that finding a violated optimality cut in presence of violated feasibility cuts is
equivalent to finding an optimal vertex of a polyhedron with unbounded rays.
This is in fact a strongly NP-hard problem, in that it contains the problem
of finding a min-cost path in a digraph with negative cycles as a special case.
The above considerations can be formalized into to the following (somehow
surprising) result:

9

Theorem 1 Finding a violated optimality Benders’ cut for a given point
(x∗, η∗) is a strongly NP-hard problem, even in case Q is totally unimodular,
d ∈ {0,−1}t, x∗ = 1, and η∗ is a nonnegative integer.

Proof We will use a reduction from the following well-known strongly NP-
complete Hamiltonian Path (HP) problem: Does a given digraph G = (V,A)
contain a Hamiltonian directed path from node 1 to node n := |V |? To answer
this question, we define the following polyhedron

D :=
{
π ∈ RA+ :

∑
j:(h,j)∈A

πhj −
∑

i:(i,h)∈A

πih ≤ dh ∀h ∈ V \ {1}
}

(7)

where d2 = · · · = dn−1 = 0 and dn := −1. By construction, D coincides
with the feasible solution set of the CGLP (5) when QT is the node-arc
incidence matrix of the subgraph of G induced by V \{1}—hence Q is totally
unimodular. It is well known the vertices of D are in 1-1 correspondence
with the characteristic vectors of the directed simple paths in G from 1 to
n, while the extreme rays of D correspond to the directed simple cycles of
G. Our order of business is therefore to find a vertex of D (i.e., a simple
(1 − n)-path) whose support has maximum cardinality, and check whether
this cardinality is strictly greater than n − 2. To this end, it is enough to
consider the CGLP (5) where r := 0, T := −I, and x∗ij := 1 for all (i, j) ∈ A
(so the objective function reads

∑
(i,j)∈A πij), while setting η∗ := n− 2. By

construction, the existence of the required Hamiltonian path is equivalent
to the existence of a violated optimality Benders’ cut, which completes the
proof. ut

Our order of business is to define a sound unified framework for the sep-
aration of feasibility and optimality cuts. To this end, we observe that Ben-
ders’ separation can always be rephrased as a pure feasibility problem: given
a master solution (x∗, η∗), a violated cut can be generated if and only if the
following (extended) primal slave LP is infeasible:

dT y ≤ η∗

Qy ≥ r − Tx∗

y ≥ 0
(8)

or equivalently, by LP duality, if the following (homogenized) dual slave prob-
lem is unbounded:

maxπT (r − Tx∗)− π0η
∗

πTQ ≤ π0d
T

π, π0 ≥ 0

(9)

The cut associated with a given ray (π, π0) of (9) reads

πT (r − Tx)− π0η ≤ 0 (10)

In practice, one is interested in detecting a “minimal source of infeasibil-
ity” of (8), so as to detect a small set of constraints in the slave that suffices

10

to cut the master solution. According to Gleeson and Ryan [13], the rows of
any Minimal (with respect to set inclusion) Infeasible Subsystem (MIS) of
(8) are indexed by the support of the vertices of the following polyhedron,
sometimes called the alternative polyhedron:

πTQ ≤ π0d
T

πT (r − Tx∗)− π0η
∗ = 1

π, π0 ≥ 0

(11)

where the unbounded objective function—namely, the cut violation to be
maximized—has been fixed to a normalization positive value.

By choosing a generic objective function

min
m∑
i=1

wiπi + w0π0 (12)

with appropriate nonnegative weights wi’s, it is therefore possible to optimize
over the alternative polyhedron so as to select a violated cut corresponding
to a MIS of (8) with certain useful properties. Of course, the choice of the
objective function coefficients wi’s is of crucial importance, in that it models
the quality measure that one wants to apply for a clever cut selection.

It is worth noting that the original Benders’ CGLP (6) arises as a partic-
ular case by setting w0 = 1 and w1 = w2 = · · · = wm = 0, i.e., by minimizing
variable π0 only. If the optimal solution π has π0 = 0, then (10) gives a proof
of infeasibility not involving variable η, thus a feasibility cut is generated.
Otherwise, π0 > 0 and it is not difficult to see that π/π0 gives an optimal
solution of the standard dual slave (5), hence the same maximally-violated
optimality cut as in the original method is generated (barring degeneracy).

In a previous version of the present paper [12], the objective function
weights w0, · · · , wm were all set to 1, with the aim of trying to reduce the
cardinality of the support of the optimal vertex, and hence to heuristically
find a minimum-cardinality MIS (which is an NP-hard problem in general;
see, e.g., Amaldi, Pfetsch, and Trotter [1]). By analyzing some specific patho-
logical instances we later observed that matrix T often has null rows, meaning
that there are “static” conditions in the slave that are always active and do
not depend on x. For these rows, there is no reason to penalize the corre-
sponding multiplier πi in the CGLP objective function, so one should set
wi = 0. According to our computational experience, this simple change leads
to a quite substantial improvement of the generated cuts in many cases, so
our final choice is to consider the following CGLP objective function

min
∑
i∈I(T)

πi + w0π0 (13)

where w0 is a scaling factor taking into account the possibly wider range of
variable η, and I(T) contains the indices of the nonzero rows in T .

A final comment is in order. As we are only interested in solutions with
a positive cut violation, and because {(π, π0) ≥ 0 : πTQ ≤ π0d

T } is a cone,
one can swap the role of the objective function (12) and of the normalization

11

condition in (11). The swap yields the following equivalent CGLP, akin to
the one used for disjunctive cuts by Balas, Ceria, and Cornuéjols [4] (see also
Fischetti, Lodi and Tramontani [11]):

maxπT (r − Tx∗)− π0η
∗

πTQ ≤ π0d
T

m∑
i=1

wiπi + w0π0 = 1

π, π0 ≥ 0

(14)

Formulation (14) can be preferable from a computational point of view
because normalization constraint

∑m
i=1 wiπi +w0π0 = 1, though very dense,

may be numerically more stable than its “cut violation” counterpart πT (r−
Tx∗)− π0η

∗ = 1, in particular when x∗ is fractional.
At first glance, our CGLP (14) looks similar to the modified slave (6),

as both of them make use of a certain normalization condition. In fact, for
feasibility cuts (π0 = 0), normalization

∑
i πi ≤ M in (6) can trivially be

rewritten as
∑
i πi = 1, which is a different (often weaker) version of the one

we propose, namely (13). When both optimality and feasibility violated cuts
exist, however, the two methods can behave quite differently, as shown in the
next section.

5 Computational experiments

The main Benders’ variants addressed in the present paper have been imple-
mented in C++. IBM ILOG Cplex 11.2 was used as LP/MIP solver, with all
parameters left at their default values.

All tests have been performed on an PC Intel Core2 Q6600 (2.40 GHz)
with 4GB of RAM, with a time limit of 3,600 seconds for each run.

To speedup the solution of the several master MIPs generated by the
method, as well as to generate multiple cuts that hopefully reduce the over-
all number of master MIPs to be solved, we implemented the following simple
strategy. At each main iteration (i.e., master MIP solution), when the mas-
ter incumbent solution is updated we generate, on the fly, a corresponding
violated Benders’ cut (if any). However, this cut is not added to the master
problem until the next main iteration, and the master processing continues
until the current incumbent solution violates a Benders’ cut and it was not
updated in the last K = 1, 000 enumeration nodes. In this way we avoid
wasting computing time on proving the optimality of an integer solution
that is already known to be infeasible, and at the same time we avoid to
restart the master too many times—namely, as soon as a new incumbent
solution is found. In this way, several Benders’ cuts are typically generated
at each main iteration, and our scheme can be seen as a “light” version of
the local-branching one proposed in [21].

In our computational study we compared four different MIP solution
methods:

12

cpx a state-of-the-art Branch&Cut solver (IBM ILOG Cplex 11.2);
std a standard Benders’ approach based on CGLP (5);
std2 a more elaborated Benders’ approach using the modified CGLP (6),

plus the enhancements described at the end of Section 3;
mis our Benders’ approach with the new CGLP(14) and normalization

condition as in (13), i.e., wi = 0 if i indexes a null row of matrix T ,
wi = 1 otherwise, and w0 = 1.

Both std and std2 (but not mis) implement the Magnanti-Wong [16]
acceleration procedure with the nonbasic variable fixing described in [24]. The
warm-start procedure of McDaniel and Devine [17] was instead deactivated
for all methods because, for the instances in our testbed, it resulted into
a generalized performance degradation. Note that each call to the CGLP
in std and std2 can generate two distinct violated cuts (associated with a
vertex and an unbounded ray of the original slave, respectively), whereas it
generates (at most) one single cut for mis. It is also worth stressing that the
three Benders’ implementations above are completely general purpose, and
only differ in the way the cuts are selected—all other features are identical.

The four MIP methods have been compared on two sets of MIP instances
whose structure is known to be well suited for Benders’ methods. All instances
are available, on request, from the second author.

Our first testbed consists of instances of the multicommodity-flow net-
work design problem [3], where one has to allocate capacity to the arcs of a
given network by ensuring that all commodities can simultaneously be routed
from source to destination. Along with a capacity plan, a routing of all com-
modities has to be determined. The objective is to minimize the cost of the
installed capacity in the network and of the routing of the commodities. More
specifically, given a directed graph G = (V,A), a set of commodities K (each
commodity being described by a source node sk, a destination node tk, a de-
mand dk, and arc routing costs ckij), a base capacity unit C, and arc capacity
installation costs fij , our network loading problem can be formulated as:

min
∑

(i,j)∈A

fijyij +
∑
k∈K

∑
(i,j)∈A

ckijx
k
ij

∑
j∈V

xkij −
∑
j∈V

xkji =

1 i = sk

−1 i = tk

0 otherwise
k ∈ K, i ∈ V (15)

∑
k

dkxkij ≤ Cyij , (i, j) ∈ A (16)

xkij ≥ 0, yij ∈ Z+
0 , k ∈ K, (i, j) ∈ A (17)

Network design problems, as well as many other network design problems,
are well suited for a Benders’ approach because there is natural partition
between first-stage integer variables (arc capacities to setup) and second-
stage continuous variables (network flows). The reader is referred to Costa
[9] for a recent survey on Benders’ algorithms successfully applied to network
design problems.

13

We generated two different types of random instances of the above net-
work design problem, the underlying network topology being defined as fol-
lows:

grid: we first generated 5x5 and 5x6 grid networks, and then we randomly
deleted arcs with probability 0.1
random: we first generated random networks with 20 and 25 nodes, each
node being connected with its 5 nearest nodes, and then we randomly
deleted arcs with probability 0.1.

We then generated a demand for some pairs of nodes picked with 0.15
probability, with value taken uniformly in interval (5, 10). Each unit of ca-
pacity is of size 20 and has a cost of 5. Finally, we considered two different
scenarios: in the feas case, routing costs were set to zero and only feasibility
cuts were generated by the Benders’ algorithms, while in the opt case each
unit of flow has a cost of 1 on each arc, hence both feasibility and optimality
Benders’ cuts are generated.

Table 1 summarizes the main characteristics of the instances in our net-
work design testbed.

Topology Nodes Type # constr.s # var.s # int.var.s

grid 5x5 feas 2,318 6,281 34
grid 5x5 opt 2,236 5,974 34
grid 5x6 feas 4,282 11,622 41
grid 5x6 opt 4,014 10,527 40
random 20 feas 1,148 5,125 46
random 20 opt 1,192 4,993 43
random 25 feas 2,432 10,405 54
random 25 opt 2,208 9,754 56

Table 1 Testbed characteristics (network design problem); 5 instances for each
class

Table 2 reports the outcome of our experiments on the network design
testbed; results for cpx are not reported because this method exceeded the
3,600-seconds time limit in 36 (out of 40) runs. The table gives average results
(geometric means) over the 5 instances of each class for both the feas and
opt scenarios. For each method the table reports the computing time (in CPU
seconds: column time), the percentage of computing time spent in the CGLP
(sep), the number of main iterations (i.e., of master MIPs generated: column
iter.s), and the total number of feasibility (feas) and optimality (opt) cuts
generated. In the time column, the number of time-limit instances (if any)
is given in parenthesis; these instances contribute to the overall statistics by
taking the current figures (time, iterations, etc.) when the run was aborted.

According to Table 2, all methods spent a large percentage of their com-
puting time in the CGLP, which is not surprising because of the large number
of continuous variables; in addition, the master MIPs were solved quickly be-
cause they involve a small number of integer variables.

14

type class method time (s) sep (%) iter.s # feas # opt

feas

g 5 5
std 22.8 92.9% 125 249 0
std2 585.2 96.2% 266 592 0
mis 14.9 98.1% 75 106 0

g 5 6
std 100.0 98.4% 138 250 0
std2 2, 303.4(3) 97.3% 290 701 0
mis 57.7 98.6% 102 161 0

r 20 5
std 52.8 90.2% 129 270 0
std2 1, 095.4(1) 59.0% 436 955 0
mis 35.5 93.3% 92 166 0

r 25 5
std 313.8(1) 90.8% 166 426 0
std2 2, 897.4(3) 87.4% 344 953 0
mis 147.7 77.9% 92 182 0

all
std 78.4(1) 93.0% 138 291 0
std2 1, 438.2(7) 83.4% 328 784 0
mis 46.1 91.6% 90 151 0

opt

g 5 5
std 67.9 24.5% 162 525 528
std2 275.2 64.9% 152 585 589
mis 18.7 98.4% 77 104 7

g 5 6
std 177.1 32.7% 182 790 794
std2 1, 439.9 78.3% 295 1,026 1,036
mis 69.9 99.1% 97 136 21

r 20 5
std 498.5 9.8% 181 594 812
std2 1, 554.3(1) 19.0% 230 765 1,127
mis 109.0 58.7% 127 124 302

r 25 5
std 3, 600.5(5) 12.7% 311 1,315 1,541
std2 3, 600.6(5) 43.6% 220 1,339 1,380
mis 1, 440.2(2) 64.3% 227 225 893

all
std 383.2(5) 17.8% 202 754 851
std2 1, 220.3(6) 45.3% 218 886 987
mis 119.7(2) 77.9% 121 141 80

Table 2 Network design results.

A surprising outcome is that the “more elaborated” standard Benders’
implementation (std2) is much worse than the “simple” one (std) in terms of
both computing time and number of main iterations required. The difference
is striking for the feas scenario, where std2 requires on average about twice
more iterations and cuts than std, and takes about 20 times more computing
time. Evidently, the trivial normalization condition

∑
i πi = 1 implicitly used

by std2 actually hurts, as it turns out to perform even worse than the random
choice of the unbounded ray performed by std—thus confirming that a clever
choice of normalization is a key issue in practice. As to mis, it outperforms
std by a factor of about 2 in the feas scenario, and of about 3 in the opt
one. The fact that the speedup is due to a more effective choice of the cuts

15

is confirmed by the greatly reduced number of cuts (and of main iterations)
required.

We also tested the algorithms on 30 network expansion hard instances
from the literature [2]—the easiest instances have been removed from the
testbed. For these instances only feasibility cuts can be generated, hence the
three Benders’ implementations only differ for the normalization used when
solving the slave problem.

Table 3 reports the main characteristics of each class of instances in this
second testbed, whereas Table 4 gives the corresponding average results;
again, cpx is not reported because it exceeded the time limit in 24 (out of
30) runs.

Class # instances # constr.s # var.s # int.var.s

100.20.2 5 2080 2970 1980
100.20.4 5 2080 4950 3960
100.20.8 5 2080 8910 7920
150.20.2 5 4620 6705 4470
150.20.4 5 4620 11175 8940
150.20.8 5 4620 20115 17880

Table 3 Testbed characteristics (hard network expansion instances from [2])

class method time (s) sep (%) iter.s # feas

100.20.2
std 205.6 0.5% 195 387
std2 19.8 5.1% 136 218
mis 22.1 5.3% 139 214

100.20.4
std 441.7 0.2% 140 392
std2 65.3 1.5% 122 270
mis 67.3 2.0% 121 266

100.20.8
std 422.7 0.2% 139 409
std2 63.9 1.7% 137 321
mis 60.5 2.4% 136 338

150.20.2
std 1, 790.6 0.1% 291 659
std2 105.1 2.9% 231 346
mis 108.0 5.6% 241 357

150.20.4
std 3, 194.6(1) 0.1% 169 672
std2 1, 430.3(1) 0.3% 207 541
mis 1, 086.7(1) 0.9% 213 542

150.20.8
std 3, 568.5(4) 0.0% 167 580
std2 1, 492.3 0.4% 204 623
mis 1, 537.0(1) 0.6% 202 617

Table 4 Network expansion results

16

As far as the two standard Benders’ implementations are concerned, this
second testbed behaves just the opposite way as the previous one: separa-
tion time is almost negligible, and std2 is by far faster than std—hence its
normalization condition helps in separating the “right” cuts. In this setting,
the performance of mis is very similar to that of std2, which is an indica-
tion that the different normalizations they use are equally effective for this
problem class.

On the whole, the results show that our new cut selection criterion in
more robust than those from the literature, in that mis is almost always
the best (possibly with ties) of the three methods under comparison, while
std and std2 exhibit a much more erratic behavior that heavily depends on
the structure of the underlying problem. As expected, mis obtains its best
speedup when both optimality and feasibility cuts are be separated, due to
the fact that these cuts are treated in a sound unified framework.

6 Conclusions

By exploiting the correspondence between minimal infeasible subsystems of
an infeasible LP and the vertices of the associated alternative polyhedron,
we have been able to define a simple yet effective cut selection criterion for
Benders’ cuts. As a by product we have obtained a novel interpretation of
a widely-used disjunctive cut normalization, based on combinatorial objects
(minimal infeasible subsystems), thus providing a theoretical explanation of
its practical effectiveness.

Computational results show that the proposed method may allow for a
substantial speedup with respect to the standard one, mainly when feasibility
together with optimality cuts are generated.

From a theoretical point of view, we proved a surprising (at first glance)
complexity result, namely that finding a violated Benders’ cut is a strongly
NP-hard problem if one restricts to optimality cuts only.

Acknowledgements This work was supported by the Future and Emerging Tech-
nologies unit of the EC (IST priority), under contract no. FP6-021235-2 (project
“ARRIVAL”) and by MiUR, Italy (PRIN 2006 project “Models and algorithms
for robust network optimization”). Thanks are due to two anonymous referees for
their constructive comments, and to Laurence Wolsey for discussions about the
complexity of separating optimality Benders’ cuts.

References

1. Amaldi, E., Pfetsch, M.E., Jr, L.T.: On the maximum feasible subsystem prob-
lem, IISs and IIS-hypergraphs. Mathematical Programming 95(3), 533–554
(2003)

2. Atamtürk, A., , Nemhauser, G.L., Savelsbergh, M.W.P.: Valid inequalities for
problems with additive variable upper bounds. Mathematical Programming
91, 145–162 (2001)

3. Atamturk, A., Rajan, D.: On splittable and unsplittable flow capacitated net-
work design arc-set polyhedra. Mathematical Programming 92, 315–333 (2002)

17

4. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and-project
in a branch-and-cut framework. Management Science 42, 1229–1246 (1996)

5. Benders, J.: Partitioning procedures for solving mixed-variables programming
problems. Numerische Mathematik 4, 238–252 (1962)

6. Cadoux, F.: Computing deep facet-defining disjunctive cuts for mixed-integer
programming. Mathematical Programming 122(2), 197–223 (2009)

7. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear
programming. Operations Research 54(4), 758–766 (2006)

8. Cornuèjols, G., Lemaréchal, C.: A convex analysis perspective on disjunctive
cuts. Mathematical Programming 106(3), 567–586 (2006)

9. Costa, A.M.: A survey on Benders decomposition applied to fixed-charge net-
work design problems. Computers & Operations Research 32(6), 1429–1450
(2005)

10. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1–3),
23–47 (2003)

11. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts.
Mathematical Programming (2009). (to appear)

12. Fischetti, M., Salvagnin, D., Zanette, A.: Minimal infeasible subsystems and
benders’ cuts. Oberwolfach Report 51/2008 pp. 8–11 (2008)

13. Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequali-
ties. ORSA Journal on Computing 2(1), 61–63 (1990)

14. Hooker, J.N.: Logic-Based Methods for Optimization: Combining Optimization
and Constraint Satisfaction. Wiley (2000)

15. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical
Programming 96(1), 33–60 (2003)

16. Magnanti, T., Wong, R.: Accelerating Benders decomposition: algorithmic en-
hancement and model selection criteria. Operations Research 29, 464–484
(1981)

17. McDaniel, D., Devine, M.: A modified Benders’ partitioning algorithm for
Mixed Integer Programming. Management Science 4, 312–319 (1977)

18. Miliotis, P.: Integer programming approaches to the travelling salesman prob-
lem. Mathematical Programming 10, 367–378 (1976)

19. Miliotis, P.: Using cutting planes to solve the symmetric travelling salesman
problem. Mathematical Programming 15, 177–178 (1978)

20. Naoum-Sawaya, J., Elhedhli, S.: An interior-point branch-and-cut algorithm
for mixed integer programs. Tech. rep., Department of Management Sciences,
University of Waterloo (2009). Presented at ISMP 2009

21. Rei, W., Cordeau, J.F., Gendreau, M., Soriano, P.: Accelerating Benders De-
composition by Local Branching. INFORMS Journal on Computing (21), 333–
345 (2009)

22. Thorsteinsson, E.S.: Branch-and-check: A hybrid framework integrating mixed
integer programming and constraint logic programming. Lecture Notes in Com-
puter Science 2239, 16–30 (2001)

23. Wentges, P.: Accelerating Benders’ decomposition for the capacitated facility
location problem. Mathematical Methods of Operations Research 44, 267–290
(1996)

24. Zanette, A., Fischetti, M., Balas, E.: Can pure cutting plane algorithms work?
In IPCO, volume 5035 of Lecture Notes in Computer Science, Springer pp.
416–434 (2008)

	Introduction
	The Benders approach
	Implementing the Benders scheme
	Benders' cuts and Minimal Infeasible Subsystems
	Computational experiments
	Conclusions

