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Abstract There are many situations in mathematical programming where
cutting planes can be generated by solving a certain “cut generation linear
program” whose feasible solutions define a family of valid inequalities for
the problem at hand. Disjunctive cuts and Benders cuts are two familiar
examples.

In this paper we concentrate on classical Benders cuts, that belong to
the basic toolbox for mixed-integer programming. It is a common experience
that the use of Benders cuts is not always as effective as hoped, especially if
the impact of simple yet fundamental design issues are underestimated and
the method is implemented “as in its textbook description”.

In this paper we propose alternative selection criteria for Benders cuts,
and analyze them computationally. Our approach is based on the correspon-
dence between minimal infeasible subsystems of an infeasible LP, and the
vertices of the so-called alternative polyhedron. The choice of the “most ef-
fective” violated Benders cut then correspond to the selection of a suitable
vertex of the alternative polyhedron, hence a clever choice of the dual ob-
jective function is crucial—whereas the textbook Benders approach uses a
completely random selection policy, at least when the so-called feasibility
cuts are generated.

Computational results on a testbed of MIPLIB instances are presented,
where the quality of Benders cuts is measured in terms of “percentage of gap
closed” at the root node, as customary in cutting plane methods. We show
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that the proposed methods allow for a speedup of 1 to 2 orders of magnitude
with respect to the textbook one.

Keywords Mixed-Integer Linear Programming, Cutting Planes, Decompo-
sition, Benders cuts, Computational Analysis

1 Introduction

There are many situations in mathematical programming where cutting planes
can be generated by solving a certain Cut Generation Linear Program (CGLP)
whose feasible solutions define a family of valid inequalities for the problem
at hand. Disjunctive cuts and Benders cuts are two familiar examples.

Benders cuts were originally proposed in [4] as a machinery to convert a
generic mixed-integer program involving integer variables x and continuous
variable y into an integer program involving the x variables only, possibly plus
a single continuous variable η taking into account the overall contribution to
the objective function of the continuous variables (say dT y). The continuous
y variables are projected away by a standard projection technique based on
dynamic cutting-plane generation. At each iteration, one solves the current
master problem relaxation in the (x, η) space, and sends the optimal solution
(x∗, η∗) to the so-called slave problem. This is an LP in the y space that
tries to define suitable y-variables y∗ such that (x∗, y∗) is feasible for the
original problem, and η∗ = dT y∗. If the slave problem is feasible, we are
done. Otherwise, a so-called (feasibility or optimality) Benders cut in the
(x, η) space is generated by using Farkas’ characterization of infeasible LPs,
the cut is added to the master problem, and the method is iterated.

The definition of the CGLP is however only the first step for the effective
use of the associated cuts, as three main topics need to be addressed:

i) When to cut? Possible answers range from “only when an integer super-
optimal solution is available” (as in the original proposal of Benders,
where cuts are applied only to cut the optimal solution of the current
master problem) to “whenever a fractional (or integer infeasible) solution
is available” (as in modern branch-and-cut frameworks).

ii) What to cut? The usual choice in integer programming is to cut the
optimal solution of an LP relaxation. However this may lead to unstable
behavior and slow convergence, so stabilization through box constraints
or quadratic penalty functions may be needed–this is not usually done
in standard branch-and-cut algorithms, but it is common practice e.g. in
bundle methods.

iii) How to choose the cut? Given the point x∗ to be separated, choose the
“best possible” cut(s) among the violated ones.

All three points above play an important role in the design of an effective
solution method. In this paper we focus on (iii), and in particular we address
the topic of selecting in an effective way Benders cuts for general Mixed-
Integer Linear Programs (MIPs). As we aim at understanding the properties
that make a single Benders cut “a good cut” in a branch-and-cut context,
in the present study we do not address alternative solution approaches that
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generate rounds of Benders cuts (as opposed to just one or two cuts) at each
separation call—though we believe that the idea of generating a large number
of simultaneous cuts can play an important role in speeding up the overall
convergence of any cutting plane method, including the Benders’ one.

We propose alternative selection criteria for Benders cuts, and analyze
them computationally. As customary in mixed-integer programming, the ef-
fectiveness of the generated cuts is measured by the quality of the root node
bound.

Our approach is based on the correspondence between minimal infeasible
subsystems of an infeasible LP, and the vertices of the so-called alternative
polyhedron. The choice of the “most effective” violated Benders cut then
corresponds to the selection of a suitable vertex of the alternative polyhedron,
hence a clever choice of the dual objective function is crucial—whereas the
textbook Benders approach uses a completely random selection policy, at
least when feasibility cuts are generated.

Computational results on a testbed of MIPLIB instances are presented,
where the quality of Benders cuts is measured in terms of “percentage of gap
closed” at the root node, as customary in cutting plane methods. We show
that the proposed methods allow for a speedup of 1 to 2 orders of magnitude
with respect to the textbook one.

2 Benders cuts: theory ...

Suppose we are given a MIP problem

min cTx+ dT y

Ax ≥ b
Tx+Qy ≥ r

x ≥ 0, x integer
y ≥ 0

(1)

where x ∈ <n, y ∈ <t, and matrix Q has m rows.
Classical Benders decomposition states that solving such a problem is

equivalent to solving

min cTx+ η

Ax ≥ b
η ≥ uT (r − Tx), u ∈ VERT

vT (r − Tx) ≤ 0, v ∈ RAY
x ≥ 0, x integer

(2)

where the additional variable η takes into account the objective function
term dT y, while sets VERT and RAY contain the vertices and extreme rays
(respectively) of the polyhedron D defined by:

πTQ ≤ dT

π ≥ 0
(3)
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The above formulation has exponentially many inequalities, so an itera-
tive solution approach based on cutting planes is needed, that can be outlined
as follows.

1. Solve the so-called master problem:

min cTx+ η

Ax ≥ b
{previously generated Benders cuts}

x ≥ 0, x integer

(4)

including (some of) the Benders cuts generated so far (none at the very
beginning). Let (x∗, η∗) be an optimal solution of the master problem.

2. Solve the so-called dual slave problem:

maxπT (r − Tx∗)
πTQ ≤ dT

π ≥ 0

(5)

3. If the dual slave problem is unbounded, choose any unbounded extreme
ray v, and add the so-called Benders feasibility cut

vT (r − Tx) ≤ 0

to the master and go to Step 1. Otherwise, let the optimal value and an
optimal vertex be z∗ and u respectively. If z∗ ≤ η∗ then stop. Otherwise,
add the so-called Benders optimality cut

η ≥ uT (r − Tx)

to the master problem, and go to Step 1.

The distinction between optimality cuts (involving the η variable) and
feasibility cuts (that assert some property of the feasible x vector) is very
important in practice, and will be analyzed in greater detail in the sequel.

As already noted by other authors, but seldom applied in practice, Ben-
ders cuts can be generated to separate any solution (integer or not) of the
master problem. As a consequence, these cuts can easily be embedded into
a modern branch-and-cut scheme where Benders cuts (among others) are
generated at each node of the branching tree.

Note that:

– Although presented for the MIP case, the Benders framework is by no
means limited to it. In particular, any problem of the form

min c(x) + dT y

g(x) ≥ 0
F (x) +Qy ≥ r

y ≥ 0

(6)
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with arbitrary c(), g() and F () is suitable to be solved with this method,
provided that we have a solver for the master problem (see [6]). This
also means that, given any arbitrary partition of the variables, any lin-
ear programming problem can be casted into the Benders framework, by
projecting away a subset of the variables. This is indeed done in practice
with problems that simplify considerably (e.g., decompose) after fixing
a subset of their decision variables—this is the case, e.g., in Stochastic
Linear Programs (SLPs).

– The Benders method is in fact a pure cutting plane approach in which,
given a solution (x∗, η∗) of a problem relaxation (the master), we look for
a violated valid inequality. In particular, the search for such an inequality
is done by solving an LP problem (the dual slave), which acts as a Cut
Generating LP akin to the one used in disjunctive programming (as a
matter of fact, disjunctive cuts can be viewed as Benders cuts derived
from a compact extended formulation).

– The set of Benders cuts corresponds to the vertices and extreme rays of D
and is independent of the current master solution (x∗, η∗), which is used
only to decide which is next cut to add. For this purpose a suboptimal (or
even infeasible) master solution can be used as well, as e.g. in the recent
proposals by Rei e al. [12] and by Poojari and Beasley [11].

Given the considerations above, in the following we focus on a generic LP
of the form

min cTx+ dT y

Ax ≥ b
Tx+Qy ≥ r

x ≥ 0
y ≥ 0

(7)

This LP may be the root relaxation of a MIP problem, or just a large-scale
LP problem suitable for Benders decomposition (e.g., a SLP problem).

3 ... and practice

The first question we asked ourselves was: What can be considered a modern,
yet classical, implementation of Benders decomposition to be used for bench-
marking purposes? As a matter of fact, any implementation of the Benders
approach has to face a number of implementation issues that affect heavily
the overall performance of the method, and many authors using Benders cuts
tend to classify their methods as just “standard implementations” without
giving sufficient details.

A first issue is how to obtain a good, yet easily computable, initial lower
bound on η, so as to prevent the generation of several dominated (and thus
useless) optimality cuts. From a theoretical point of view, we are interested
in the best-possible optimality cut of the form

η ≥ πT r − 0Tx
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so πT r can be obtained by just solving the LP:

maxπT r

πTQ ≤ dT

πTT = 0T

π ≥ 0

(8)

However, if the slave problem does not have a special structure (i.e., if it
does not decompose nicely), the introduction of the coupling matrix T yields
an LP problem of the same size as the original LP, so this approach is not
always viable computationally. Therefore, in our tests we prefer to calculate
a trivial bound on dT y based only on the lower and upper bounds on the y
variables (if no bounds are given, we just write η ≥ −M for a suitably large
M).

Then we addressed the relative contribution of optimality and feasibility
cuts to the convergence of the method. Indeed, according to our computa-
tional experience these two classes of cuts behave quite differently in many
important respects:

– For many problems where term dT y gives a significant contribution to
the overall optimal value, optimality cuts can be much more effective
in moving the bound than feasibility cuts, because they involve the η
variable explicitly.

– Optimality cuts are typically quite bad from a numerical point view.
In particular, optimality cuts tend to exhibit an higher dynamism than
feasibility cuts, i.e., a higher ratio between the maximum and minimum
absolute value of the cut coefficients. This was somewhat expectable,
because optimality cuts have to take into account the objective function,
which may be of a completely different magnitude (and precision) with
respect to the constraints.

– Optimality cuts tend to be much denser than the feasibility ones. Again,
this is not surprising since the role of optimality cuts is to provide a lower
bound on the objective function term η that is based on the value of the
variables x of the master problem, and it is unlikely that just a few master
variables can succeed in producing a tight bound.

As a consequence, it is important to have some control on the kind (and
quality) of Benders cuts generated at each iteration. Unfortunately, Benders
decomposition—as it is typically implemented in the literature—is heavily
biased toward feasibility cuts. As a matter of fact, as long as a violated fea-
sibility cut exists, the dual slave is unbounded and hence no optimality cut
is generated. As noted by Benders himself [4], however, if we solve the dual
slave with the primal simplex method, then when we discover an unbounded
ray we are “sitting on a vertex” of polyhedron D, and thus we can gener-
ate also an optimality cut with no additional computational effort. A main
drawback of this approach is that optimality cut produced is not guaranteed
to be violated, and in any case its discovery was quite “random” as the cor-
responding vertex is by no mean a one maximizing a certain quality index
such as cut violation, depth, etc.
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The lack of control on the quality of the Benders cuts is even more striking
when feasibility cuts are generated, since the textbook method does not give
any rule to choose among the unbounded rays. To illustrate this important
(and often underestimated) point, suppose that we want to apply a textbook
Benders decomposition approach to the well-known Asymmetric Traveling
Salesman Problem (ATSP). Our compact MIP formulation then involves
binary variables xij associated with the arcs of digraph G = (V,A), and
continuous flow variables ykij that describe a flow of value 1 from a fixed
source node (say node 1) to sink node k, for all k ∈ V \ {1}. In this example,
system Ax ≥ b corresponds to in- and out-degree restrictions, whereas system
Tx + Qy ≥ r is made by |V | − 1 independent blocks corresponding to the
flow-conservation equations for each k, plus the coupling constraints ykij ≤ xij
for all k ∈ V \ {1} and (i, j) ∈ A. It is not hard to see that, in this case,
Benders cuts are of the feasibility type only, and correspond to the classical
Subtour Elimination Constraints (SECs) of the form

∑
(i,j)∈δ+(S) xij ≥ 1.

These cuts are known to be facet-defining (assuming G is complete digraph),
hence they are very strong in practice—so we can conclude that “Benders
cuts make a wonderful job”. What is clearly inefficient is instead the way
these cuts would be handled by the standard Benders method. First of all,
SECs would be generated only after having solved to proven optimality the
current master, and used to cut integer points only. This is clearly inefficient,
since SECs should be generated at each node of the branching tree, or at least
whenever the incumbent solution is updated (as in the old-day method by
Miliotis [9,10]). But even if SECs were generated within a modern branch-
and-cut framework, what is completely missing in the Benders method is a
sensible cut selection criterion—once a violated SEC exists, the dual slave
becomes unbounded and any violated SEC can be returned by the separation
procedure—whereas we know that SEC density (among other characteristics)
plays a crucial role in speeding-up convergence.

The considerations above prompted us to introduce an effective criterion
for choosing among violated (optimality or feasibility) Benders cuts, very
much in the spirit of disjunctive cut generation that is also based on CGLPs
(see Balas, Ceria, and Cornuéjols [3], and also Fischetti, Lodi and Tramontani
[5]). As far as we know, no research effort was devoted to this particular topic
in the literature, with one notable exception—the acceleration procedure
by Magnanti and Wong [8]. This procedure provides a criterion to choose,
among equivalent optimal vertices of the dual slave polyhedron, a “Pareto-
optimal” one that corresponds to a maximally-violated optimality cut that is
not strictly dominated (within the master feasible solution set) by any other
maximally-violated cut. The procedure has however some drawbacks:

– According to its original definition, the procedure would require the dual
slave to have a bounded optimal value, hence it could not be applied in a
completely general context involving feasibility cuts—this drawback can
however be partially overcome by introducing artificial dual bounds.

– The user has to provide a point in the relative interior of the master
feasible set. This is quite a simple task if the the master has a very special
structure, as in the cases addressed by Magnanti and Wong in their study,
but is NP-hard in general if the master is a MIP, since we need a point in
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the relative interior of the convex hull of the integer feasible points, which
is usually not known. Moreover, the outcome of the procedure depends
on the choice of the interior point.

– The method may be computationally heavy, as it requires to solve two LPs
to generate a single cut, the second LP being often quite time-consuming
due to the presence of an additional equation that fixes the degree of
violation to the cut—this equation is in fact very dense and numerically
unstable.

– The Magnanti-Wong criterion benefits from the existence of several equiv-
alent optimal solutions of the dual slave problem (i.e., several maximally-
violated optimality cuts), which is however not very frequent when frac-
tional (as opposed to integer) points of the master are cut.

4 Benders cuts and Minimal Infeasible Subsystems

The CGLP of a Benders cut can always be seen as a feasibility problem:
given a master solution (x∗, η∗), it is possible to generate a violated cut if
and only if the following primal slave problem is infeasible:

dT y ≤ η∗

Qy ≥ r − Tx∗

y ≥ 0
(9)

or equivalently, by LP duality, if the following dual slave problem is un-
bounded:

maxπT (r − Tx∗)− π0η
∗

πTQ ≤ π0d
T

π, π0 ≥ 0

(10)

If the separation is successful, given the dual solution (extreme ray) (π, π0)
the generated cut is

πT (r − Tx)− π0η ≤ 0

In practice, one is interested in detecting a “minimal source of infeasibil-
ity” of (9), so as to detect a small set of rows that allow to cut the master
solution. According to Gleeson and Ryan [7], the rows of any Minimal (with
respect to set inclusion) Infeasible Subsystem (MIS) of (9) are indexed by
the support of the vertices of the following polyhedron, sometimes called the
alternative polyhedron:

πTQ ≤ π0d
T

πT (r − Tx∗)− π0η
∗ = 1

π, π0 ≥ 0

(11)

where the unbounded objective function—namely, the cut violation to be
maximized—has been fixed to a normalization positive value (if the alterna-
tive polyhedron is empty, we are done). By choosing an appropriate objective
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function it is therefore possible to optimize over the alternative polyhedron,
thus selecting a violated cut corresponding to a MIS of (9) with certain useful
properties. Therefore, the choice of the objective function is a main issue to
be addressed when designing a separation procedure based on a CGLP, as in
the Benders method.

A natural objective function whose purpose is to try to minimize the
cardinality of the support of the optimal vertex (and hence to find a small-
cardinality MIS 1) is

min
m∑
i=1

πi + π0 (12)

As we are only interested in solutions with a positive cut violation, and
since {(π, π0) ≥ 0 : πTQ ≤ π0d

T } is a cone, we can swap the role of the
objective function (12) and of the normalization condition in (11), yielding
the following equivalent CGLP akin to the one used for disjunctive cuts by
Balas, Ceria, and Cornuéjols [3]:

maxπT (r − Tx∗)− π0η
∗

πTQ ≤ π0d
T

m∑
i=1

πi + π0 = 1

π, π0 ≥ 0

(13)

It is worth noting that the feasible solution set of the above CGLP is never
empty nor unbounded, so a violated cut can be generated if and only if
the CGLP has a strictly positive optimal value. The latter formulation is
preferable from a computational point because the normalization constraint∑m
i=1 πi + π0 = 1, though very dense, is numerically more stable than its

“cut violation” counterpart πT (r − Tx∗) − π0η
∗ = 1. Moreover, at each

iteration only the CGLP objective function is affected by the change in the
master solution, hence its re-optimization with the primal simplex method
is usually quite fast.

A geometric interpretation of (13) is as follows. The CGLP feasible set is
now defined as the intersection of the homogenization of the dual polyhedron
D with the normalization hyperplane

∑m
i=1 πi + π0 = 1. It is not difficult to

see that there is a one-to-one correspondence between the vertices of this
feasible set and the extreme rays (if π0 = 0) and vertices (if π0 6= 0) of D.
Therefore, the reformulation does not actually change the set of Benders cuts
that can be generated, but it is nevertheless useful in that it allows for a more
clever choice of the violated cut to be separated.

5 Computational results

The effectiveness of our CGLP formulation has been tested on a collection
of problems from the MIPLIB 2003 library [1]. Among the instances in this

1 Finding a minimum-cardinality MIS is an NP-hard problem in general; see, e.g.,
Amaldi et al. [2]
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Problem # variables # integer # continuous # constraints

10teams 2025 1800 225 230
a1c1s1 3648 192 3456 3312
aflow40b 2728 1364 1364 1442
danoint 521 56 465 664
fixnet6 878 378 500 478
modglob 422 98 324 291
momentum1 5174 2349 2825 42680
pp08a 240 64 176 136
timtab1 397 171 226 171
timtab2 675 294 381 294
tr12-30 1080 360 720 750

Table 1 Testbed characteristics

testbed, we have chosen the mixed-integer cases with a meaningful number
of integer and continuous variables. Moreover, we discarded some instances
with numerical instability and which, after the variables were partitioned,
were too easy to solve even by the classical Benders method 2. Table 1 shows
our final testbed with the main characteristics of each instance.

Standard variable partitioning has been applied—integer (and binary)
variables are viewed as master variables x, and the continuous variables are
viewed as slave variables y.

We implemented two variants of the classical (textbook) Benders method,
as well as two variants of our MIS-based CGLP, namely:

tb: This is the original method as proposed by Benders [4]. If the dual slave
problem is bounded, we generate one optimality cut, otherwise we gen-
erate both a feasibility and an optimality cut (the optimality cut being
added to the master problem only if it is violated by the current master
solution).

tb noopt: This is a standard Benders implementation method as often seen
on textbooks. This method always generate only one cut per iteration—in
case of unboundedness, only the feasibility cut associated with the un-
bounded dual-slave ray detected by the LP solver is added to the master.

mis: This is our basic MIS-based method. It uses the CGLP (13) to solve
the separation problem, hence it generates only one cut per iteration.

mis2: This is a modified version of mis: after having solved the CGLP, if
the generated cut is an optimality one, we enforce the generation of an
additional feasibility cut by imposing the condition π0 = 0.

In our experiments, we handled the equations in the MIP model (if any)
explicitly, without replacing them with pairs of inequalities; this implies the
presence of free dual multipliers and the use of their absolute value in the
normalization condition.

The implementation was done in C++ on a Linux 2.6 platform and all
tests were performed on an Intel Core2 Quad CPU Q6600 with 4GB of RAM.
We used ILOG Cplex 11.0 as the black-box LP solver; we disabled the LP

2 A couple of instances exhibit a block structure of the slave problem and just a
few iterations where enough to terminate the method.
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presolver and forced the use of the primal simplex method for the solution
of the dual slaves so as to be able to get a meaningful output even in case of
unbounded problems. Before solving an instance, we performed a standard
bound shifting in order to reduce the number of slave variable bounds to
dualize. For this reason, the optimal LP value reported in our tables may
differ from the value reported in the literature.

The quality of the generated Benders cuts is measured in terms of “per-
centage gap closed” at the root node, as customary in cutting plane methods.
The results are shown in Tables 2 and 3. Results with tb noopt are not re-
ported since this method was never better (and often much worse) than tb:
a typical behavior is illustrated in Figures 1 and 2.
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Problem Method 80% 90% 95% 99% 80% 90% 95% 99% bestBound optimum totTime totIter

10teams
tb 0.08 0.21 0.22 0.26 24 35 38 43 897.00 897.00 0.51 71
mis 0.04 0.05 0.06 0.07 9 11 14 19 897.00 897.00 0.21 66
mis2 0.04 0.05 0.05 0.07 9 11 14 19 897.00 897.00 0.22 66

a1c1s1
tb - - - - - - - - 707.61 997.53 1000.45 3714
mis 3.68 6.01 10.62 19.39 144 218 296 482 997.53 997.53 39.95 914
mis2 86.58 189.93 280.78 - 62 118 173 - 982.38 997.53 451.98 296

aflow40b
tb 0.03 0.03 0.04 0.09 1 2 5 13 1005.66 1005.66 0.24 44
mis 0.05 0.05 0.07 0.16 1 1 2 7 1005.66 1005.66 0.89 44
mis2 0.04 0.04 0.07 0.17 1 1 2 7 1005.66 1005.66 0.90 44

danoint
tb 21.22 24.30 29.16 29.16 595 654 766 766 62.64 62.64 36.15 1251
mis 0.18 0.18 0.18 1.03 43 43 43 87 62.64 62.64 1.74 186
mis2 3.00 3.00 3.00 5.42 43 43 43 72 62.64 62.64 12.46 167

fixnet6
tb 0.75 1.19 1.61 2.14 183 254 310 368 1200.88 1200.88 3.20 523
mis 0.05 0.12 0.16 0.34 39 65 83 139 1200.88 1200.88 0.70 230
mis2 0.28 0.43 0.64 1.02 26 39 56 87 1200.88 1200.88 1.79 161

modglob*
tb - - - - - - - - - - - -
mis 0.34 0.34 1.38 2.01 62 62 303 473 20430900.00 20430947.62 50.31 3573
mis2 0.58 0.87 3.00 6.06 34 61 274 613 20430900.00 20430947.62 44.83 3079

momentum1*
tb - - - - - - - - - - - -
mis 0.35 0.59 0.73 1.60 0 3 5 18 72793.30 72793.35 26.21 207
mis2 - - - - - - - - - - - -

pp08a
tb 0.01 0.01 0.01 1.03 9 14 16 339 2748.35 2748.35 4.11 825
mis 0.13 0.28 0.33 0.52 125 195 213 280 2748.35 2748.35 1.71 696
mis2 0.03 0.04 0.04 0.68 9 13 14 179 2748.35 2748.35 2.20 540

timtab1
tb 60.15 61.70 67.09 77.27 676 705 778 963 28655.10 28694.00 83.70 1046
mis 1.51 2.33 3.08 5.03 601 831 978 1294 28694.00 28694.00 6.13 1431
mis2 2.81 3.48 4.13 5.09 362 433 494 575 28694.00 28694.00 5.83 635

timtab2
tb 444.26 517.35 663.03 898.50 1162 1388 1731 2165 83269.00 83592.00 1003.04 2327
mis 17.96 35.51 52.70 119.58 1091 1493 1812 2965 83592.00 83592.00 204.90 4080
mis2 14.36 21.33 29.74 46.28 536 682 827 1131 83592.00 83592.00 64.14 1395

tr12-30
tb 1.22 1.95 3.14 19.14 146 188 222 254 14210.43 14210.43 357.80 518
mis 18.83 36.41 59.49 88.98 547 669 768 860 14210.43 14210.43 123.18 1015
mis2 0.63 0.66 0.66 12.69 17 18 18 249 14210.43 14210.43 13.42 272

Table 2 Comparison of the effectiveness of various separation methods in moving the lower bound at the root node. We report the
computing time and number of iterations needed to reach 80%, 90%, 95% and 99% of the optimal root relaxation value, as well as the
total running times and number of iterations needed for convergence (within a time limit of 2,000 seconds). Times are given in CPU
seconds. (*) indicates failed cut generation due to numerical problems.
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As reported in Table 2 tb is the most efficient method only in 1 out
of 11 instances, namely aflow40, and only with little advantage over the
competitors. On the other hand, mis and mis2 are much more effective on 10
out of 11 instances, with speedups of 1 to 2 orders of magnitude. As expected,
the average density of the cuts generated by mis and mis2 is considerably
smaller than tb, see Table 3. This has a positive effect on the rate of growth
of the master solution time as a function of the number of iterations, as
reported in column Master Rate in the table.

A closer analysis of instance a1c1s1 provides some insights on the strength
of the proposed methods: at each iteration, while tb generates weak feasibil-
ity and optimality cuts, with no selection criteria for both, mis is able to
cut the current master solution with just a good optimality cut. This is how-
ever not always the best strategy: for example, in timtab1, timtab2 and
tr12-30, feasibility cuts are really crucial for the effectiveness of the method
and should be preferred—hence mis2 becomes the leading method.

A comparison between mis and mis2 shows that mis candidates as the
method of choice, as it is usually faster due to the extra computing time
that mis2 spends in generating the additional feasibility cut (at least, in our
present implementation); see Table 3. Nevertheless, as already mentioned,
there are instances such that timtab2 and tr12-30 where the extra sepa-
ration effort is rewarded by a significant improvement of the overall perfor-
mance.

6 Conclusions

We have investigated alternative cut selection criteria for Benders cuts. By
using the correspondence between minimal infeasible subsystems of an infea-
sible LP and the vertices of a so-called alternative polyhedron, we were able
to define a simple yet effective cut-generation LP allowing for the selection
of strong Benders cuts. Computational results on a set of MIPLIB instances
show that the proposed method allows for a speedup of 1 to 2 orders of
magnitude with respect to the textbook one.
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Problem Method # cuts # opt. # feas. Avg Dens. Master Rate Avg T. Sep (s)

10teams
tb 107 36 71 383 1.14E-04 1.94E-04
mis 66 0 66 53 3.97E-05 1.94E-04
mis2 66 0 66 53 3.44E-05 2.39E-04

a1c1s1
tb 5893 3714 2179 76 1.65E-04 6.01E-03
mis 914 906 8 26 2.63E-05 3.05E-02
mis2 577 296 281 14 4.13E-05 1.52E+00

aflow40b
tb 44 0 44 252 4.74E-06 4.24E-03
mis 44 0 44 242 -5.93E-06 1.86E-02
mis2 44 0 44 242 1.04E-05 1.89E-02

danoint
tb 1412 1251 161 48 3.09E-06 2.02E-02
mis 186 186 0 37 5.25E-06 8.72E-03
mis2 180 167 13 35 4.99E-06 7.38E-02

fixnet6
tb 806 523 283 46 1.05E-05 1.24E-03
mis 230 210 20 22 9.38E-06 2.01E-03
mis2 321 160 161 24 1.60E-05 9.59E-03

modglob*
tb - - - - - -
mis 3573 3557 16 31 6.74E-06 2.30E-03
mis2 3088 3077 11 29 5.84E-06 6.25E-03

momentum1*
tb - - - - - -
mis 414 383 31 143 3.18E-04 2.61E-02
mis2 - - - - - -

pp08a
tb 901 825 76 40 7.97E-06 3.14E-04
mis 696 688 8 17 3.52E-06 5.91E-04
mis2 613 540 73 16 3.45E-06 2.46E-03

timtab1
tb 2083 1042 1041 56 2.52E-06 4.37E-04
mis 1431 1354 77 17 4.31E-06 1.10E-03
mis2 1268 633 635 10 8.82E-06 4.88E-03

timtab2
tb 4609 2316 2293 103 8.98E-05 5.98E-04
mis 4080 3918 162 45 1.90E-05 3.29E-03
mis2 2783 1388 1395 23 3.79E-05 1.31E-02

tr12-30
tb 1026 513 513 144 4.13E-03 7.69E-04
mis 1015 999 16 44 3.20E-04 4.55E-03
mis2 544 272 272 19 6.75E-05 4.02E-02

Table 3 Statistics on the Benders cuts generated by the different methods. We
report the number of generated (optimality and feasibility) cuts, their average
density, the rate of growth of the master solution time as a function of the number
of iterations (standard linear regression on the master-problem running times vs.
iterations), and the average separation time in CPU seconds. (*) indicates failed
cut generation due to numerical problems.
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