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Abstract

Several industrial problems involve placing objects into a container without over-
lap, with the goal of minimizing a certain objective function. These problems arise
in many industrial �elds such as apparel manufacturing, sheet metal layout, shoe
manufacturing, VLSI layout, furniture layout, etc., and are known by a variety of
names: layout, packing, nesting, loading, placement, marker making, etc. When
the 2-dimensional objects to be packed are non-rectangular the problem is known as
the nesting problem. The nesting problem is strongly NP-hard. Furthermore, the
geometrical aspects of this problem make it really hard to solve in practice.

In this paper we describe a Mixed-Integer Programming (MIP) model for the
nesting problem based on an earlier proposal of Daniels, Li and Milenkovic, and
analyze it computationally. We also introduce a new MIP model for a subproblem
arising in the construction of nesting solutions, called the multiple containment
problem, and show its potentials in �nding improved solutions.

Keywords: MIP models, nesting, cutting&packing, containment problem, computa-
tional geometry.

1 Introduction
Several industrial problems involve placing objects into a container so that no two

objects overlap. The general goal is either to minimize the used part of the container, or to
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�nd an optimal collection of objects that can be placed (either in terms of number or total
area). These problems arise in many industrial �elds such as apparel manufacturing, sheet
metal layout, shoe manufacturing, VLSI layout, furniture layout, etc., and are known by
a variety of names: layout, packing, nesting, loading, placement, marker making, etc.
When the 2-dimensional objects to be packed are non-rectangular the problem is known
as the nesting problem. The reader is referred to Dowsland and Dowsland [15] for a
thoughtful survey paper, and to [6, 7, 18, 20, 33] for very recent papers on the topic.

In this paper we investigate the use of Mixed Integer Programming (MIP) models
for solving the nesting problem or, more realistically, a subproblem (called the multiple
containment problem) arising when some �large� objects have already been placed in the
container, and one wants to make use of the unutilized area to place as many �small�
objects as possible. Our main goal is to evaluate the viability of using modern MIP
techniques to address practically-relevant nesting (sub-)problems.

The paper is organized as follows. In Section 2 we give a detailed description of
the nesting problem, we study and review some fundamental computational geometry
notions such as Minkowski sums and no-�t polygons. A basic MIP model is presented in
Section 3, which is based on an earlier proposal of Daniels, Li and Milenkovic [12, 23].
In the same section we introduce a number of improvements aimed at strengthening
the quality of the formulation (lifting) and at guiding the enumerative search for its
optimal solution. Computational results are presented on a class of very di�cult nesting
instances (broken glass), showing that nesting instances of real size and complexity are
unlikely to be solvable in practice. In view of this negative result, a more realistic goal
is addressed in Section 4, namely to provide a (even approximate) MIP model for the
multiple-containment subproblem that can be solved in reasonable time, and that can
enhance the quality of the solutions provided by heuristic methods. Some conclusions
are �nally drawn in Section 5.

The present paper is based on the Ph.D. dissertation of the second author [25].

2 The nesting problem
The nesting problem addressed in the present paper can formally be described as

follows. We are given a set P = {1, · · · , n} of n two-dimensional pieces (some of which
possibly identical), along with a rectangular placement region (marker region) with �xed
height maxY and virtually in�nite length. The shape of each piece is de�ned by a simple
(hole-less) polygon, described through the list of its vertices. Each piece is associated
with a reference point whose (unknown) 2D displacement coordinates vi = (xi, yi) de�ne
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its actual placement location in the marker region. Here xi is viewed as the horizontal
coordinate, yi as vertical one, and (0, 0) corresponds the leftmost bottom point of the
marker region. The distances of the reference point of each piece i to the border of its
bounding box de�ne the values of topi, bottomi, lefti and righti; see Figure 1 for an
illustration.
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Figure 1: Input data for a nesting problem: pieces (left) and marker region (right).

The length of a given placement is de�ned as the horizontal coordinate x of the
right-most used point of the marker region, namely

length = max{xi + righti : i ∈ P}.

The e�ciency of a placement is de�ned as the ratio between the total area of the placed
pieces and the area of the marker region where these pieces lay, i.e.,

Efficiency =
∑n

i=1 areai

length ∗maxY

The nesting problem then consists in placing all the n pieces in the marker region, with
no overlap and without exceeding the height maxY of the marker region, so as minimize
the associated lentgh (or, equivalently, to maximize the corresponding e�ciency).

The Minkowski sum of two polygons A and B is de�ned as

A⊕B = {a + b : a ∈ A, b ∈ B} or equivalently: A⊕B =
⋃

b ∈B

Ab

where notation Ab = {a + b : a ∈ A} refers to the translation of polygon A by a given
vector b.

The Minkowski di�erence of polygons A and B is de�ned as:

AªB =
⋂

b ∈B

Ab
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The no-�t polygon between two polygons A and B is de�ned as

UAB = A⊕ (−B)

where −B = {−b : b ∈ B}. When the reference point of polygon A is translated in
the origin (as shown in Figure 2), the no-�t polygon can be interpreted as the trajectory
followed by the reference point of B when it slides (without rotating) around polygon A.

y − y
B A

x − xAB

vB

vB
vB

v  = (0,0)A

intersect A
B  does not

B  overlaps  AUAB

B touches A

ABV

A

B

Figure 2: The no-�t polygon UAB and the inner-�t region VAB of two polygons A and
B.

No-�t polygons play a cental role in modelling (and solving) nesting problems. Indeed,
regardless of the actual position of two given polygons A and B in the plane, we can
verify whether they intersect by simply checking if the di�erence of their displacement
vectors, computed as (xB − xA, yB − yA), belongs to the no-�t polygon UAB.

Minkowski di�erence also o�ers an useful method to determine whether a polygon
can be fully contained in another one without overlapping its border. This is important
when we want to check whether a given piece lays entirely within the marker region, or
to determine which is the free region of movement of a piece within a given hole. Let
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A and B be two polygons and p be a point in the plane. Then Bp ⊆ A if and only if
p ∈ Aª (−B). The inner-�t region of polygon B within polygon A is thus de�ned as

VAB = Aª (−B)

As shown in Figure 2, piece B is entirely contained within piece A as long as the reference
point of B belongs to the inner-�t region VAB (shaded region in the �gure).

3 A MIP model for the nesting problem
We �rst review a basic MIP model, due to Daniels, Li and Milenkovic [12, 23]. For

each pair of pieces i, j ∈ P, i < j, we compute the no-�t polygon Uij . In order for pieces i

and j not to overlap, we need to enforce that the di�erence of their displacement vectors,
vj − vi, is not contained in the no-�t polygon Uij , that is

vj − vi =

(
xj

yj

)
−

(
xi

yi

)
6∈ Uij ⇐⇒ vj − vi ∈ U ij , ∀ i, j ∈ P : i < j (1)

where U ij is the complement of Uij , hence it is highly non convex. As we need to deal with
polyhedral (convex) sets in order to express conditions (1) through linear constraints, we
subdivide U ij into a collection of convex polyhedral components, assigning a component
U

k
ij for each convex1 edge, and a component U

k
ij for each set of consecutive concave2

edges, as illustrated in Figure 3.
In this way we de�ne a partition of U ij into a set of mij (say) disjoint3 polyhedra

U
k
ij , that we call slices, which satisfy:

U
h
ij ∩ U

k
ij = ∅ ∀ h 6= k,

mij⋃

k=1

U
k
ij = U ij

Figure 3 shows a possible partition of U ij into slices. In this example, all components
but two are built around a single convex edge, while U

3
ij and U

4
ij are built around a pair

of concave edges each. Every slice U
k
ij is a (2-dimensional) polyhedron, hence it can be

de�ned by linear inequalities of the form:

α(xj − xi) + β(yj − yi) ≤ γ

1An edge is called convex if its supporting line does not intersect the interior of the polygon.
2An edge is called concave if its supporting line intersects the interior of the polygon.
3We allow disjoint sets to overlap on a 1-dimensional line
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Figure 3: Partition of U ij into polyhedral �slices�.

where α, β and γ are the coe�cients of the line de�ning a facet of the slice. The whole
slice can then be represented in a compact matrix form as

U
k
ij = {u ∈ R2 : Ak

ij · u ≤ bk
ij} (2)

where matrices (Ak
ij , b

k
ij) are easily computed once the slices U

k
ij have been de�ned.

Let us introduce the following decision variables:

• vi = (xi, yi): the displacement coordinates of the reference point of each piece
i ∈ P;

• length: the rightmost used point of the marker region;

• zk
ij : a binary variable de�ning the slice k of U ij that is active, i.e.,

zk
ij =

{
1 if vj − vi ∈ U

k
ij

0 otherwise
∀ i, j ∈ P : i < j, k = 1 . . .mij

Let ε and M be a very small and a very large positive value, respectively. Also, let
e = (1, · · · , 1) be the vector with all entries equal to 1. A �rst formulation for the nesting
problem reads:
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min length + ε
∑

i∈P
(xi + yi) (3)

s. t. xi + righti ≤ length ∀ i ∈ P (4)
lefti ≤ xi ∀ i ∈ P (5)
bottomi ≤ yi ≤ maxY − topi ∀ i ∈ P (6)
Ak

ij(vj − vi) ≤ bk
ij + M(1− zk

ij)e (7)
∀ i, j ∈ P : i < j, k = 1 . . . mij

mij∑

k=1

zk
ij = 1 ∀ i, j ∈ P : i < j (8)

zk
ij ∈ {0, 1} ∀ i, j ∈ P : i < j, k = 1 . . . mij (9)

The main goal of the model is to maximize the e�ciency, hence to minimize the
total length. In the objective function (3) a second goal is also considered: keeping
all pieces together as much as possible, by compacting them toward the origin of the
marker region. The second term of the objective function has exactly this meaning,
i.e., minimizing the coordinate of the reference point of each �gure without a�ecting the
main objective (length minimization). This term has been added for �aesthetic" reasons,
in order to avoid having pieces spread around the region, hence parameter ε is chosen
small enough so that the second term does not a�ect the real e�ciency related to total
length. The objective function does not take into account more sophisticated goals such
as wasting, dimension of created holes and their usability, etc. In fact, calculating this
type of information is quite complex from a geometrical point of view and cannot be
included easily into a linear objective function.

Constraints (4) de�ne the value of variable length, while constraints (5) and (6)
are simple bounds on the feasible values for variables xi and yi. Constraints (7) use
the compact slice description (2): depending on the active slice of each pair of pieces
(identi�ed by the z-variable set to 1), constraints (7) force the pieces not to overlap.
Indeed, these constraints enforce vj − vi ∈ U

k
ij whenever zk

ij = 1, otherwise the big-M
term deactivates the whole set of constraints. Finally, constraints (8) assure that only
one slice can be active for each pair of pieces, whereas constraints (9) force variables zk

ij

to assume only binary values.

It is worth noting that the number of constraints (7) grows rapidly with the num-
ber (and shape complexity) of the input pieces. Indeed, there are at least 3 facets for
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each slice, and the number of slices can grow linearly with the number of edges of the
corresponding no-�t polygon. The relation between the number of edges of the no-�t
polygon and the number of edges of the relative pieces depends on the type of polygons
and can be as large as O(r2s2), when both polygons are non-convex (where r and s are
the number of edges of the two polygons respectively). Since each piece can interact with
any other piece, the number of such no-�t polygons is quadratic in the number of pieces.

We observe here that the di�culty of the above MIP model essentially depends on
the disjunctive constraints (7), imposing the choice of a suitable slice for each pair of
potentially overlapping pieces: once this choice has been done (in a consistent and feasi-
ble way), and the corresponding zk

ij have been set accordingly, the problem becomes an
easily-solvable LP. Disjunctive constraints arise in several very hard optimization prob-
lems, including scheduling [32] and rectangular packing problems�which are notoriously
very hard to solve through MIP techniques. In fact, the main constraint in scheduling
applications (avoid time overlap between di�erent jobs on the same machine) is just a 1-
dimensional version of the non-overlapping condition in nesting problems. Similarly, MIP
models for rectangular 2-dimensional packing problems (or even for the 3-dimensional
ones, as in Padberg [31]) are just a simpli�ed version of our nesting model, where the
no-�t polygons associated with the input rectangular pieces are just rectangles, so 4
rectangular slices always su�ce to partition their complement.

These considerations lead to the conclusion that MIP model (3)-(9) inherits the dif-
�culty of known MIP models for scheduling and rectangular packing problems, hence
it is likely to be extremely hard to solve�as con�rmed by our computational analysis.
Nevertheless, one can try to improve the MIP formulation in the attempt of pushing
further its range of applicability, as is done in the following subsections.

3.1 Lifting the constraint coe�cients

In the basic MIP model, the binary variable zk
ij is used to activate exactly one of

the slices for each U ij . When we try to solve the model using a standard enumerative
technique, the integer (binary in this case) requirement is relaxed and the corresponding
LP relaxation is solved. In this case, for each pair i, j we are likely to have more than
one zk

ij variable with positive values (while their sum is still equal to 1), thus admit-
ting fractional solutions which are not feasible in the original (integer) formulation. A
geometrical interpretation of this fact is that, allowing for fractional values of zk

ij , the
relaxed model considers to be feasible for vj − vi a very large region covering in part (or
even at all) the no-�t polygon Uij . This means that the pieces can be placed one on top
of the other in the LP relaxation, with essentially no limit on the degree of their overlap.
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This behavior is largely due to the presence of the big-M terms in constraints (7), that
tend to become inactive for any (even very small) positive value of the corresponding zk

ij

variable. For example, the choice z1
ij = z2

ij = 1
2 in (8), makes almost all vj − vi feasible,

including the total overlap position vj = vi, since M >> maxk=1...mij{|bk
ij |}.

In order to mitigate the negative e�ect of the big-M terms, we applied a lifting
technique [28] on the constraint coe�cients. This methodology consists of replacing the
big-M terms by a series of smaller values that guarantee that the constraints remain
valid for the solutions of the integer models (but hopefully not for several solutions of
the relaxation).

Let us concentrate on a single slice U
k
ij . We have tkij facets f de�ning this region,

each de�ned by a constraint of the form

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤ γkf
ij + M(1− zk

ij) ∀ f = 1 . . . tkij

We �rst replace the big-M term with a new set of terms, one for each binary variable
related to the pair of pieces i and j, and write

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤ γkf
ij +

mij∑

h=1

θkfh
ij zh

ij

By exploiting the fact that
∑mij

h=1 zh
ij = 1, we replace the constant term γkf

ij by γkf
ij

∑mij

h=1 zh
ij

and obtain the equivalent form

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤
mij∑

h=1

δkfh
ij zh

ij

where δkfh
ij = γkf

ij + θkfh
ij . As already said, when slice U

k
ij is not active its binary variable

zk
ij is set to 0, and some other variable zh

ij will be set to 1. Then the computation of
each lifting coe�cient δkfh

ij amounts to �nding the maximum value of the left-hand side
when only one variable zh

ij has value 1. In other words, the lifting coe�cients δkfh
ij can

be computed as

δkfh
ij := max

(vj−vi) ∈ U
h

ij∩B

αkf
ij (xj − xi) + βkf

ij (yj − yi)

where B is a su�ciently large bounding box for the feasible displacement vector vj − vi,
e.g., a rectangle with height 2 ·maxY and length 2 ·maxX (where maxX is an upper
limit on the marker length).
An important observation is that the above maximization problem can be solved by
simply evaluating the function to be maximized on the vertices of the closed region

9



U
h
ij ∩ B. Figure 4 shows the vertices of slice U

h
ij that have to be considered when

evaluating the lifting coe�cient δkfh
ij of variable zh

ij with respect to a generic facet f of
U

k
ij (this facet is represented in dashed bold line in the �gure).

j
y −y

i

x −x ij

Uij
k

Uij
h

Uij

2 
* 

m
ax

Y

2 * maxX

O

Figure 4: Computation of the lifting coe�cients.

The enhanced model can now be rewritten as follows.

min length + ε
∑

i∈P
(xi + yi) (10)

s. t. xi + righti ≤ length ∀ i ∈ P (11)
lefti ≤ xi ∀ i ∈ P (12)
bottomi ≤ yi ≤ maxY − topi ∀ i ∈ P (13)

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤
mij∑

h=1

δkfh
ij zh

ij (14)

∀ i, j ∈ P : i < j, k = 1 . . . mij f = 1 . . . tkij
mij∑

k=1

zk
ij = 1 ∀ i, j ∈ P : i < j (15)

zk
ij ∈ {0, 1} ∀ i, j ∈ P : i < j, k = 1 . . . mij (16)
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3.2 Guiding the search tree

During the execution of an enumerative technique for solving a MIP model, some
binary zk

ij are forced to 1 by the branching mechanism. The meaning of setting zk
ij = 1

at a certain node of the branch-decision tree is to impose that pieces i and j assume
a certain non-overlapping relative position, hence these two pieces will never overlap in
the solutions of the LP relaxations obtained in the descendent nodes. However, �xing in
a similar way the relative position of 3 (or more) pieces can easily lead to inconsistent
subproblems.

Let us make an illustrative example where 3 out of the n ≥ 4 pieces are the rectangles
A, B and C shown in Figure 5.

C

A

B

Figure 5: The relative position of three rectangular pieces A, B, and C.

For simplicity of notation, let us say that zup
XY represents the binary variable related

to the feasible region having piece Y above (up) X. Suppose we run an enumerative
algorithm to get to a branching node corresponding to the situation depicted in Figure 5:
we �rst �x (by means of branching) zup

AB = 1, meaning that we want piece B above A,
and then zup

BC = 1, meaning that we want piece C above B. At this point, the relation
between pieces A and C is apparently set, as the only logically-consistent choice is to
�x zup

AC = 1. However, for the relaxed LP model the choice zup
AC < 1 is also feasible,

meaning that the solution of the LP relaxation after �xing zup
AB = zup

BC = 1 can still have
an overlap between A and C. Therefore, before �xing other variables it is worth �xing
explicitly zup

AC = 1 in order to be sure that the 3 pieces A, B and C do not overlap.
As the previous example suggests, a clever branching strategy should try to �x all

the relative positions between a (possibly small) subset of pieces, rather than �xing few
relative positions for a larger set of pieces. In other words, the branching strategy should
favor the de�nition of �cliques� of consistent �xings, thus ensuring that a certain subset of
pieces do not overlap each other. Following this idea, we implemented a branching scheme
that guarantees that any new piece involved in a branching choice is positioned in a way
to ensure feasibility with respect to the other pieces already subject to branching. To be
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speci�c, we tend to branch so as to completely determine �rst the relative positions of 2
pieces (say A and B), then that of 3 pieces (A, B and, say, C), of 4 pieces (A, B, C and,
say, D), and so on. To this end, we exploit the so-called �branching priority� mechanism
available in most commercial MIP solvers: the user can specify a branching priority for
each variable, variables with higher priority being branched �rst. In our implementation,
branching priorities are assigned to variables by using the following simple procedure.

P = P (the whole set of pieces);
ψ = number of z variables in the MIP model;
S = ∅ ;
while P 6= ∅ do

select a piece p ∈ P ;
for all q ∈ S do

for k = 1, · · · ,mpq do
assign priority ψ to variable zk

pq ;
ψ = ψ − 1

end do
end do
S = S ∪ {p} ;
P = P \ {p}

end do

The algorithm starts with a �yet unsettled" set of pieces P, an empty clique set S
and the highest value of a priority variable ψ. It then takes into account a new piece p

to be added to the clique set, and for each other piece q already in the clique it assigns
a decreasing branching priority ψ to every relative position variable zk

pq. Once the piece
is added to the clique set, it is also removed from the original piece set P.

The above scheme is intended to be just a hint to the solver to guide the exploration
of the search tree, in the attempt of avoiding the visit of subtrees that are infeasible
because of inconsistent variable �xings that could have been detected at higher levels in
the tree.

3.3 Computational experiments

We carried some experiments in order to evaluate the e�ect of our improvements
(in particular, the priority-guided branching) to the basic MIP model. To this end we
generated some broken glasses instances, where a square region is broken at random into
n polygonal pieces; see Figure 6 for an illustration. This kind of instances is important
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because one knows in advance the value of the optimal solution, which is the length of
the entire glass. In addition, the resulting MIPs turn out to be very hard to solve even
by using state-of-the-art general-purpose MIP solvers.

1 2

3
4

5 3

4

7

2

1

5

6

1 2

3

45
6

7
8

9

Figure 6: Three broken glass instances.

The outcome of our computational experience was quite discouraging: even by using
the improved models, only very small instances with less than 10 pieces could be solved to
proven optimality within reasonable computing time, while for bigger instances the MIP
solver had to face a large gap between the heuristic solution and the computed lower
bounds. The model improvement related to coe�cient lifting had a limited practical
impact on the overall performance. As to the use of branching priorities to guide the
construction of the search tree, it helped the solver signi�cantly in that some small
instances could be solved to optimality only by using this strategy. It appears clear,
however, that the MIP approach (as described) is unlikely to be useful for solving to
proven optimality nesting instances of practical size.

As an example, we report in Table 1 the outcome of our experiments on the three
small instances depicted in Figure 6. Computational results refer to runs on a PC AMD
Athlon 1.2 GHz with 512 Mbyte RAM, using the commercial MIP solver ILOG-Cplex
7.0. For every instance, the table gives: the name of the instance; the number of pieces
involved; the number of integer (binary) variables; the �ag for activating the priority
branching rule (coe�cient lifting being always active); the total number of nodes in the
branch and bound tree; the time to solve the model (in CPU seconds); and the gap
between the best solution found and the best lower bound in case the solver reached the
maximum number of branching nodes allowed (100,000).
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INSTANCE PIECES INT. VAR. PRIORITY NODES TIME GAP
Glass1 5 73 no 470 0.26� 0%

yes 111 0.11� 0%
Glass2 7 173 no 100,000 97.40� 32.08%

yes 11,414 13.29� 0%
Glass3 9 302 no 100,000 157.76� 59.82%

yes 100,000 203.48� 58.70%

Table 1: Computational results for the broken glass instances of Figure 6.

4 The Multiple Containment Problem
The bad computational performance described in the previous section gave us moti-

vation to use MIP techniques to address not the nesting problem itself, but a simpli�ed
yet relevant subproblem arising in the design of clever nesting heuristics.

The usual way to build a layout is to place the �big pieces� 4 �rst and then to insert
the remaining ones in the holes left by the big pieces. This is a typical strategy followed
by human experts, and is also the approach used by many automatic algorithms. In this
section we deal with the second problem, called multiple containment problem. More
formally, we are given a set P of n �small� pieces called trims, and a set H of m irregular
polygons called holes, and we want to �nd the best assignment of pieces into holes along
with their displacement vectors, such that the maximum number (or maximum total
area) of pieces is placed and the maximum hole area is used.5 This problem is NP-hard,
as it coincides with the nesting problem in case we have just one (rectangular) hole.
Note however that in this problem we are not requested to place all trims, nor to use all
holes, but to choose the holes and pieces that maximize the objective function. Similar
containment problems have been recently addressed in [9, 21].

A �rst heuristic approach to the multiple containment problem that we use for bench-
mark purposes is to use the following greedy strategy. Take a trim at a time and scan
all the available holes starting from the smallest one; once a hole that �ts the trim is
found, place the trim using a given placement policy (we used a bottom-left strategy).
Once a new piece is inserted, calculate the newly created holes, insert them in an ordered
list of holes, and select the next trim to be inserted. The greedy strategy has two evi-
dent drawbacks: the �rst is that any placement policy (lower left, upper left, etc...) can

4The threshold to di�erentiate between small and big pieces can be de�ned by using a coe�cient α

of the pieces average area.
5The used hole area is the region of a hole covered by trims.
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compromise the free space for other trims in that hole; the second one is that assigning
a trim to a certain hole in a greedy fashion, often leads to suboptimal allocations. For
example, suppose we only consider the area of trims and holes, without any geometrical
consideration. We are given two holes, h1 and h2, the �rst with area 90 and the second
with area 95, and a set of 4 trims p1, p2, p3, p4 with area 85, 50, 40 and 10, respectively.
A greedy strategy would place the biggest trim p1 in the smallest hole h1, then trims p2

and p3 in hole h2; at this point trim p4 cannot be placed anymore and we have a wasted
area of 5 in hole h1 and 5 in hole h2. Conversely, a more clever assignment would place
p2 and p3 in hole h1, and then p1 and p4 in hole h2; this would allow placing all trims
with no wasted area at all.

The simpli�ed problem in the above example is of course just a knapsack problem,
hence it can be solved in a satisfactory way in practice (though the problem is NP-
hard). On the other hand, if all the geometrical constraints were taken into account in
a detailed way when modelling the multiple containment problem, we would face again
a hard nesting problem. Therefore it is quite natural to investigate a simpli�ed (yet
useful) model, that exploits the fact that trims are often easy to place�provided that
some rough geometrical considerations (e.g., on the trim and hole area) are taken into
account.

4.1 Geometrical characterization of trims and holes

We observed that trims can very often be approximated in a su�cient way by their
bounding box, de�ned as the smallest rectangle (with edges parallel to the x- and y-axis)
containing a given piece. Replacing (in �rst approximation) the trims by their bounding
boxes allows one to only check vertical and horizontal interaction among pieces, thus
avoiding the nasty problems deriving from the non-convexity of the trims.

Figure 7 shows the set of pieces that composes a shirt: on the left we have the big
pieces, on the right the small ones (trims) and their corresponding bounding boxes.

Another important consideration is that the set of holes comes from the geometrical
di�erence of the marker region and the union of already placed �big pieces�. Depending
on the exact position of these pieces, this di�erence may consist of one or more polygonal
components connected together by narrow strips (the light grey region in Figure 8).
However, when the holes are too small or the strips are too narrow, they are not useful,
since no trim can �t into them. Actually, what we are really interested in, is not the
original shapes of the holes but their usable part, i.e., the area of the holes that can be
occupied by the given trims.

Trims may have di�erent sizes, therefore a hole that can contain a certain trim, may
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big pieces

small pieces

Figure 7: Big and small pieces of a shirt.

Figure 8: Original holes and their usable region.
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not be useful for another one. In our simpli�cation process we build a rectangle with
dimensions equal to the minimum length and minimum height of all trim pieces, and call
it the minBox.6 Using the Minkowski di�erence operation illustrated in Section 2, we
compute the �free movement� region of our minBox within the original holes (inner-�t
region), thus de�ning a set of so-called usable holes. Figure 8 shows in light grey the
original holes and, in black, the usable holes.

4.2 The placement grid inside usable holes

Once we have de�ned the usable holes, we divide them into cells by drawing an
underlying rectangular grid in the following way. First we compute the average length
and height of the trims (aveLength and aveHeight). Then, for each hole7 we take the
associated bounding box and map it into a rectangular grid where each cell has dimensions
cellLengthh × cellHeigthh. Average trim length and height are just used to de�ne the
number of cells of a certain hole, but then for each hole, the speci�c cellLengthh and
cellHeigthh are calculated.
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Figure 9: The grid on a speci�c hole and the corresponding rows/columns.

For every cell of the grid we draw a horizontal line (called row) through its center
point and store the start and end points where the line intersects the �gure; if the shape

6Actually, since such dimensions only consider the bounding box of each polygon, but not their real
shape, we further reduce the minBox by a certain factor �xed heuristically to 0.8.

7From now on, by the term hole we mean a usable hole.
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is non convex and the line intersects many times the hole border, we store only the �rst
and last intersection points. Furthermore, we store the actual length of each row as the
sum of lengths of all its internal segments. In a similar way, we draw vertical lines (called
columns) through the cell centers and obtain the start and end points of the columns
together with their actual length. It is assumed that each cell can accommodate, at most,
one trim.

Figure 9 shows an example of a speci�c hole and its subdivision into cells: small
circles indicate the starting and ending points of the internal segments de�ning the
rows/columns; in this example, the third row (from the bottom) is the only one made by
two distinct segments.

4.3 The simpli�ed model

We now have all the information needed to start building our simpli�ed model. Given
the set P with the n trims and the set H with the m usable holes, we compute for each
trim p ∈ P

• pieceAreah: the trim area;

• pieceBoundingBoxAreap: the area of the trim bounding box

and for each hole h ∈ H

• holeAreah: the area of the hole;

• origXh, origYh: the coordinate of the reference point (lower left point) of the hole
bounding box;

• holeLengthh, holeHeighth: the hole bounding box dimensions;

• cellLengthh, cellHeighth: the average length and height of each cell in the hole
(di�erent from hole to hole);

• Rh, Ch: the number of rows and columns in the hole, respectively.

Note that a cell in a hole is identi�ed by the row and column coordinates of its center,
say (r, c), where 1 ≤ r ≤ Rh and 1 ≤ c ≤ Ch. Furthermore, for each row and column
of every hole we have the following input data, de�ning the row/column starting point,
ending point and length/height, respectively:
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rowStarthr
rowEndh

r

rowLengthh
r





∀ h ∈ H, r = 1 . . . Rh

colStarthc
colEndh

c

colHeighthc





∀ h ∈ H, c = 1 . . . Ch

To de�ne our model we need the following variables:

• Uh ∈ {0, 1} ∀ h ∈ H :
a binary variable of value 1 if hole h is active (i.,e., it is used to place some trims),
=0 otherwise;

• Zhp
rc ∈ {0, 1} ∀ h ∈ H, p ∈ P, r = 1 . . . Rh, c = 1 . . . Ch :

a binary variable of value 1 if trim p is placed in cell (r, c) of hole h; =0 otherwise.

• Xh
rc, Y h

rc ≥ 0 ∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch :
real coordinates de�ning the actual position of the lower-left point of the bounding
box of the trim placed in cell (r, c) of hole h (if any);

We can now formulate our simpli�ed model for the multiple containment problem as
follows:
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max
∑

h∈H

∑

p∈P

Rh∑

r=1

Ch∑

c=1

(pieceBoundingBoxAreap · Zhp
rc )

− ε
∑

h∈H

Rh∑

r=1

Ch∑

c=1

(Xh
rc + Y h

rc) (17)

s. t.
∑

p∈P
Zhp

rc ≤ Uh ∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch (18)

∑

p∈P
pieceAreap

Rh∑

r=1

Ch∑

c=1

Zhp
rc ≤ holeAreah ∀ h ∈ H (19)

Xh
rc +

∑

p∈P
lengthp Zhp

rc ≤ Xr, c+1

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch − 1 (20)
Xh

rc +
∑

p∈P
lengthp Zhp

rc ≤ rowEndh
r

∀ h ∈ H, r = 1 . . . Rh, c = Ch (21)
∑

p∈P
lengthp

Ch∑

c=1

Zhp
rc ≤ rowLengthh

r

∀ h ∈ H, r = 1 . . . Rh (22)
Y h

rc +
∑

p∈P
Heightp Zhp

rc ≤ Yr+1, c

∀ h ∈ H, r = 1 . . . Rh − 1, c = 1 . . . Ch (23)
Y h

rc +
∑

p∈P
Heightp Zhp

rc ≤ colEndh
c

∀ h ∈ H, r = Rh, c = 1 . . . Ch (24)
∑

p∈P
Heightp

Rh∑

r=1

Zhp
rc ≤ colHeighthc

∀ h ∈ H, c = 1 . . . Ch (25)
max(rowStarthr , origXh + (c− 1) · cellLengthh) ≤ Xh

rc

≤ min(rowEndh
r , origXh + c · cellLengthh)

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch (26)
max(colStarthc , origYh + (r − 1) · cellHeighth) ≤ Y h

rc

≤ min(colEndh
c , origYh + r · cellHeighth)

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch (27)
Uh ∈ {0, 1} ∀ h ∈ H (28)
Zhp

rc ∈ {0, 1} ∀ h ∈ H, p ∈ P, r = 1 . . . Rh, c = 1 . . . Ch (29)20



The objective function (17) is aimed at maximizing the total area of the bounding
box of the allocated trims, while its the second term (the one multiplied by the small
positive value ε) helps positioning the trims with a bottom-left policy within the cells.

Constraints (18) activate or deactivate all the selection variables of cell (r, c) in hole
h, depending on the value of the hole activation variable Uh. Furthermore, since Uh is a
binary variable, when active (equal to 1) this constraint imposes that only one trim can
be assigned to a single cell.

Constraints (19) are typical capacity knapsack constraints, and impose that the total
area of all the trims placed in a certain hole cannot exceed the area of the hole itself.

Constraints (20) impose that a trim in cell (r, c + 1) must have x-coordinate greater
or equal to the rightmost point of the trim positioned in cell (r, c), while constraints
(21) impose a bound on the rightmost point of the trim positioned in the last column of
each cell. These coupling constraints also ensure a consistent de�nition of the X and Z

variables.
Constraints (22) are again knapsack constraints, but refer to the total length of each

row: the sum of lengths of all the trims placed in all cells of a certain row cannot exceed
the length of that row.

The next three sets of constraints, (23), (24) and (25), impose similar conditions on
columns (instead of rows), and limit the y-coordinate of the trims in a column as well as
the total height of each column.

Constraints (26) and (27) impose lower and upper bounds to the x- and y-coordinate
of the trims assigned to each cell, respectively. Finally, constraints (28) and (29) impose
integrality conditions.

4.4 Converting a solution of the simpli�ed model into a feasible layout

Once the simpli�ed model has been solved, we obtain the list of active holes, and
the position of the bounding boxes of the chosen trims within these holes. This solution
su�ers however from all the geometrical simpli�cations that we applied in order to make
the model solvable. First of all, we considered the bounding box of the trims, instead of
their original shape. Furthermore, we only checked the trim intersections along the lines
through the cell centers, but we did not consider any other possible intersection.

For all these reasons, when we actually replace the bounding boxes by the original
trims, we might get a solution with many overlaps, both among trims and among trims
and big pieces. Figure 10 shows the solution provided by our model for the multiple
containment instance of Figure 8: usable holes are drawn in light grey with black borders,
and their corresponding cell centers are marked by a cross; placed trims are drawn in

21



dark gray. As the �gure clearly shows, there are several overlapping trims, and many
other trims extend outside the assigned hole.

Figure 10: Trim pieces allocated by the simpli�ed model.

The main reason for overlap is that no geometrical relations have been imposed among
trims assigned to cells that di�er in both row and column indexes. Figure 11 presents an
example that illustrates this situation. As before, cell centers are marked with a cross,
and are labelled according to their position. Piece A is assigned to cell (1, 1), piece
B to cell (1, 2), and piece C to cell (2, 1). Pieces A and B lie on the same row (1)
and satisfy all imposed constraints: both starting and ending points are within the hole
borders, and the sum of their lengths does not exceed the hole length. Pieces A and
C lie on the same column (1) and satisfy all constraints regarding starting and ending
points as well as total height. Pieces B and C, instead, have an evident overlap, since
they lay on di�erent rows and columns and no constraint in our model prevents this kind
of infeasibility.

We therefore need a post-processing procedure to try to clean-up the solution ob-
tained by our model and remove the trim overlaps. This can be done using a com-
paction/separation algorithm [24], based on a linear version of the model that we analyzed
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C

B

Figure 11: Weakness in the geometrical constraints of the model.

in Section 3. As all (large and small) pieces are already placed when post-processing is
invoked, we know the relative positions of each pair of pieces. Thus we can �x the z

variables of model (10)-(16) accordingly, by setting zk
ij = 1 whenever (vj − vi) ∈ U

k
ij .

For overlapping pairs (i, j) of pieces, the variable zk
ij to be set to 1 is instead chosen,

heuristically, so as to activate the slice U
k
ij closest to (vj − vi). Only the constraints

relative to the z variables �xed to 1 are included in the model. The resulting model is
just an LP, and therefore very easy to solve: if a feasible solution exists, then it cor-
responds to an overall feasible placement of the trims together with the big pieces. If
the compaction/separation post-processing fails, however, a corrective action has to take
place. A simple repairing heuristic is to �nd iteratively for the most overlapping trim
piece, remove it from the solution, and try to apply again the compaction/separation
model.

Figure 12 depicts the solution obtained by our model, and a corresponding solution
obtained using a greedy strategy. Although the e�ciency of our solution is higher than
the greedy one, the �gure shows many overlaps that the compaction/separation algorithm
could not solve. Therefore some trims should be removed, resulting into a less satisfactory
placement. A more clever strategy is to group the trims with similar dimensions into
classes, and to solve our model separately for each class, in a hierarchical order. Indeed,
we observed that when all trims have more or less the same shape and dimension, the
geometrical problems discussed above are not likely to occur (or, if they occur, the
degree of overlap is small and is usually repaired easily by our compaction/separation
post-processing). If we apply this technique to the instance of the previous �gure, we
obtain the solution of Figure 13. This solution still presents some overlaps, but this time
our compaction/separation procedure has no di�culty in removing it.

The overall solution approach we propose is illustrated in Figures 14 and 15. A
�rst class of (relatively) large trims is �rst addressed. Figure 14 compares our �nal
feasible solution (after the compaction/separation step) with the solution obtained by
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Length: 1654.02 Eff.: 87.25%Pieces: 50/76

Pieces:  45/76 Length: 1652.52 Eff.: 85.86%

Figure 12: Infeasible solution obtained by our model (top) and a corresponding feasible
solution obtained by a greedy strategy.
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Pieces: 34/76 Length:1641.49 Eff.: 84.07%

Figure 13: Solution obtained by our model for an homogeneous subclass of trims.

the greedy algorithm. Our solution placed 14 large-trims, compared to the 10 large-
trims placed by the greedy algorithm. The e�ciency of our solution is 83.97% compared
to 81.54% of the greedy solution, for a total improvement of about 2.5%. The same
process is then repeated on the remaining class of �smaller� trims. Figure 15 shows the
corresponding placements obtained by both algorithms. The solution proposed by our
model (and successively corrected by the compaction/separation routine) placed 10 trims
and achieved an e�ciency of 86.13%, while the greedy algorithm was able to place only
8 trims, for a total e�ciency of 85.67%.

4.5 Computational results

We tested our multiple containment heuristic on a set of instances taken from the
garment industry 8 and compared the resulting solutions to those obtained by a greedy
algorithm. The corresponding computational results are reported in Table 2, where our
method goes under the labelMIP-place. The running time of our algorithm (not reported
in the table) goes from less than 1 second to a few seconds,9 and is de�nitively comparable
to the time needed by the greedy algorithm.

8available on request from the second author
9Using CPLEX 7.0 on a AMD Athlon 1.2 GHz with 512 Mbyte RAM
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Pieces: 34/76 Length: 1643.53 Eff.: 83.97%

Eff.: 81.54%Pieces: 30/76 Length: 1634.55

Figure 14: Feasible solution obtained by our model (top), and a corresponding feasible
solution obtained by a greedy strategy (bottom), for a homogeneous class of �large� trims.
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Pieces: 44/76 Length: 1665.50 Eff.: 86.13%

Pieces: 42/76 Length: 1660.87 Eff.: 85.67%

Figure 15: Feasible solution obtained by our model (top), and a corresponding feasible
solution obtained by a greedy strategy (bottom), for the remaining class of �small� trims.
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INSTANCE PIECES TRIMS LENGTH EFFICIENCY
82 - group 1
MIP-place 34/76 14 1643.53 83.97%
greedy 30/76 10 1634.55 81.54%
82 - group 2
MIP-place 44/76 10 1665.50 86.13%
greedy 42/76 8 1660.87 85.67%
101
MIP-place 44/50 10 3840.28 82.12%
greedy 42/50 8 3838.27 81.57%
385
smart 44/54 22 4697.05 83.74%
greedy 39/54 17 4671.81 83.58%

Table 2: Computational results for the multiple containment problem.

As the table shows, the new method compares very favorably with the greedy one,
and increased the overall e�ciency by 1-2% (an economically very relevant �gure for this
kind of instances). Some solutions are depicted in Figures 16-17

5 Conclusions
Several industrial problems involve placing objects into a container so that no two

objects overlap each other, with the goal of either minimizing the size of the container
or to �nd an optimal collection of objects that can be placed. We have addressed one
of the most general (and di�cult) problems of this type, namely the nesting problem,
where the objects to be placed are represented by 2-dimensional closed polygons of any
shape. The nesting problem is strongly NP-hard. Furthermore, its geometrical aspects
make it really hard to solve in practice.

We have addressed a Mixed-Integer Programming (MIP) model for the nesting pro-
blem, with some improvements with respect to an earlier proposal [12, 23], and have
analyzed it computationally. We have also introduced a new MIP model for a sub-
problem arising in the construction of heuristic nesting solutions, called the multiple
containment problem, and have shown its potentials in �nding improved solutions.

The outcome of our research is that MIP techniques, though still not appropriate to
solve the complexity of real-world nesting instances, can be very useful to address some
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Pieces: 44/50 Length: 3840.28 Efficiency: 82.12 %

Length: Pieces: 42/50 3838.27 Efficiency: 81.57 %

Figure 16: Feasible solution obtained by our model (top), and a corresponding feasible
solution obtained by a greedy strategy (bottom) for problem instance 101.
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Pieces: 44/54 Length: 4697.05 Efficiency: 83.74 %

Pieces: 39/54 Length: 4671.81 Efficiency: 83.58 %

Figure 17: Feasible solution obtained by our model (top), and a corresponding feasible
solution obtained by a greedy strategy (bottom) for problem instance 385.
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simpli�ed (but still NP-hard) subproblems arising in heuristic solution methods. We
believe that this line of research deserves more attention in the future, and will hopefully
lead to improved heuristic methods for hard nesting problems.
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