Integer (Linear) Optimization

Egon Balas! and Matteo Fischetti?

An amazing variety of activities and situations can be adequately modeled as linear op-
timization problems, also known as linear programs (LPs), or convex nonlinear optimization
problems. Adequately means that the degree of approximation to reality that such a rep-
resentation involves is acceptable. However, as the world that we inhabit is neither linear
nor convex, the most common obstacle to the acceptability of these models is their inabil-
ity to represent nonconvexities or discontinuities of different sorts. This is where integer
programming comes into play: it is a universal tool for modeling nonconvexities of various
kinds.

To illustrate, suppose we have to put together an optimal production plan for a factory
whose capacity limitations can be expressed through a system of linear constraints. This
can be formulated as a linear program, but when the latter gets solved, the resulting plan
is likely to be unacceptable because it violates a number of other conditions, like: threshold
constraints (there is a minimum amount under which it is not worth producing an item),
implications (if you are going to produce A, you need to also produce B), mutual exclusivity
(you either do A or do B, but not both), precedence constraints (action A must precede
action B by a certain amount of time), etc. It should be clear that conditions of this type
are in no way exceptional. On the contrary, their presence is pervasive in most real world
situations.

A linear (nonlinear) optimization problem whose variables are restricted to integer values
is called a linear (nonlinear) integer (or discrete) optimization problem, or simply an integer
program (IP; linear unless otherwise stated). If only some of the variables are restricted to
integer values, we have a mized integer program (MIP). Such a problem can be stated as
min{c’x : Az > b,z > 0,z; integer for j € N; C N}, where A is a given m x n matrix,
c and b are given vectors of conformable dimensions, N := {1,...,n} and z is a variable
n-vector. The ‘pure’ integer program (IP) is the special case of MIP when N; = N.

Integer programming or integer optimization as a field started in the mid-1950s. A
number of excellent textbooks are available for its study [39, 42, 45].

Scope and Applicability

Applications of integer programming abound in all spheres of decision making. Some typ-
ical real-world problem areas where integer programming is particularly useful as a modeling

!Carnegie Mellon University, Tepper School of Business, 5000 Forbes Avenue, Pittsburgh PA 15213,
ebl7@andrew.cmu.edu
2DEI, University of Padova, via Gradenigo 6/A, 35136 Padova (Italy), matteo.fischetti@unipd.it

To appear in Advances and Trends in Optimization with Engineering Applications, T. Terlaky, M. F.
Anjos, and S. Ahmed (editors), MOS-STAM Book Series on Optimization, STAM, Philadelphia, 2017 (print
ISBN 9781611974676, ebook ISBN 9781611974683).

tool, include facility (plant, warehouse, hospital, fire station) location; scheduling (of person-
nel, production, other activities); routing (of trucks, tankers, aircraft); design of communi-
cation (road, pipeline, telephone, computer) networks; capital budgeting; project selection;
analysis of capital development alternatives. Various problems in science (physics: the Ising
spin glass problem; genetics: the sequencing of DNA segments) and medicine (optimizing
tumor radiation patterns) have been successfully modeled as integer programs. In engineer-
ing (electrical, chemical, civil, mechanical, biological and medical) the sphere of applications
is growing steadily, see below.

By far the most important special case of integer programming is the (pure or mixed)
0-1 programming problem, in which the integer-constrained variables are restricted to 0 or
1. This is so because a host of frequently occurring nonconvexities, such as the ones listed
above, can be formulated via 0-1 variables. For instance, the threshold condition mentioned
above (the amount x produced cannot be less than some quantity ¢), i.e. © < 0 or z > ¢,
can be expressed through the inequalities ¢6 < x < @4, 6 € {0,1}, with the 0-1 variable ¢
enforcing the threshold: if 6 =0, 2 =0;if 0 =1, ¢ < x < @, i.e. x will be between the
threshold ¢ and a large enough upper bound Q).

Next we present a few well-known pure and mixed integer models.

The fixed charge problem asks for the minimization, subject to linear constraints, of a
function of the form), v;(z;), with

N fz‘i‘Czl’Z if x; > 0,
%m”_{o if 2, = 0.

As an example, consider the problem of installing a communications network whose arcs can
have different capacities at different costs, with the objective of minimizing the total cost
while satisfying certain overall capacity requirements. Whenever z; is bounded by U; and
fi > 0 for all 4, such a problem can be restated as a (linear) MIP by setting for all

Yi(wi) = civi + fiyi,

z; < Uy,

Y; € {0, 1}
Clearly, when x; > 0 then y; is forced to 1, and when z; = 0 the minimization of the objective
function drives y; to 0.

The facility location problem consists of choosing among m potential sites (and associated
capacities) of facilities to serve n clients at a minimum total cost:

min Z Z CijTij + Z fiyi
i=1

i=1 j=1

m

E xij:dj, j:1,...,n,
i=1

n
E xl-jgaiyi, izl,...,m,
J=1

x; >0, i=1,....m;j=1,...,n,
v €{0,1}, i=1,...,m.

2

Here d; is the demand of client j, a; is the capacity of a potential facility to be located at
site 7, ¢;; is the per-unit cost of shipments from facility ¢ to client j, and f; is the fixed cost of
opening a facility of capacity a; at location i. In any feasible solution, the indices ¢ such that
y; = 1 designate the chosen locations for the facilities to be opened, while the continuous
variables z;; represent the quantity shipped from facility ¢ to client j.

Variants of this problem include the warehouse location problem (which considers cheap
bulk shipments from plants to warehouses and expensive packaged shipments to retailers)
and various emergency facility location problems (where one chooses locations to minimize
the maximum distance traveled by any user of a facility, rather than the sum of travel costs).

The knapsack problem is an integer program with a single constraint:
T, . T .
max{c z:a" x < b,z >0 integer},

where ¢ and a are positive n-vectors, while b is a positive scalar. It represents the choices
one faces when trying to fill a container of capacity b with objects j of volume a; and value
¢; in such a way as to maximize the value of the objects included.

When the variables are restricted to 0 or 1, we have the 0-1 knapsack problem.

A variety of situations can be fruitfully modeled as set covering problems: Given a set
M and a family of weighted subsets S, ...,.S, of M, find a minimum-weight collection C' of
subsets whose union is M. If A is a 0-1 matrix whose rows correspond to the elements of M
and whose columns are the incidence vectors of the subsets Sy, ..., .S,, and ¢ is the n-vector
of subset-weights, the problem can be stated as

min 'z
Az >1
r € {0,1}",

where the right-hand side of the inequality is the m-vector of 1s. This model and its close
relative, the set partitioning problem (in which > is replaced by =) has been (and is being)
widely used in airline, bus, and train crew scheduling (each row represents a leg of a trip
that has to be covered; each column stands for a potential duty period of a crew). Another
application is in medical diagnostics: each column represents a diagnostic test, each row
stands for a pair of diseases, with a 1 in column j if the pair’s reactions to the tests are
different, and a 0 if they are the same; the goal being to select a minimum-cost battery of
tests guaranteed not to yield identical outcomes for any two diseases.

Unlike in the case of linear optimization, integer optimization problems can typically be
formulated in several different ways, and choosing a good formulation is of paramount impor-
tance. What should be the guiding choice criterion when comparing different formulations?
In linear optimization, the criterion is typically the number of variables and constraints; the
fewer of each, the better. In integer optimization the situation is very different. Because
of the central role of branch-and-bound methods in solving integer programs (see below),
whose efficiency depends on the strength of the bounds provided by the linear relaxation of
the instance being solved, the leading criterion in choosing between different formulations

is the tightness of the linear relaxation provided by each formulation. Thus in choosing be-
tween two formulations of a minimization problem, one of which has twice as many variables
and/or constraints than the other, but has an optimum over its linear relaxation higher than
the other, the formulation with the higher LP optimum is usually preferable.

Combinatorial Optimization

A host of interesting combinatorial problems can be formulated as 0-1 programming prob-
lems defined on graphs, undirected or directed, vertex-weighted or edge-weighted. The joint
study of these problems by mathematical programmers and computer scientists, starting
from around 1960, has led to the development of the burgeoning field called combinato-
rial optimization [20]. Some typical problems of this field are: edge matching (finding a
maximum-weight collection of pairwise non-adjacent edges) and edge covering (finding a
minimum-weight collection of edges that together cover every vertex); vertex packing (find-
ing a maximum-weight independent set, i.e. collection of pairwise non-adjacent vertices) and
vertex covering (finding a minimum-weight collection of vertices that together cover every
edge); maximum clique (finding a maximum cardinality complete subgraph) and minimum
vertex coloring (partitioning the vertices into a minimum number of independent sets, i.e.
coloring the vertices with a minimum number of colors such that all adjacent pairs differ in
color); the traveling salesman problem (finding a cycle of minimum total edge-weight that
meets every vertex).

We will briefly discuss two of the above problems, which in a sense span the universe of
combinatorial optimization. At one end of the spectrum, the matching problem on a graph
G = (V, E) can be stated as

max{z(F): z(d(v)) < 1,v € V,z > 0 integer},

where z(F') = Z z, for F' C E and §(v) is the set of edges incident with v. Here z, = 1 ife is

eclF
in the matching, z. = 0 otherwise. The weighted version of the problem asks for maximizing

Y ecr WeTe, Where w, is the weight of edge e. This problem has the nice property that the
integrality condition can be omitted if the above nonnegativity and degree constraints are
supplemented with the inequalities

S| -1
2

where (S) is the set of edges with both ends in S. In other words, the above ‘odd set
inequalities’, along with the nonnegativity and degree constraints, fully describe the convex
hull of incidence vectors of matchings. The discovery of this remarkable phenomenon in the
mid-1960s (due to J. Edmonds [22]) has started a massive pursuit of facets of the convex hull
of other combinatorial polyhedra, and can be viewed as the inaugural step in the development
of the field called polyhedral combinatorics. It can also be viewed as a precursor of the theory
of N'P-completeness in the early-to-mid 1970s ([19, 32]), which brought fundamental clarity
to the issue of computational complexity, in that it classified problems into polynomially
solvable ones (i.e., solvable in time polynomial in the problem size, like linear programming

z(v(S)) <

for all S C V,|S] odd,

4

and the matching problem mentioned above), and those called N'P-complete, for which no
polynomially bounded procedure is known (and is never likely to be found, since if one of
them were polynomially solvable, then all of them would be).

At the other end of the spectrum, one of the hardest and most thoroughly investigated
combinatorial optimization problems is the traveling salesman problem (TSP) already men-
tioned, in which a salesman is looking for a cheapest tour of n cities, given the cost of travel
between all pairs of cities. This problem, NP-complete according to the above classification,
is the prototype model for situations dealing with the optimal sequencing of objects (e.g.,
items to be processed on a machine in the presence of sequence-dependent setup costs). The
standard formulation on a complete directed graph with node set N and arc costs ¢;; is

min Z Z CijTij
1€N jeN\{i}

s.t. Z ri; =1, 1€N,
JEN\{i}

> wmy=1, jEN,

Z Z vy <|S| =1, SCN,2<[5][<n—1,
i€S jeS\{i}
xije{()?l}a i,j €N, 27&]

The first two sets of equations define an assignment problem whose solutions are spanning
unions of directed cycles. The third set, consisting of inequalities called subtour elimination
constraints, exclude all cycles with fewer than n = |N| arcs. The number of solutions — tours
— is factorial in the number of nodes. The TSP has become a test bed for the development
of, and experimentation with, various approaches to combinatorial optimization [3].

Solution Methods

Unlike linear programs, integer programming problems, including 0-1 programming and
most combinatorial optimization problems, are N'P-complete. The difficulty in solving in-
teger programs lies in the nonconvexity of the feasible set, which makes it impossible to
establish global optimality from local conditions. The two principal approaches to solving
integer programs try to circumvent this difficulty in two different ways.

The first approach, which until the late 1980s was the standard way of solving integer
programs, is enumerative (branch and bound, implicit enumeration). It partitions the feasible
set into successively smaller subsets tied together as nodes of a branch and bound tree,
calculates bounds on the objective function value over each subset, and uses these bounds
to discard certain subsets (nodes of the tree) from further consideration. The lower bounds
(in a minimization problem) typically come from solving the linear relaxation corresponding
to the given node (i.e., the linear program obtained by removing the integrality condition),
the upper bounds come from integer solutions found at some of the nodes. The procedure
ends when each subset has either produced a feasible solution, or was shown to contain no
better solution than the one in hand. The efficiency of the procedure depends crucially on

the strength of the bounds. An early prototype of this approach is due to A.H. Land and
A.G. Doig [35], another one is [4].

The second approach, known as the cutting plane method, is a convexification procedure:
it approximates the convex hull of the set of feasible integer points by a sequence of inequali-
ties that cut off (hence the term ‘cutting planes’) part of the linear programming feasible set,
without removing any feasible integer point. The first finitely convergent procedure of this
type, which uses modular arithmetic applied to the rows of the optimal simplex tableau to
derive valid cutting planes for pure integer programs, is due to R.E. Gomory [29] who later
extended it to the mixed integer case. V. Chvatal [18] has shown that the procedure can be
viewed as one of integer rounding, in which positive multiples of Az > b, x > 0 are added
up and the coefficients of the resulting inequality are rounded down to the nearest integer.
The resulting inequalities form the elementary closure of Az > b, x > 0. The procedure can
then be applied to the elementary closure, and so on. The number of times the procedure
needs to be iterated in order to obtain the convex hull of integer points within a polyhedron
is called the Chvatal rank of the given polyhedron. No bound is known on the Chvatal
rank of an arbitrary polyhedron. By contrast, the matching polyhedron has Chvatal rank
one, since the so called odd set inequalities can be obtained from the degree inequalities
by integer rounding. The Gomory-Chvatal procedure has been extended to mixed integer
programming and has been enhanced by the use of subadditive functions and group theory
29, 30].

A different approach, originating in the early 70s, uses geometric concepts and convex
analysis. Given a basic fractional solution to the LP relaxation of a MIP, the inequalities
that are tight at = form a cone C(Z) (see Figure 1). If S is any convex set whose interior
contains z but no feasible integer points, then the hyperplane through the intersection points
of the n extreme rays of C' with the boundary of S defines an inequality that cuts off =
but no feasible integer point. Such an inequality is an intersection cut [5]. If the integer-
constrained variables are basic in the optimal solution with one of them, say zy, fractional,
and S = {x : |Zx] < xp < [Zx]} (where | | and [| means rounding down and rounding
up), then the intersection cut from the convex set S is the Gomory cut from the row of the
simplex tableau associated with zy.

An intersection cut from a convex polyhedron like S can also be viewed as a cut from the
disjunction that results from reversing the inequalities defining S, i.e., from the condition
xp < | Tk | or xx > [Zx] which has to be satisfied by any feasible integer point. Viewed this
way, the condition can be strengthened by amending each term of the disjunction with all
inequalities valid for both, which gives rise to a condition of the form

(2 h) v (a2t

Such a disjunction is a union of two polyhedra, and this has led to the study of dis-
junctive programming [6, 7], or linear programming with logical conditions (conjunctions,
disjunctions and implications involving inequalities). In this approach, which uses the tools
of convex analysis, like polarity and projection, 0-1 programming (pure or mixed) is viewed
as optimization over the (nonconvex) union of (convex) polyhedra, i.e. a set of the form

6

(:u137Z

Figure 1:

UieoP;, where P, = {x : A%z > b'}, i € Q. There is a compact formulation of the convex
hull Pp := conv U;eq FP; in a higher-dimensional space, whose projection onto the original
space yields all the valid cutting planes. Thus, from a classical theorem of the alternatives
known as the Farkas Lemma, it follows that a’z > 3 is a valid inequality for U;cqP; if and
only if a” > ul' A" and 8 < ul'b* for some u; > 0,7 € Q. A central result of this approach is
that an important class of disjunctive programs, called facial, which includes pure and mixed
0-1 programs, are sequentially convezifiable. For a 0-1 program (pure or mixed) with n 0-1
variables and a linear programming relaxation Fp, this means that one can impose the 0-1
condition on x; and generate the convex hull P, of PyoU Py, where Py := {x € Py : 1 = 0},
Pyy :={x € By : x; = 1}. Then impose the 0-1 condition on z and generate the convex
hull P, of PygU Piy, where Pyg :={z € P, : x5 = 0}, Py := {x € P, : 9 = 1}; etc. At
the end of n steps, the convex hull P, of P,,_19U P,_1; turns out to be the convex hull
of {r € Py : z; € {0,1},7 = 1,...,n}. This property does not hold for arbitrary integer
programs, and is thus a main distinguishing feature of 0-1 programs. If one defines the dis-
junctive rank of a polyhedron as the number of times the above procedure has to be iterated
in order to generate all of its facets, it follows that an arbitrary 0-1 programming polyhedron
has disjunctive rank n.

Revolution in the state of the art

Integer programming was recognized early on as a miraculous tool which could be used
to model almost any problem; however, the result of such an exercise was usually a toy
model which provided insights but could not be actually solved. Of the two approaches
described above, branch and bound was relatively straightforward to implement, and for
about three decades it was the only one practically used to solve some real world problems.
However, the size of these problems — apart from some special structures — was limited
to 30-50 variables. As to the cutting plane approach, the attempts at its computational
implementation were unsuccessful. As one would generate a cut, add it to the constraints
and reoptimize the resulting linear program, then repeat this cycle, numerical problems
would arise and prevent the solution of even small problems. So for three decades cutting

planes were the object of intense theoretical research, but the only practical tool for solving
integer programs were the branch and bound codes, commercial versions of which appeared
by the seventies. This situation persisted until the late eighties; then, roughly in the 15-
year period between 1990-2005, a true revolution occurred in the state of the art of integer
optimization. A simple measure of this is the following. Over the years, a collection of
integer programming instances was developed under the name of MIPLIB [33]. Whereas
earlier most MIPLIB instances remained unsolved, after the turn of the century most of
them including many new ones, got solved. Whereas earlier general IP’s with more than 50
variables could not be solved, nowadays instances with thousands of variables are routinely
solved (see below for some details).

How did this revolution occur? Several factors played a role. Among them, faster com-
puters, more efficient LP codes, various heuristics, more sophisticated branching rules; but
the crucial factor was the embedding of cutting planes into a branch-and-bound context.
Next we briefly outline how this came about.

The key impetus came from a revival of the disjunctive programming approach outlined
above and its implementation into an efficient computational tool called lift-and-project [9].
The name conveys the idea of a higher dimensional representation of the convex hull (lifting),
which is then projected back to generate cutting planes. In the meantime, L. Lovasz and
A. Schrijver [37] (see also [44]) developed a closely related procedure which derives higher-
dimensional representations of a 0-1 programming polyhedron by multiplying the constraint
set of Py with the inequalities z; > 0 and 1 —x; > 0, j € N, then linearizing the resulting
quadratic forms, and projecting them back into the original space. As in the disjunctive
programming approach, n iterations of this procedure yield the convex hull of the 0-1 pro-
gramming polyhedron. However, the quadratic forms obtained during the procedure can also
be used to derive positive semidefiniteness constraints that are stronger than the inequalities
obtained by linearization.

Semidefiniteness constraints aside, a streamlined version of the Lovasz-Schrijver proce-
dure, in which Fy is multiplied at every iteration by just one pair of inequalities x; > 0,
1 —z; > 0, rather than by all pairs, was shown in [9] to be equivalent to the disjunctive
programming procedure for 0-1 polyhedra, in that the linearized version of the quadratic
constraints obtained by multiplication is exactly the same as the higher-dimensional rep-
resentation of the convex hull used in disjunctive programming [6, 7]. The paper [9] also
showed how to use a cut generating linear program (CGLP) to obtain lift-and-project (or
disjunctive) cuts that are deepest in a well defined sense. Most importantly, these cuts can
be generated in a subspace, i.e. using only a subset of the variables, and then lifted to the full
space. This has opened the door to combining the enumerative and convexifying approaches
into a branch and cut procedure, which generates cutting planes as long as they ‘work’, but
branches whenever the cut generating ‘stalls’. This was done earlier for the special case of
the TSP [40], but its extension to general MIP’s was made possible by showing that cuts
generated at a node of the search tree can be lifted to be valid at any node. The outcome
was a robust procedure, considerably more efficient than either a branch and bound or a
cutting plane algorithm by itself [10].

Experimentation with this procedure showed that the loss of accuracy and related numer-
ical problems that used to accompany the recursive cut generating procedure of reoptimizing
the LP after the addition of every cut, can be substantially mitigated by generating rounds
of cuts, one from each row whose integer-constrained basic variable is fractional, before re-
optimizing. Finally, as a consequence of these experiments, it turned out that Gomory cuts,
when embedded in a branch and bound procedure and generated in rounds, could also be
computationally tractable [11]. Since these are easier to generate, they were the first ones to
make it into the commercial codes in the 1990’s. The stronger but more expensive lift-and-
project cuts made it into the commercial codes after a way was found [12] to solve the CGLP
indirectly, without actually setting it up, by pivoting in the LP simplex tableau. Other cuts
used include mixed integer rounding, knapsack cover, flow cover, clique cuts.

To give the reader an idea of the extent of the revolution in the computational capability of
integer programming solvers it is worth citing a few numbers. According to the developers of
the commercial code CPLEX [15], a comparison of the performance of CPLEX 1.2 (1991) and
CPLEX 11.0 (2007) on 1,852 real-world instances of linear mixed integer programs yielded
the following results. The speedup in computing time during those 16 years was 29,530-fold.
In other words, the 2007 version of CPLEX ran on the average almost 30,000 times faster
than the 1991 version, which corresponds roughly to a doubling of the speed every year. As
a result, whereas in 1991 only 15% of the instances attempted could be solved, in 2007 69%
of the instances were solved. After 2007, the improvements in computing power continued
at a somewhat slower, but still steady rate: the 2013 version (5.6) of the commercial code
GUROBI is 21 times faster than the 2009 version (1.0) [14].

Heuristics

While solving integer optimization problems exactly was a hard nut to crack and it
took more than thirty years to reach a degree of success that made large scale commercial
applications possible, various heuristic procedures were developed over the years with the
goal of finding more or less acceptable approximate solutions. By more or less acceptable we
mean practical, differing from the optimum usually by a few percentage points, as opposed
to the theoretical acceptability offered by a guaranteed bound which is a polynomial function
of the optimum. Not surprisingly, the type of heuristics that enjoyed the earliest successes
were those devoted to solving special structures. For instance, the notoriously hard traveling
salesman problem, a model for sequence-optimization problems of various types, was quite
successfully attacked by a type of local improvement heuristic based on interchanging some
in-tour arcs with out-of-tour arcs (2-,3- k-interchange), which culminated in the variable-
depth interchange heuristic of Lin and Kernighan [36], whose latest version [31] is able to
find good approximate solutions to instances with hundreds of thousands of variables in a
matter of seconds. Various combinations of primal and dual greedy heuristics, Lagrangean
relaxation and subgradient optimization were able to solve large set covering and partitioning
problems arising in airline and railway crew scheduling [8, 17]. A job shop scheduling heuristic
based on a disjunctive graph formulation and the idea of repeatedly identifying the bottleneck
machine and tackling it locally, called the shifting bottleneck procedure [2], has become a basic
staple of operations scheduling in various job-shop environments (see chapter 5 of [41]).

By the 1990s a number of metaheuristics have been proposed, like for instance tabu search
28], i.e. procedures based on some general heuristic principle, whose various incarnations
are specific heuristics for certain problem classes. One such general principle is that of
neighborhood search. Flements of such heuristics made their way into the leading mixed
integer solvers and were applied locally at various stages of the search procedure to speed
up its convergence.

One of the procedures that proved to be successful in practice was the feasibility pump
(FP), originally proposed for the 0-1 case [24] and then extended to general MIP’s [13]. It
is based on the observation that a feasible MIP solution is a point x of P that coincides
with its rounding. Replacing “coincides” with “is as close as possible” leads to the following
iterative scheme, to be described for the sake of simplicity, for pure 0-1 IP’s. FP works with
a pair of point (z*,2’), with z* in P and 2’ integer, that are iteratively updated with the
aim of bringing them as close to each other as possible, i.e. minimizing

A(x*,m')::z]x;—x”: Z r; — Z (1 —a3).

JEN jEN:x&:O jEN:x}zl

To be more specific, one starts with any z* in P, e.g. an optimal LP solution, and initializes
an integer =’ as the rounding of x*. At each FP iteration, called a pumping cycle, 2’ is fixed
and one finds a point z* in P which is as close to 2’ as possible, by solving an auxiliary LP.
If A(z*,2") =0, z* is integer and we are done; otherwise 2’ is replaced by the rounded z* in
an attempt to bring them closer, and the process is iterated. Several variants and extensions
have been proposed and implemented [1, 16, 27].

A new generation of MIP heuristics emerged in the late 1990s. Their hallmark is the use
of a “black-box” external MIP solver to explore a solution neighborhood defined by invalid
linear constraints. The use of an exact MIP solver inside a MIP heuristic may appear naive
at first glance, but it turns out to be effective in the cases where the added invalid constraints
lead to a structural simplification of the MIP at hand and allow, e.g., for a more powerful
instance preprocessing and/or for extensive node pruning. The local branching (LB) scheme
of [25] appears to be the first method embedding a MIP solver within a general MIP heuristic
framework. Suppose a feasible reference solution ¥ of a 0-1 MIP is given, and one aims at
finding an improved solution that is “not too far” from z. To this end, one can define the
k-OPT neighborhood of T as the set of the MIP solutions satisfying the invalid local branching
constraint Az,) < k for a small parameter k (typically, & = 10 or k = 20), and explore
it by means of an external MIP solver, often heuristically, i.e., within a prefixed number of
branch-and-bound nodes. The method is in the spirit of local search metaheuristics and in
particular of Large Neighborhood Search (see, e.g., [43]), with the novelty that neighborhoods
are obtained through invalid cuts to be added to the original MIP model. Diversification
cuts can be defined in a similar way, thus leading to a flexible toolkit for the definition of
metaheuristics for general MIP’s.

The Relazation Induced Neighborhood Search (RINS) framework of [21] also uses the
(heuristic) solution of a simplified MIP through an external MIP solver as a main ingredient,
but extends the idea by taking the solution of the LP relaxations into account. At specified
nodes of the branch-and-bound tree, the current LP relaxation solution z* and the incum-

10

bent = are compared and all integer-constrained variables that agree in value are fixed and
removed, and the solution of the resulting sub-MIP is attempted by invoking the MIP solver
itself with a tight time/node limit.

The Impact of Contemporary MIP Technology

The revolution in the state of the art of MIP outlined above has brought this powerful
modeling tool to bear on an increasing array of practical problems in industry, transportation,
energy, finance, healthcare and a host of other activities. The annual competition run by
INFORMS for the prestigious Franz Edelman Award attracts companies from across the
globe. The purpose of the Award is to recognize and reward outstanding examples of real
world applications of Operations Research and Management Science techniques. Since the
launching of the annual competitions, cumulative benefits from the finalists’ projects (of
which there are six per year) have exceeded 210 billion dollars. The most frequently used
technique in these applications turns out to be mixed integer programming. According to
G. Nemhauser [38], 53% of all the finalists have used MIP techniques of one kind in their
projects. Among the winners, the percentage of MIP users is even higher. All but two of
the Edelman Prize awardees of the last decade use one form or another of MIP. To illustrate
the use of these techniques, we briefly discuss two of the award winning projects.

The 2008 winner was Netherlands Railways for the entry “The New Dutch Timetable:
The O.R. Revolution” [34]. By 2006, the volume of traffic on the Dutch passenger rail-
way network had increased significantly; more and larger trains had been scheduled without
changing the structure of the timetable, thus overloading the system and causing consumer
nightmares. Operations researchers working with Netherlands Railways constructed an im-
proved timetable. As a result, the percentage of trains arriving within three minutes of the
scheduled time increased, commuter satisfaction improved, and the number of passengers
grew. In 2007, this resulted in an additional annual profit of $60 million.

To construct a new timetable and its related resource schedules, a sequence of planning
problems was defined and solved. As input, a railway line system was given. Then, the
timetable was defined, including the detailed routings through the stations. Finally, rolling-
stock and crew schedules were constructed. In each phase, MIP models were formulated and
solved (often heuristically).

The model used for timetable generation describes the cyclic timetabling problem in
terms of the periodic event scheduling problem (PESP) constraints. This is a generic model
for scheduling a set of periodic events, such as the event times in a cyclic timetable. All
PESP constraints are expressed as differences of event times. For example, the running time
of a train from one station to another is the difference between the arrival time and the
departure time. Similarly, the headway time is the difference between the departure times
of two consecutive trains on the same track. All time differences are computed modulo 60
to reflect the timetables cycle of one hour. The timetabling problem was solved through
CADANS (a proprietary constraint programming software for finding a first feasible PESP
solution) and STATIONS (a MIP-based solver to find detailed routings through the stations)
systems.

11

The goal in scheduling rolling stock is to allocate an appropriate amount of the appro-
priate rolling-stock type to each train in the given timetable. A constraint on the number of
train units available is imposed—during peak hours, most trains will simultaneously require
more units. A further complexity is that demand varies substantially during the day and
on a line. The goal is to find a balance between three conflicting objectives in rolling-stock
scheduling: (1) service, (2) efficiency, and (3) robustness. In this context, service means
offering as many passengers as possible a seat. Efficiency aims at minimizing the amount of
rolling stock and the number of rolling stock kilometers. Robustness is addressed by reducing
the number of shunting movements and by having a line-based rolling-stock circulation. The
resulting rolling stock problem was solved through a proprietary ROSA system built on top
of a commercial MIP solver (Cplex).

Each train in the timetable requires a train driver and a number of conductors depending
on the rolling-stock composition of the trains. Approximately 6,000 crew members (i.e., train
drivers and conductors) operate from 29 crew bases throughout the Netherlands. Each crew
member belongs to a specific crew base. A duty starts and ends in a crew base and describes
the consecutive trips for a single crew member. For each day, a number of anonymous duties
are first generated (crew scheduling phase), and then assigned to individual crew members
on consecutive days (rostering phase).

The crew scheduling problem was solved by using TURNI, a commercial software based
on the set covering (MIP) model. In such a model, there is a binary decision variable for
each potential duty (1 if the potential duty is selected and 0 otherwise). The problem
is then to select a subset of duties from a predetermined set of feasible ones such that it
covers each trip by at least one duty, it satisfies all additional constraints at the crew-base
level, and the total costs of the selected duties are as low as possible. As the number of
feasible potential duties is extremely large, a column generation procedure is used, where a
pricing model generates the feasible potential duties on the fly whenever they are needed. A
typical workday includes approximately 15,000 trips for drivers and 18,000 for conductors.
The resulting number of duties is approximately 1,000 for drivers and 1,300 for conductors.
This leads to very difficult crew scheduling instances. Nevertheless, because of its highly
sophisticated MIP algorithms, TURNI solves these cases in a few hours of computing time
on a personal computer. Therefore, one can construct all crew schedules for all days of the
week within just a few days.

In 2012, the Edelman prize was awarded to TNT Express for the entry “Supply Chain-
Wide Optimization at TNT Express” [23]. TNT’s Global Optimization (GO) program ini-
tiative led to the development of optimization solutions to assist the operating units of TNT
Express and improve their package delivery in road and air networks, based mostly on MIP-
driven software. Over a seven year period, TNT Express used these optimization methods
to save $207 million. In the framework of the GO program, three separate subprograms
were developed and a portfolio of models, methodologies and mostly MIP-based tools was
designed.

Subprogram 1, named TNT Express Routing and Network Scheduling (TRANS), was
concerned with the optimization of routes for the transportation of packages and vehicle

12

tours. A transportation route defines the sequence of hubs, from the depot of origin through
to the destination depot, including scheduled times of arrival and departure at the hubs,
that a package will visit. A tour describes the sequence of locations visited by a vehicle
(and driver), including the times at which each location is visited. Because of the size of the
networks that TNT Express operates, the problem was split into several subproblems, each
supported by a specific module in TRANS: (i) a service capability analyzer determines the
fastest feasible routes based on the prespecified movements in the network, and is based on
a multicommodity flow problem in a time-space network solved through fast heuristics; (ii)
a routing module generates a set of routes (not only the fastest) and assigns the packages
to the movements of these routes by using a branch-and-bound algorithm to generate routes
that meet the service requirements; (iii) an optimal paths module determines the optimal
paths for each package, given the current infrastructure of depots and hubs, and is based on
a network design MIP model.

Subprogram 2, named Tactical Planning in Pickup and Delivery (SHORTREC), was
planned at the depot level and affected the first and last mile in the supply chain. Pickup
and delivery accounts for more than 30% of operational costs, hence it was an important
focus area of the GO program. At TNT Express, a round corresponds to a single vehicle
starting at the depot, visiting customers in a certain sequence for collection or delivery of
packages, and returning to the depot. Effectively organizing the whole process is challenging
because millions of packages must be picked up and delivered each week. The optimization
problem was to minimize the total pickup and delivery costs while meeting all service-
level requirements. Constraints to be considered included vehicle capacity, service levels,
driver regulations, and some softer restrictions to ensure repetitiveness in the rounds and
workload balancing. An ad-hoc optimization software was designed, based on vehicle routing
heuristics.

Subprogram 3 addressed the whole Supply Chain Optimization (DELTA Supply Chain).
Because the air network forms a crucial part of TNT’s global service offering, a supply
chain optimization project was started to reduce aircraft use and to preserve future growth
capabilities without worsening service. The DELTA Supply Chain model enabled TNT to
optimize the complete supply chain for a fixed depot and hub infrastructure under varying
volumes and ways of working (e.g., cutoff times, road and air transport). The model was
aimed to using road transport rather than air transport because the former generally results
in lower costs and CO2 emissions. For packages that can be shipped by road, the number of
required movements was calculated based on the routings of the packages. For the packages
that were unable to meet the service requirements via the road network, an air network
was constructed by using a separate model to create a minimum-cost air schedule between
the airports in the network. The model starts by assigning depots to the airports in the
air network according to some heuristic criteria. Based on these assignments, the model
determines the packages to be transported from the airport to the air hub and vice versa.
Next, a MIP is solved to determine the minimum-cost air schedule. The model ensures that
sufficient aircraft capacity is available to carry all the packages, and it balances the number
of incoming and outgoing aircraft per aircraft type at each location. For airports, the MIP
model includes the earliest permitted arrival or departure times, airport closing times, and

13

the consideration that some airports do not permit multiple stops by TNT Express airplanes.
With the road and air network complete, a binary integer programming model estimates the
impact of the network movement arrival and departure times on the pickup-and-delivery
cost. In a final step, the model calculates the total cost of the complete supply chain to
support management decision making.

How to use a MIP code

Several powerful MIP codes are nowadays available, including the commercial solvers IBM
ILOG Cplex, Gurobi and FICO Xpress, as well as the open-source solvers SCIP, COIN-OR
CBC, and GLPK (just to mention some of them). Each of these solvers can be accessed
through the internet by using any search engine. Most solvers exploit multi-threading to
take advantage of all the available processing-units (cores) of the CPU in use. In addition,
a distributed version of the main MIP solvers is available, that distributes the computation
over a set of independent computers in a cluster/network.

MIP codes can be used in command mode, meaning that a user can write his/her (integer)
linear model into a text file according to suitable format (MPS or LP), and then read it in
and solve by appropriate command. This approach is the easiest to apply as the solver is
used as a black-box, with a limited control on its main parameters. In many practical cases,
this is just what is needed to get a successful application.

A non-exhaustive list of the main MIP commands and parameters follows.

First of all, one has the read command to load the MIP model to be solved from a text
file, and the write command to write the optimal solution found onto the screen or a text
file. The run/optimize command invokes the MIP solver on the loaded instance, and the
control is returned to the command mode when some termination conditions are reached.

The obvious termination condition is of course that the solver found a provable optimal
solution. However, early termination can be enforced by changing some internal execution
limits by using an appropriate change parameter command (to be executed before start-
ing the optimization). The most common limits that a user can change include the overall
computing time (say, in seconds), the number of branching nodes, the number of feasible
solutions found (i.e., of incumbent updates), and the absolute/relative optimality gap (mean-
ing that the execution terminates when the current-best integer solution is guaranteed to be
sufficiently close to the true optimal one).

Modern MIP codes typically do not require an external fine-tuning of the parameters that
determine the ‘aggressiveness’ of the internal heuristics and of the cutting-plane generation
procedures, in the sense that the default mode modifies these parameters automatically, in
an adaptive way. It should be noted however that the ultimate goal of the computation is
assumed to be the proof of optimality of the best solution found. Hence the default mode
can be inadequate in the hard cases where the user would prefer to use the MIP solver to find
good feasible solutions within short computing times. In this ‘heuristic mode” what matters is
in fact the capability of quickly finding and improving feasible solutions, rather than proving
the they are (almost) optimal. To this end, one can consider increasing the aggressiveness of
the internal heuristics, by increasing the parameter controlling the heuristic frequency so as

14

to invoke them every, say, 1 or 10 branching nodes. Moreover, some MIP solvers implement
a final ‘clean-up’ post-processing of the best solution, which is possibly improved by using
ad-hoc refining procedures. This final refining step is not applied by default, but it may be
worth trying it with a short time limit. Deactivation of all cuts (through a suitable parameter
that controls the aggressiveness of each cutting-plane generation function) can sometimes be
useful in the heuristic mode—mnote however that cuts can be beneficial for heuristics too.

Recent MIP codes also exhibit a user’s parameter to change the random seed internally
used to generate random numbers to break ties etc. As discussed in [26], this parameter can
randomly affect the computation and produce different branching choices and hence very
different (sometime better, sometimes worse) search paths. Although the random seed does
not affect the optimality of the very final solution, it can be used to diversify the MIP solver
behavior so as to hopefully produce better solutions within shorter computing times. As a
matter of fact, running 10 times (say) the same MIP solver on the same input data with
10 different random seeds for (say) 5 minutes, sometimes produces much better heuristic
solutions than running the same MIP solver once for 50 minutes. Hence the random seed
can be very useful in the heuristic mode, even more so if the runs with different seeds can
be executed in parallel.

For parallel MIP codes, a main parameter is the type of parallel execution: parallel deter-
ministic (meaning that the run will be reproducible due to the presence of synchronization
points that however can slowdown computation), parallel opportunistic (generally faster as
no synchronization is required), and distributed (meaning that the execution is distributed
over a cluster of different computers).

A more advanced use of the MIP technology consists of writing a program (in any high-
level programming language such as C/C++, Java, Fortran, Python, Matlab, etc.) that
internally generates the model and solves it by invoking appropriate functions provided by
the solver. In some cases, one can even be interested in customizing the MIP solver by
exploiting some problem-specific knowledge. To this end, modern MIP solvers provide so-
called callback functions to be invoked at the main critical points of the solution method.
By default, the callbacks are not installed, meaning that they are not invoked and the solver
uses its default solution strategy. By installing his/her own callbacks, an advanced user can
therefore take control of the solution algorithm and customize it. We will next describe the
most-used callback functions, that refer to a generic MIP solver based on the branch-and-cut
solution scheme.

The informative callback is invoked by the solver in several parts of the code to allow
the user to retrieve (e.g. to take statistics or to print) information like the value of the
current-best solution (incumbent), computing time spent so far, number of branching nodes
and cuts generated, etc.

The lazy cut callback is invoked whenever a feasible (integer) solution of the current
MIP model is going to update the incumbent: this is a sort of last checkpoint where a user
can discard a solution because it violates some conditions that are not explicitly part of the
model. This mechanism turns out to be very useful when the problem to be solved involves
an exceedingly large number of (complex) constraints, and one prefers not to include all of

15

them explicitly in the initial model for the sake of easing its solution. If the solution passed
to the lazy cut callback is not accepted for whatever reason, its infeasibility must be certified
by one or more violated cuts that are automatically added ‘on the fly’ to the current model.
In this way, the MIP model is enriched during the run, and only the ‘relevant constraints’
for the instance at hand are discovered and inserted explicitly in the model.

The heuristic callback allows a user to write a problem-specific heuristic, possibly based
on the current LP solution (which is made available on input to the callback itself).

The user cut callback is invoked at every node just before branching, and can generate
one or more cuts to be added (on the fly) to the current model with the aim of excluding
the current optimal LP solution.

Additional callbacks are used to change the way the LP relaxation is solved at each node
(solve callback), the choice of the branching variable (branch callback) or of the next node
to process (node callback), etc.

References

[1] Achterberg T, Berthold T (2007) Improving the feasibility pump. Dis Opt 4:77-86

[2] Adams J, Balas E, Zawack D (1988) The shifting bottleneck procedure for job shop
scheduling. Mgmt Sc 34:391-401

[3] Applegate DL, Bixby RE, Chvatal V, Cook WJ (2006) The Traveling Salesman Problem.
Princeton University Press.

[4] Balas E (1965) An additive algorithm for solving linear programs with 0-1 variables.
Oper Res 13:517-546

[5] Balas E (1971) Intersection cuts — A new type of cutting planes for integer programming,.
Oper Res 19:19-39

[6] Balas E (1979) Disjunctive programming. Ann Discret Math 5:3-51

[7] Balas E (1998) Disjunctive programming: Properties of the convex hull of feasible points.
Invited paper in Dis App Math 89:1-44. Originally MSRR 348, Carnegie-Mellon Uni-
versity, July 1974.

[8] Balas E, Carrera MC (1996) A dynamic subgradient-based branch and bound procedure
for set covering. Op Res 44:875-890

[9] Balas E, Ceria. S, Cornuéjols G (1993) A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Math Program 58:295-324

[10] Balas E, Ceria. S, Cornuéjols G (1996) Mixed 0-1 programming by lift-and-project in a
branch-and-cut framework. Mgmt Sci 42:1229-1246

16

[11]

[12]

[13]

[14]

[20]

[21]

[22]

23]

[24]
[25]
[26]
[27]

Balas E, Ceria S, Cornuéjols G, Natraj N. (1996) Gomory cuts revisited. Op Res Letters
19:1-9

Balas, E, Perregaard, M. (2003) A precise correspondence between lift-and-project cuts,
simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming. Math Prog
B 94:221-245

Bertacco L, Fischetti M, Lodi A (2007) A feasibility pump heuristic for general mixed-
integer programs. Dis Opt 4:63-76

Bixby R (2013) Computational mixed integer programming. Seminar on Algorithm
Engineering, Dagstuhl, Germany, September 22-27.

Bixby R, Achterberg T, Rothberg E, Gu Z (2008) Recent advances in computational lin-
ear and mixed integer programming. INFORMS Optimization Society Meeting, Atlanta,
March 2008.

Boland NL, Eberhard AC, Engineer FG, Fischetti M, Savelsbergh MWP, Tsoukalas A
(2014) Boosting the feasibility pump. To appear in Math Prog Comp, 2014

Caprara A, Fischetti M, Toth P (1996) A heuristic algorithm for the set covering prob-
lem, IPCO 1996, LNCS 1084:72-84

Chvatal V (1973) Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
cret Math 4:305-337

Cook SA (1971) The complexity of theorem-proving procedures. Proceedings of the
third annual ACM Symposium on the Theory of Computing, ACM Press, New York,
151-158

Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A (1998) Combinatorial Op-
timization. Wiley, New York

Danna E, Rothberg E, Le Pape C (2005) Exploring relaxation induced neighborhoods
to improve MIP solutions. Math Prog 102:71-90

Edmonds J (1965) Maximum matching and a polyhedron with 0-1 vertices. J Res Nat
Bureau Standards 69B:125-130

Fleuren H, Goossens C, Hendriks M, Lombard M-C, Meuffels I, Poppelaars J (2013)
Supply Chain-Wide Optimization at TNT Express. Interfaces 43(1):5-20

Fischetti M, Glover F, Lodi A (2005) The feasibility pump. Math Prog 104:91-104
Fischetti M, Lodi A (2003) Local Branching. Math Prog 98:23-47
Fischetti M, Monaci M (2014) Exploiting Erraticism in Search. Op Res 62:114-122

Fischetti M, Salvagnin D (2009) Feasibility pump 2.0. Math Prog Comp 1:201-222

17

[28]
[29]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

Glover F (1990) Tabu Search: A Tutorial. Interfaces 20:74-94

Gomory R (1963) An algorithm for integer solutions to linear programs. In: Graves
R, Wolfe P (eds) Recent Advances in Mathematical Programming. McGraw-Hill, New
York, 269-302

Gomory R, Johnson E (1972) Some continuous functions related to corner polyhedra.
Math Prog 3:28-85

Helsgaun K (2000) An effective implementation of the Lin-Kernighan traveling salesman
heuristic. EJOR 126:106-130

Karp R (1972) Reducibility among combinatorial problems. In R. Miller and J. Thatcher
(eds), Complexity of Computer Computations. Plenum Press, New York, 85-103

Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby RE, Danna E, Gam-
rath G, Gleixner AM, Ambros M, Heinz S, Lodi A, Mittelmann H, Ralphs T, Salvagnin
D, Steffy DE, Wolter, K (2011) MIPLIB 2010. Math Prog Comp 3:103-163

Kroon L, Huisman D, Abbink E, Fioole P-J, Fischetti M, Maréti G, Schrijver A, Steen-
beek A, Ybema R (2009) The New Dutch Timetable: The OR Revolution. Interfaces
30(1):6-17.

Land AH, Doig AG (1960) An automatic method for solving discrete programming
problems. Econometrica 28:497-520

Lin S, Kernighan BW (1973) An effective heuristice algorithm for the traveling salesman
problem. Op Res 21:498-516

Lovész L, Schrijver A (1991) Cones of matrices and set functions and 0-1 optimization.
SIAM J Opt, 1:166-190

Nemhauser GL (2013) Integer programming: The global impact. EURO-INFORMS
conference, Rome, July 2013.

Nemhauser GL, Wolsey L (1988) Integer and combinatorial optimization. Wiley, New
York

Padberg M, Rinaldi G (1991) A branch-and-cut algorithm for the resolution of large-
scale symmetric travelling salesman problems. STAM Review 33:60-100

Pinedo M, Chao X (1999) Operations Scheduling with Applications in Manufacturing
and Services, McGraw-Hill

Schrijver A (1986) Theory of linear and integer programming. Wiley, New York

Shaw P (1998) Using programming and local search methods to solve vehicle routing
problems. In Maher M, Puget JF (eds.) Principles and Practice of Constraint Program-
ming, CP98. LNCS 1520, Springer-Verlag, 417-431.

18

[44] Sherali H, Adams W (1990) A hierarchy of relaxations between the continuous and
convex hull presentations for 0-1 programming problems. STAM J Dis Math 3:411-430

[45] Wolsey L (1998) Integer programming. Wiley, New York

19

