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Abstract

A relevant amount of work has been devoted very recently to model-
ing and (heuristically) solving the NP-hard separation problem of famous
classes of valid inequalities for mixed integer linear programs (MIPs). This
task has been accomplished by using, in turn, mixed-integer linear mod-
els for the separation problem, and a general-purpose solver to actually
find violated cuts—the so-called MIPping approach. We instantly survey
these attempts by discussing their computational outcome and pointing
out their practical interest for future integration in the MIP solvers.

Key words: mixed integer programs, separation problems, cutting plane meth-
ods.

1 Introduction

Mixed-integer linear programming (MIP) plays a central role in modeling difficult-
to-solve (NP-hard) combinatorial problems. Exact MIP solvers are very sophis-
ticated tools designed to deliver, within acceptable computing time, a provable
optimal solution of the input MIP model, or at least a heuristic solution with a
practically-acceptable error.

Modern MIP solvers exploit a rich arsenal of tools to attack hard prob-
lems, some of which include the solution of LP models to control the branching
strategy (strong branching), the cut generation (lift-and-project), the heuristics
(reduced costs), etc. As a matter of fact, it is well known by the OR community
that the solution of very hard MIPs can take advantage of the solution of a
series of auxiliary LPs intended to guide the main steps of the MIP solver.

Also well known is the fact that finding good-quality MIP solutions often
requires a computing time that is just comparable to that needed to solve the
LP relaxation of the problem at hand. This leads to the idea of “translating
into a MIP model” (MIPping) some crucial decisions to be taken within a MIP
algorithm (in particular: How to improve the incumbent solution? How to
cut?), with the aim of bringing the MIP technology well within the MIP solver.

An example of the benefits deriving from the use of a black-box MIP solver
to produce heuristic primal solutions for a generic MIP is the recently-proposed
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local branching paradigm that uses a general-purpose MIP solver to explore large
solution neighborhoods defined through the introduction in the MIP model of
invalid linear inequalities called local branching cuts [14]. An application to
the Vehicle Routing Problem of the MIPping idea is instead reported by De
Franceschi, Fischetti and Toth in [12], where the critical step of client reallo-
cation and resequencing within a metaheuristic framework is just MIPped and
solved through a general-purpose solver.

Very recently, the MIPping approach has been extensively applied to mod-
eling and solving (possibly in a heuristic way) the NP-hard separation problems
of famous classes of valid inequalities for mixed integer linear programs. Besides
the theoretical interest in evaluating the strength of these classes of cuts com-
putationally, the approach proved successful also in practice, and allowed for
the solution of very hard MIPLIB instances [4] that could not be solved before.

The present paper instantly surveys these attempts by discussing their com-
putational outcome and pointing out their practical interest for future integra-
tion in the solvers. The paper is organized as follows. In Section 2 we introduce
our basic notation and definitions. In Section 3 we discuss the separation of
Chvátal-Gomory cuts for pure integer programs through a natural MIP model.
In Section 4 we address the more general (and powerful) family of split cuts by
first discussing the separation of a generalization of Chvátal-Gomory cuts (Sec-
tion 4.1) and then addressing their separation problem in two different ways,
namely a parametric mixed integer programming approach (Section 4.2) and a
nonlinear programming approach (Section 4.3). Finally, in Section 5 we discuss
computational aspects of these models and we report results on the strength of
the addressed closures.

2 Basic and Preliminaries

Consider first the pure integer linear programming problem min{cT x : Ax ≤
b, x ≥ 0, x integral} where A is an m× n rational matrix, b ∈ Qm, and c ∈ Qn,
along with the two associated polyhedra P := {x ∈ Rn

+ : Ax ≤ b} and PI :=
conv{x ∈ Zn

+ : Ax ≤ b} = conv(P ∩ Zn).
A Chvátal-Gomory (CG) cut (also known as Gomory fractional cut) [16, 7]

is an inequality of the form buT Acx ≤ buT bc where u ∈ Rm
+ is a vector of

multipliers, and b·c denotes the lower integer part. Chvátal-Gomory cuts are
valid inequalities for PI . The Chvátal closure of P is defined as

P 1 := {x ≥ 0 : Ax ≤ b, buT Acx ≤ buT bc for all u ∈ Rm
+}. (1)

Thus PI ⊆ P 1 ⊆ P . By the well-known equivalence between optimization
and separation [18], optimizing over the first Chvátal closure is equivalent to
solving the CG separation problem where we are given a point x∗ ∈ Rn and
are asked to find a hyperplane separating x∗ from P 1 (if any). Without loss
of generality we can assume that x∗ ∈ P , since all other points can be cut
by simply enumerating the members of the original inequality system Ax ≤ b,
x ≥ 0. Therefore, the separation problem we are actually interested in reads:
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CG-SEP: Given any point x∗ ∈ P find (if any) a CG cut that is violated
by x∗, i.e., find u ∈ Rm

+ such that buT Acx∗ > buT bc, or prove that no
such u exists.

It was proved by Eisenbrand [13] that CG-SEP is NP-hard, so optimizing over
P 1 also is.

Analogously, Gomory [17] proposed a stronger family of cuts, the so-called
Gomory Mixed Integer (GMI) cuts, that apply to the mixed integer case. Such a
family of inequalities has been proved to be equivalent to two other families, the
so-called split cuts defined by Cook, Kannan and Schrijver [8], and the Mixed
Integer Rounding (MIR) cuts introduced by Nemhauser and Wolsey [21].

For the purpose of this survey, we skip the formal definition of the well-known
GMI inequalities to concentrate on those of split cuts and MIR cuts. The reader
is referred to Cornuéjols and Li [10] for formal proofs of the correspondence
among those families, and to Cornuéjols [9] for a very recent survey on valid
inequalities for mixed integer linear programs. Let us consider a generic MIP
of the form

min{cT x + fT y : Ax + Cy ≤ b, x ≥ 0, x integral, y ≥ 0} (2)

where A and C are m × n and m × r rational matrices respectively, b ∈ Qm,
c ∈ Qn, and f ∈ Qr. We also consider the two following polyhedra in the
(x, y)-space:

P (x, y) := {(x, y) ∈ Rn
+ × Rr

+ : Ax + Cy ≤ b} (3)
PI(x, y) := conv({(x, y) ∈ P (x, y) : x integral}). (4)

Split cuts were introduced by Cook, Kannan and Schrijver [8]. They are
obtained as follows. For any π ∈ Zn and π0 ∈ Z, the disjunction πT x ≤ π0 or
πT x ≥ π0 +1 is of course valid for PI(x, y), i.e., PI(x, y) ⊆ conv(Π0∪Π1) where

Π0 := P (x, y) ∩ {(x, y) : πT x ≤ π0} (5)
Π1 := P (x, y) ∩ {(x, y) : πT x ≥ π0 + 1}. (6)

A valid inequality for conv(Π0 ∪ Π1) is called a split cut. The convex set ob-
tained by intersecting P (x, y) with all the split cuts is called the split closure of
P (x, y). Cook, Kannan and Schrijver proved that the split closure of P (x, y) is
a polyhedron.

Nemhauser and Wolsey [21] introduced the family of MIR cuts, whose basic
(2-dimensional) version can be obtained in the following way. Let 1 < b̂ < 0
and b̄ ∈ Z, and consider the two-variable mixed integer program T = {(x, y) :
x + y ≥ b̂ + b̄, y ≥ 0}. Then, it is easily seen that the points in T with x ∈ Z
satisfy the basic MIR inequality

b̂x + y ≥ b̂(b̄ + 1), (7)

that turns out to be a split cut derived from the disjunction x ≤ b̄ and x ≥ b̄+1.
The hardness of separation of split cuts (and hence of MIR inequalities) has been
settled by Caprara and Letchford [6].
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3 Chvátal-Gomory cuts

In [15] we addressed the issue of evaluating the practical strength of P 1 in
approximating PI . Our approach was to model the CG separation problem
as a MIP, which is then solved through a general-purpose MIP solver. To be
more specific, given an input point x∗ ∈ P to be separated, CG-SEP calls for
a CG cut αT x ≤ α0 which is (maximally) violated by x∗, where α = buT Ac
and α0 = buT bc for some u ∈ Rm

+ . Hence, if Aj denotes the jth column of A,
CG-SEP can be modeled as:

max αT x∗ − α0 (8)
αj ≤ uT Aj , ∀j = 1, . . . , n (9)
α0 + 1− ε ≥ uT b, (10)
ui ≥ 0, ∀i = 1, . . . ,m (11)
αj integer, ∀j = 0, . . . , n (12)

where ε is a small positive value. In the model above, the integer variables αj

(j = 1, . . . , n) and α0 play the role of coefficients buT Ajc and buT bc in the CG
cut, respectively. Hence the objective function (8) gives the amount of violation
of the CG cut evaluated for x = x∗, that we want to maximize. Because of the
sign of the objective function coefficients, the rounding conditions αj = buT Ajc
can be imposed through upper bound conditions on variables αj (j = 1, . . . , n),
as in (9), and with a lower bound condition on α0, as in (10). Note that this
latter constraint requires the introduction of a small value ε so as to avoid an
integer uT b be rounded to uT b− 1.

Model (8)-(12) can also be explained by observing that αT x ≤ α0 is a CG
cut if and only if (α, α0) is an integral vector, as stated in (12), and αT x ≤
α0 + 1 − ε is a valid inequality for P , as stated in (9)-(11) by using the well-
known characterization of valid inequalities for a polyhedron due to Farkas.

4 Split closure by steps

The computational results reported in [15] show that P 1 often gives a surpris-
ingly tight approximation of P , so a natural question is whether the same result
generalizes to mixed integer linear programming problems.

Unfortunately, model (8)-(12) does not extend immediately to the mixed
integer case, where one typically concentrates on the stronger split/MIR(/GMI)
cuts1.

Although, as in CG case, it is easy to find a split cut that separates a
basic solution of the linear programming relaxation that is not integer feasible,
separating over the split closure is NP-hard as pointed out in Section 2. However,
such a separation is even more tricky since no natural MIP model like (8)-(12)

1Of course, the separation of split/MIR cuts turns out to be important in the pure integer
case too.
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is known, while a natural mixed integer nonlinear model has been suggested in
[6].

Our first step towards the optimization over the split/MIR closure is to ad-
dress in Section 4.1 a generalization of the Chvátal-Gomory cuts to the mixed
integer case, called projected Chvátal-Gomory (pro-CG) cuts [5]. This gener-
alization provides a first approximation of the split closure for mixed integer
problems. Finally, we face the overall problem of separating split cuts either
by solving a parametric mixed integer problem [3] (Section 4.2) or a nonlinear
mixed integer problem [11] (Section 4.3).

4.1 Projected Chvátal-Gomory cuts

Bonami, Cornuéjols, Dash, Fischetti and Lodi [5] extended the concept of
Chvátal-Gomory cuts to the mixed integer case. Such an extension of the classi-
cal definition of Chvátal-Gomory cuts to the mixed integer case is interesting in
itself, and has the advantage of identifying a large class of cutting planes whose
resulting separation problem retains the simple structure of model (8)-(12). We
define the projection of P (x, y) onto the space of the x variables as:

P (x) := {x ∈ Rn
+ : there exists y ∈ Rr

+ s.t. Ax + Cy ≤ b} (13)

= {x ∈ Rn
+ : ukA ≤ ukb, k = 1, . . . ,K} (14)

=: {x ∈ Rn
+ : Āx ≤ b̄} (15)

where u1, . . . , uK are the (finitely many) extreme rays of the projection cone
{u ∈ Rm

+ : uT C ≥ 0T }. Note that the rows of the linear system Āx ≤ b̄ are of
Chvátal rank 0 with respect to P (x, y), i.e, no rounding argument is needed to
prove their validity.

We then define a projected Chvátal-Gomory (pro-CG) cut as a CG cut de-
rived from the system Āx ≤ b̄, x ≥ 0, i.e., an inequality of the form bwT Ācx ≤
bwT b̄c for some w ≥ 0. Since any row of Āx ≤ b̄ can be obtained as a linear
combination of the rows of Ax ≤ b with multipliers ū ≥ 0 such that ūT C ≥ 0T ,
it follows that a pro-CG cut can equivalently (and more directly) be defined as
an inequality of the form

buT Acx ≤ buT bc for any u ≥ 0 such that uT C ≥ 0T . (16)

As such, its associated separation problem can be modeled as a simple extension
of (8)-(12), through the following MIP:

max αT x∗ − α0 (17)
αj ≤ uT Aj , ∀j = 1, . . . , n (18)
0 ≤ uT Cj , ∀j = 1, . . . , r (19)
α0 + 1− ε ≥ uT b (20)
ui ≥ 0, ∀i = 1, . . . ,m (21)
αj integer, ∀j = 0, . . . , n. (22)
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Projected Chvátal-Gomory cuts are dominated by split cuts, and therefore
P 1(x, y) contains the split closure of P (x, y). The following result gives the
precise relation between the two classes of cuts.

Theorem 4.1 [5] Let S(x, y) denote the intersection of P (x, y) with all the split
cuts where one of the sets Π0, Π1 defined in (5) and (6) is empty. Then

P 1(x, y) = S(x, y).

4.2 Split cuts solving a parametric MIP

Balas and Saxena [3] directly addressed the separation problem of the most
violated split cut of the form αT x + γT y ≥ β by looking at the union of the
two polyhedra (5) and (6) defined in Section 2. In particular, they addressed a
generic MIP of the form

min{cT x + fT y : Ax + Cy ≥ b, x integral} (23)

where the variable bounds are included among the explicit constraints, and
wrote a first nonlinear separation model for split cuts as follows:

min αT x∗ + γT y∗ − β (24)
αj = uT Aj − u0πj ∀j = 1, . . . , n (25)
γj = uT Cj ∀j = 1, . . . , r (26)
αj = vT Aj + v0πj ∀j = 1, . . . , n (27)
γj = vT Cj ∀j = 1, . . . , r (28)
β = uT b− u0π0 (29)
β = vT b + v0(π0 + 1) (30)
1 = u0 + v0 (31)

u, v, u0, v0 ≥ 0 (32)
π, π0 integer (33)

Normalization constraint (31) allows one to simplify the model to the form
below:

minuT (Ax∗ + Cy∗ − b) − u0(πT x∗ − π0) (34)
uT Aj − vT Aj − πj = 0 ∀j = 1, . . . , n (35)

uT Cj − vT Cj = 0 ∀j = 1, . . . , r (36)
−uT b + vT b + π0 = u0 − 1 (37)

0 < u0 < 1 , u, v ≥ 0 (38)
π, π0 integer (39)

where v0 has been removed by using constraint (31), and one explicitly uses the
fact that any nontrivial cut has u0 < 1 and v0 < 1 (see, Balas and Perregaard
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[2]). Note that the nonlinearity only arises in the objective function; moreover,
for any fixed value of parameter u0 the model becomes a regular MIP.

The continuous relaxation of the above model yields a parametric linear
program which can be solved by a variant of the simplex algorithm (see, e.g.,
Nazareth [20]). Balas and Saxena [3] however avoided solving the parametric
mixed integer program through a specialized algorithm, and considered a grid
of possible values for parameter u0, say u1

0 < u2
0 < . . . < uk

0 . The grid initialized
by means of the set {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and then is enriched, on the fly,
by bisecting a certain interval [ut

0, u
t+1
0 ] through the inesersion of the new grid

point u′0 := (ut
0 + ut+1

0 )/2.

4.3 Split cuts solving a nonlinear MIP

Dash, Günlük and Lodi [11] addressed the optimization over the split closure by
looking at the corresponding MIR inequalities and, more precisely, developed a
mixed integer nonlinear model and linearized it in an effective way.

For the ease of writing the model, we slightly change the definition of poly-
hedron P (x, y) by putting the constraints in equality form as:

P (x, y) = {(x, y) ∈ Rn
+ ×Rr

+ : Ax + Cy + Is = b, s ≥ 0} (40)

through the addition of nonnegative slack variables s.
We are looking for an MIR inequality in the form

u+s + β̂ᾱx ≥ β̂(β̄ + 1) (41)

where ᾱ, β̄ are constrained to be integer, u+ is nonnegative, and 0 < β̂ < 1.
In particular, inequality (41) is derived by solving the system

ᾱ = uT A (42)
uT C = 0T (43)

β̂ + β̄ ≤ uT b (44)

0 < β̂ < 1 (45)
ᾱ, β̄ integer. (46)

Of course, equality uT s + ᾱT x = uT b is valid as well as inequality u+s + ᾱT x ≥
β̂ + β̄ where u+

i = max{ui, 0}. Using the basic MIR inequality (7) we obtain
the validity of inequality (41) above.

Let
∑

k∈K εk < 1 (e.g., εk = 2−k). We approximate β̂ with
∑

k∈K̄ εk for
some K̄ ⊂ K and write the RHS of the MIR inequality as

∑
k∈K̄ εk∆ where

∆ = (dβe − ᾱx∗). Using the fact that there is a violated MIR inequality if
and only if there is one with ∆ < 1, we have the following formulation for the
separation of the most violated MIR inequality, where for each k ∈ K we set
πk = 1 if k ∈ K̄, = 0 otherwise.

minu+s∗ − εT Φ + γ̂T y∗ + α̂T x∗ (47)
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γ̂j ≥ uT Cj ∀j = 1, . . . , r (48)
α̂j + ᾱj ≥ uT Aj ∀j = 1, . . . , n (49)

β̂ + β̄ ≤ uT b (50)

β̂ =
∑
k∈K

εkπk (51)

∆ = (β̄ + 1)− ᾱT x∗ (52)
Φk ≤ ∆ ∀k ∈ K (53)
Φk ≤ πk ∀k ∈ K (54)
u+

i ≥ ui ∀i = 1, . . . ,M (55)

u+, α̂, β̂, γ̂ ≥ 0 (56)
ᾱ, β̄ integer, π ∈ {0, 1}|K| (57)

where M := {i : s∗i > 0, i = 1, . . . ,m}, i.e., we define a variable u+
i only if the

corresponding constraint i written in ‘less or equal form’ is not tight. The above
approximate model turns out to be an exact model if K is chosen appropriately,
as discussed in the following theorem.

Theorem 4.2 [11] Let Γ be the least common multiple of all subdeterminants
of A|C, K = {1, . . . , logΓ}, and εk = 2k/Γ,∀k ∈ K. Then, system (47)–(57) is
an exact model.

5 A Computational Overview

In this section we discuss some simple issues that turn out to be crucial to make
the presented models solvable. Moreover, we show their strengthen by reporting
computational results on MIPs included in the MIPlib 3.0 [4] and, finally, we
discuss future directions that should be addressed to really make the models
practical.

5.1 Making the models solvable

All papers discussed in the previous sections implement pure cutting plane ap-
proaches in which (as usual) the following steps are iteratively repeated:

1. the continuous relaxation of the mixed integer program at hand is solved;

2. the separation problem is (heuristically) solved and a set of violated con-
straints is eventually found;

3. the constraints are added to the original formulation.

Of course, the original formulation becomes larger and larger but in order to
provide cuts of rank 1, the separation problem solved at step 2 above only uses
the original constraints in the cut derivation. For what concerns the solution
of those separation problems, it is important that state-of-the-art MIP solvers
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such as ILOG-Cplex or Xpress Optimizer are used, as they incorporate very
powerful heuristics that are able to find (and then improve) feasible solutions
in short computing time. Indeed, good heuristic solutions are enough for step
2 above, where the NP-hard separation problem does not need to be solved to
optimality2 since any feasible solution provides a valid inequality cutting off the
current solution of step 1 above.

In order to make these MIPs solvable, a few issues have to be addressed.
All authors noted that only integer variables in the support of the fractional

solution of step 1 above have to be considered, e.g., a constraint αj ≤ uT Aj

for j such that x∗j = 0 is redundant because αj (times x∗j ) does not contribute
to the violation of the cut, while it can be computed a posteriori by an effi-
cient post-processing procedure. It is easy to see that this is also the case of
integer variables whose value is at the upper bound, as these variables can be
complemented before separation.

The ultimate goal of the cutting plane sketched above is to find, for each
fractional point (x∗, y∗) to be cut off, a “round” of cuts that are significantly
violated and whose overall effect is as strong as possible in improving the current
LP relaxation. A major practical issue for accomplishing such a goal is the
strength of the returned cuts. As a matter of fact, several equivalent solutions
of the separation problems typically exist, some of which produce very weak cuts
for the MIP model. This is because the separation problem actually considers
the face F (x∗, y∗) of PI where all the constraints that are tight at (x∗, y∗)
(including the variable bounds) are imposed as equalities. Hence, for this face
there exist several formulations of each cut, which are equivalent for F (x∗, y∗)
but not for PI .

Fischetti and Lodi [15] experimented a practical relation between the strength
of a cut and the sparsity of the vector of multipliers u generating it. In partic-
ular, they introduced a penalty term −

∑
i wiui (where i denotes the index of

a constraint) in the objective function (8), whose side effect is also to make the
cut itself sparser which has obvious advantages for the LP problems solved on
step 1 of the cutting plane procedure3.

The importance of making the cuts as sparse as possible has been also docu-
mented by Balas and Saxena [3], who noticed that split disjunctions with sparse
support tend to give rise to sparse split cuts.

Another interesting issue raising up to accelerate the cutting plane procedure
is finding set of cuts whose overall behavior is as effective as possible, thus the
overall cutting plane algorithm requires a relatively small number of iterations.
This issue is by far the most crucial one in the attempt of making these methods
computationally attractive, and is related to the need of finding a set of cuts
which are “as diverse as possible” one each other. In this respect, Fischetti and
Lodi [15] have observed that a positive diversification effect can be obtained by
just allowing more freedom in the multiplier selection. Indeed, it is well know
for integer programs that, in case the constraint matrix (A, b) is integral, one

2Except eventually in the last step, in which one needs a proof that no additional violated
cut exists.

3The same sparsification trick is also used in Bonami et al. [5].

9



can constrain the Chvátal-Gomory multipliers by ui < 1. Surprisingly enough,
in [15] we discovered that removing those bounds speeds up the convergence of
the overall cutting plane procedure, and we interpreted this phenomenon as a
consequence of the enlarged range of multipliers allowed 4.

Finally, one can expect that diversification can be strongly improved by
exploiting cuts obtained by heuristically solving two or more of the discussed
separation models; promising results in this direction have been obtained by
combining either CG or pro-CG cuts with MIR inequalities [19].

5.2 Strengthen of the closures

The strengthen of the closures, namely CG, pro-CG and split (or MIR), have
been evaluated by running cutting plane algorithms for large (sometimes huge)
computing times. Indeed, the goal of the investigation was in all cases to show
the tightness of the closures, rather than investigating the practical relevance of
the separation MIPping idea when used within a MIP solver. On the other hand,
as discussed in the previous section, several techniques can be implemented
to speed up the computation and, even in the current status, the MIPping
separation approach is not totally impractical. Indeed, one can easily implement
a hybrid approach in which the MIP-based separation procedures are applied
(for a fixed amount of time) in a preprocessing phase, resulting in a tighter MIP
formulation to be solved at a later time by a standard MIP solver. Using this
idea, two unsolved MIPlib-2003 [1] instances, namely nsrand-ipx and arki001,
have been solved to proven optimality for the first time by Fischetti and Lodi
[15] and by Balas and Saxena [3], respectively. In other words, for very difficult
and challenging problems it does pay to improve the formulation by adding cuts
in these closures before switching to either general- or special-purpose solution
algorithms.

In Tables 1 and 2 we report, in an aggregated fashion, the tightness of the
closures for MIPlib 3.0 [4] instances, in terms of percentage of gap closed5 for
pure integer and mixed integer linear programs, respectively.

Split closure CG closure
% Gap closed Average 71.71 62.59
% Gap closed 98-100 9 instances 9 instances
% Gap closed 75-98 4 instances 2 instances
% Gap closed 25-75 6 instances 7 instances
% Gap closed < 25 6 instances 7 instances

Table 1: Results for 25 pure integer linear programs in the MIPlib 3.0.

Most of the results reported in the previous tables give a lower approxima-
tion of the exact value of the closures6, due to the time limits imposed on the

4In addition, leaving more freedom tothe multipliers seems to improve the effectiveness of
the heuristics used by ILOG-Cplex 9.

5Computed as 100− 100(opt value(PI)− opt value(P 1))/(opt value(PI)− opt value(P )).
6In particular, the time limit in [5] to compute a bound of the pro-CG closure is rather
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Split closure pro-CG closure
% Gap closed Average 84.34 36.38
% Gap closed 98-100 16 instances 3 instances
% Gap closed 75-98 10 instances 3 instances
% Gap closed 25-75 2 instances 11 instances
% Gap closed < 25 5 instances 17 instances

Table 2: Results for 33 mixed integer linear programs in the MIPlib 3.0.

cutting plane algorithms. Nevertheless, the picture is pretty clear and shows
that, although one can construct examples in which the rank of the facets for
a polyhedron is very large, in most practical cases the inequalities of rank 1
already give a very tight approximation of the convex hull of integer and mixed
integer programs.

Future directions of work should therefore concentrate on the possibility of
speeding-up the separation phase by avoiding the explicit definition of the MIP
separation models to be solved by a black-box solver, and should address the
designing of very fast ad-hoc heuristics that use the underlying MIP separation
model only in an implicit way.
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Jünger and V. Kaibel (ed.s), Integer Programming and Combinatorial Op-
timization - IPCO 2005, LNCS 3509, Springer-Verlag, Berlin Heidelberg,
12–22, 2005.

[16] R.E. Gomory, Outline of an algorithm for integer solutions to linear pro-
grams, Bulletin of the AMS 64, 275–278, 1958.

[17] R.E. Gomory, An algorithm for integer solutions to linear programs, in R.L.
Graves and P. Wolfe (eds) Recent Advances in Mathematical Programming,
McGraw-Hill, New York, 269–302, 1963.

[18] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combi-
natorial Optimization, Springer-Verlag, Berlin, 1988.

[19] A. Lodi, Personal Comunication, 2006.

[20] J.L. Nazareth, The Homotopy Principle and Algorithms for Linear Pro-
gramming, SIAM Journal on Optimization 1, 316–332, 1991.

[21] G.L. Nemhauser, L.A. Wolsey, A recursive procedure to generate all cuts
for 0-1 mixed integer programs, Mathematical Programming 46, 379–390,
1990.

12


