
Proximity Benders:

A Decomposition Heuristic for Stochastic Programs

Natashia Bolanda, Matteo Fischettib, Michele Monacib, and Martin Savelsbergha

aGeorgia Institute of Technology, USA
bUniversity of Padova, Italy

December 7, 2015

Abstract

is eventually found and the method terminates. As convergence may require a large amount of
computing time for hard instances, the method unsatisfactory from a heuristic point of view. Proximity
Search is a recently-proposed heuristic paradigm in which the problem at hand is modified and iteratively
solved with the aim of producing a sequence of improving feasible solutions. As such, Proximity Search
and Benders decomposition naturally complement each other, in particular when the emphasis is on
seeking high-quality, but not necessarily optimal, solutions. In this paper, we investigate the use of
Proximity Search as a tactical tool to drive Benders decomposition, and computationally evaluate its
performance as a heuristic on instances of different stochastic programming problems.

1 Introduction

Stochastic Programming (SP) is an important framework for dealing with uncertainty in optimization.
SP models tend to be huge, and their solution typically requires a decomposition method to break the
model into manageable parts. Benders decomposition (Benders [3]) is one of the most widely used
approach for SP. In Benders decomposition,

Proximity Search (PS) is a general approach focused on improving a given feasible “reference solu-
tion”, and seeking to quickly produce a sequence of improving feasible solutions (Fischetti and Monaci
[10]). The approach is related to Large-Neighborhood Search (LNS) heuristics (Shaw [15]) that explore a
neighborhood defined by constraints restricting the search space, in particular to Local Branching (Fis-
chetti and Lodi [9]), which adds a constraint that eliminates all solutions that are not “sufficiently close”
to a reference solution.

The generic Mixed-Integer Linear Program (MILP) of interest has the form

(MILP ) min cTx

Ax ≥ b,
xj ∈ {0, 1}, ∀j ∈ B,
xj ∈ Z, ∀j ∈ G,
xj ∈ R, ∀j ∈ C,

where A is an m×n input matrix, b and c are input vectors of dimension m and n, respectively, and the
variable index set N := {1, . . . , n} is partitioned into B,G, and C, with B the index set of the 0-1 variables,
G the index set of general integer variables, and C the index set of continuous variables. Removing the
integrality requirement on variables with indices in B ∪ G gives the LP relaxation.

PS works in stages, each aimed at producing an improved feasible solution. In each stage, a reference
solution x̃ is given, and one seeks to improve it. To this end, an explicit cutoff constraint

cTx ≤ cT x̃− θ (1)
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is added to the original MILP, where θ > 0 is a given tolerance that specifies the minimum improvement
required. The objective function of the problem can then be replaced by the proximity function

∆(x, x̃) =
∑

j∈B:x̃j=0

xj +
∑

j∈B:x̃j=1

(1− xj) (2)

to be minimized. One then applies the MILP solver, as a black box, to the modified problem in the hope
of finding a nearby solution better than x̃ (see Algorithm 1 for more details).

Algorithm 1 Proximity Search

Let x̃ be the initial feasible solution to improve
repeat

Explicitly add cutoff constraint (1) to the MILP model
Install the new objective function ∆(x, x̃), to be minimized
Run the MILP solver on the new model until a termination condition is reached, and let x∗ be the best
feasible solution found
Refine x∗ by solving (possibly heuristically) the original MILP model after fixing xj = x∗j for all j ∈ B
Recenter ∆(x, ·) by setting x̃ := x∗, and/or update θ

until an overall termination condition is reached

A powerful variant of the above scheme, called “proximity search with incumbent”, is based on the
idea of providing x̃ to the MILP solver as a starting solution. To avoid x̃ being rejected because of the
cutoff constraint (1), the latter is weakened to its “soft” version

cTx ≤ cT x̃− θ(1− z) (3)

while minimizing ∆(x, x̃) +Mz instead of just ∆(x, x̃), where z ≥ 0 is a continuous
Computational experience confirms that PS is quite successful (at least, on some classes of problems),

due to the fact that the proximity function improves the “relaxation grip” of the model, meaning that
the solutions of the LP relaxation tend to have a large number of integer components, thus improving
the success rate of the heuristics embedded within the MILP solver. This is true, in particular, for the
MILP models where feasibility is enforced dynamically through cut generation. In fact, the solutions to
the LP-relaxation tend to be similar to the reference solution, thus most feasibility constraints are likely
to be satisfied without the need to explicitly impose them.

PS has a “primal nature”, meaning that it proceeds from a feasible solution to a “nearby” feasible
solution of improved value. As such, PS and Benders decomposition naturally complement each other,
in particular when the emphasis is on seeking heuristic solutions. In this paper, we investigate the use
of PS as a tactical tool to drive Benders decomposition, and computationally evaluate its performance
as a heuristic on instances of different stochastic programming problems.

The main contribution of our work is the development of a method that is able to produce good-
quality feasible solutions to large-scale instances of (certain types of) stochastic programming problems,
for which standard MILP solvers are unable to do so either because the instances are too big to load into
memory or the time to solve even the root node relaxation is prohibitive.

The remainder of the paper is organized as follows. In Section 2, we introduce Proximity Benders, a
variant of Proximity Search that is specifically designed to handle MILPs arising in stochastic program-
ming. In Section 3, we present a heuristic that can enhance the performance of Proximity Benders. In
Section 4, we discuss the results of a set of computational experiments that demonstrate the efficacy of
Proximity Benders on instances of three stochastic programming problems. We conclude, in Section 5,
with some final remarks and future research directions.
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2 Proximity Benders

In what follows, we will concentrate on a MILP of the form:

(P ) min cT0 y +
∑K

k=1 µk

cTk xk = µk (4)

A0y +Akxk ≥ bk k = 1, . . . ,K (5)

y ∈ Y (6)

xk ∈ Pk k = 1, . . . ,K (7)

where Y = P0 ∩ {0, 1}m and each set Pk (k = 0, . . . ,K) is a polyhedron. In other words, we assume
that problem P has a block structure allowing for a decomposition into a master problem that involves
binary variables y along with K continuous variables µk, plus K arising after fixing y, each being a
Linear Program (LP) on the (xk, µk) variables. In addition, we assume that it is not hard to determine
a feasible (sub-optimal) solution of P . MILPs of this type frequently arise in stochastic programming,
and are typically attacked by Benders decomposition.

We next describe our PS heuristic scheme for problem P . Given a feasible solution (ỹ, x̃, µ̃), PS adds
the cutoff constraint

cT0 y +
K∑

k=1

µk ≤ U − θ

to P , where U = cT0 ỹ+
∑K

k=1 µ̃k and θ > 0 is a given tolerance, and replaces the objective function with
the Hamming distance

∆(y, ỹ) =
∑

j:ỹj=0

yj +
∑

j:ỹj=1

(1− yj) (8)

with respect to ỹ. In our implementation, we used the “proximity search with incumbent” the cutoff
constraint is imposed in a soft way by introducing a new continuous variable z0 ≥ 0 with a large cost
M0 � 0 in the objective function (8), along with the constraint

cT0 y +

K∑
k=1

µk ≤ U − θ (1− z0) (9)

At any stage of the algorithm, we have a collection of previously-generated Benders cuts involving
the master variables, which we enforce by requiring that (y, µ) ∈ Γ, where Γ is the polyhedron defined
by the current collection of cuts (initially, Γ = <m+K). Therefore, the master problem has the form,

(PM (ỹ, U,Γ)) min{∆(y, ỹ) +M0z0 : cT0 y +

K∑
k=1

µk ≤ U − θ (1− z0), y ∈ Y, (y, µ) ∈ Γ}, (10)

and can be solved by any black-box MILP solver.
According to classical Benders’ decomposition, given an optimal solution of the master problem, say

(y, µ), one solves each ,

(Pk(y, µk)) min{cTk xk : Akxk ≥ bk −A0y, xk ∈ Pk}, (11)

independently to possibly derive violated cuts to be added to the master. In our implementation, we
followed the cut-generation recipe described in Fischetti et al. [11], i.e., for each k, we introduce two
additional nonnegative variables zk and νk and rewrite the corresponding as

(P̃k(y, µk)) min{Mkzk + νk : Akxk + 1zk ≥ bk −A0y,
cTk xk − νk ≤ µk,
xk ∈ Pk, zk ≥ 0, νk ≥ 0}

, (12)

where Mk � 0 is a sufficiently large penalty used to drive zk as close to zero as possible and 1 is the
vector of all ones. If the optimal solution value of P̃k(y, µk) is strictly positive, a new cut can be derived
and added to the master. Specifically, let (x∗k, z

∗
k, ν
∗
k) denote the optimal solution found for the k-th
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P̃k(y, µk). If z∗k > 0, problem Pk(y, µk) is infeasible, and one can derive a Benders’ feasibility cut of the
form

αT y ≤ γ (13)

to add to the master. Otherwise, i.e., z∗k = 0 and ν∗k > 0, a Benders’ optimality cut of the form

αT y + βµk ≤ γ (14)

can be added to the master.
Obviously, if z∗k = 0 for all k and cT0 y+

∑K
k=1 c

T
k x
∗
k < U , then one can update the incumbent (ỹ, x̃, µ̃)

and iterate proximity search starting from this new solution. A more formal description of Proximity
Benders is given in Algorithm 2.

Algorithm 2 Proximity Benders

Use a heuristic to find an initial feasible solution (ỹ, x̃) to problem P

Set U := cT0 ỹ +
∑K

k=1 c
T
k x̃k

Initialize Γ := <m+K (no Benders cuts)

while do
Solve master problem PM (ỹ, U,Γ) solution (y, µ, z0)

for all k = 1, . . . ,K do
Solve P̃k(y, µk) to get an optimal solution (x∗k, z

∗
k, ν
∗
k)

if z∗k > 0 then

Add a Benders feasibility cut from P̃k(y, µk) to the description of Γ

else if ν∗k > 0 then

Add a Benders optimality cut from P̃k(y, µk) to the description of Γ

end if
end for
if z∗1 = · · · = z∗K = 0 and cT0 y +

∑K
k=1 c

T
k x
∗
k < U then

Update ỹ := y
Update U := cT0 y +

∑K
k=1 c

T
k x
∗
k

end if
end while

A sequence of passes through the “while” loop in which the incumbent ỹ is not updated is called is
a single pass through the “while” loop where the master problem and the K are solved.

The idea of mixing Benders decomposition with local search is not new. In particular, Rei et al. [14]
use local branching to produce a pool of (possibly infeasible) integer solutions of the master problem,
from which diversified Benders cuts can be derived. However, our approach reverses the role of local
search and Benders decomposition: instead of using local search inside a Benders method, we apply a
black-box Benders solver within an external local search scheme, i.e., PS. In doing so, we modify the
objective function of the master problem, thus drastically changing the sequence of points provided by
the various masters, as well as their associated Benders cuts.

3 A repair heuristic

Due to its particular structure, finding a heuristic solution to problem P involves deciding the values of
the y variables, as the x and µ variables can easily be computed by solving a sequence of LP , provided
of course that these subproblems are feasible.
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We say that y is feasible (for problem P ) if fixing y = y does not produce an infeasible . In many
applications, the feasible y’s satisfy the following monotonicity property: let y ∈ {0, 1}m and y′ ∈ {0, 1}m
with y′ ≥ y; if y is feasible, then y′ is also feasible. This implies, in particular, that y = (1, . . . , 1) is
always a feasible (though likely very bad) solution.

Assuming monotonicity, one can easily derive a repair heuristic that starts with an infeasible y, and
iteratively increases some of its components until a feasible y′ is found. Of course, the quality of the
final solution depends on how cleverly the components to be increased are chosen. In this respect, the
following repair heuristic seems a reasonable option, and is applied in iteration of Algorithm 2 to enforce
feasibility of the current y when only a few k have z∗k > 0.

Algorithm 3 Repair Heuristic

Let y be the initial infeasible solution to repair
for all k = 1, . . . ,K do
if z∗k > 0 then

Solve auxiliary problem (P k(y)) defined by (15) and get a solution (y′, xk)
Set y = y′

end if
end for

4 Computational experiments

The Proximity Benders algorithm presented in Section 2, denoted as ProxyBenders in the following, has
been implemented in C using IBM-ILOG Cplex 12.6.1 as the MILP solver. We ran the algorithm on
different benchmark instances in order to test its effectiveness, namely:

• instances of a stochastic capacitated facility location problem described, for example, by Bodur
et al. [5];

• instances of a stochastic network interdiction problems described, for example, by Bodur et al. [5];
and

• instances of a stochastic fixed charge multi-commodity network design problem derived from those
introduced by Crainic et al. [7].

To evaluate the performance of Proximity Benders, we also considered alternative approaches and
ran, on the same benchmark instances, the following algorithms:

• IBM-ILOG Cplex 12.6.1 in its default settings (Cplex in the following) on the MILP associated
with an instance; and

•
The minimum improvement required in the cutoff constraint of ProxyBenders is set as θ = 10−5z0,

where z0 is the incumbent solution value. Thus, we use a non-aggressive policy and we let the value of
θ decrease during the execution of the algorithm. Each algorithm was run in single-thread mode with a
time limit of 1 hour per instance on an Intel Xeon E3-1220V2 running at 3.10 GHz, with 16GB of RAM.

4.1 Metrics

To compare the performance of the different heuristics, we use an indicator recently proposed in Achter-
berg et al. [1] and Berthold [4], aimed at measuring the trade-off between the computational effort
required to produce a solution and the quality of the solution itself. Specifically, let z̃opt denote the
optimal solution value for a given problem, and z(t) be the value of the best heuristic solution found at
a time t. Then, a primal gap function p can be computed as

p(t) =

{
1 if no incumbent found until time t
γ(z(t)) otherwise
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where γ(·) ∈ [0, 1] is the primal gap, defined as

γ(z) =


0 if |z̃opt| = |z| = 0,
1 if z̃opt · z < 0,

z−z̃opt
max{|z̃opt|,|z|} otherwise.

Finally, the primal integral (PI) of a run until time tmax is defined as

P (tmax) =

∫ tmax

0

p(t) dt (15)

and is actually used to measure the quality of primal heuristics: the smaller P (tmax), the better the
expected quality of the incumbent solution if we stopped computation at an arbitrary time before tmax.

We also count the number of instances for which an algorithm produced the best solution at the time
limit (#w for number of wins), the number of instances for which a solution is found that improves the
initial feasible solution (#i), and the total number of improving solutions found (#s).

4.2 Stochastic Capacitated Facility Location

Our first benchmark includes instances of a stochastic variant of the capacitated facility location problem
(CAP), as described by Louveaux [12]. In this variant, first-stage variables determine the set of facilities
to be opened before observing the actual realizations of customer demands. The second-stage variables
determine the fraction of customer demands allocated to the open facilities. Denoting by I the set
of potential facilities, by J the set of customers, and by K the set of scenarios, the problem can be
formulated as follows (see Bodur et al. [5] for further details)

min
∑
i∈I

fiyi +
1

|K|
∑
k∈K

∑
i∈I

∑
j∈J

qijx
k
ij∑

i∈I

xkij ≥ λk
j j ∈ J ; k ∈ K

∑
j∈J

xkij ≤ siyi i ∈ I; k ∈ K

∑
i∈I

siyi ≥ max
k∈K

∑
j∈J

λk
j (16)

yi ∈ {0, 1} i ∈ I
xkij ≥ 0 i ∈ I; j ∈ J ; k ∈ K

where fi and si represent the fixed cost and capacity, respectively, of facility i ∈ I, λk
j is the realized

demand of customer j ∈ J in scenario k ∈ K, and qij denotes the cost of sending a unit of demand from
facility i ∈ I to customer j ∈ J .

We used all the CAP instances considered in Bodur et al. [5], obtained using networks from the
OR-Library (Beasley [2]) and randomly generating the customers’ demands. In particular, we have 4
classes each with 4 instances with 250 scenarios and 4 classes each with 4 instances with 500 scenarios.

Table 1 reports, for each algorithm and for different time limits (namely, 100 seconds, 600 seconds
and 1 hour), the outcome of our experiments for each instance class. Instances are grouped as in Bodur
et al. [5] according to (K, CAP #), thus each row refers to 4 instances. Note that for all these instances,
the optimal solution value is known, allowing for an exact computation of the primal integral,

The results in Table 1 show that ProxyBenders Cplex for small time limits, but that it loses its edge
when more computation time is available. This is due to the fact that these instances are not extremely
hard and that all but two of them can be solved to optimality by Cplex within the 1-hour time limit.

The results above are encouraging and demonstrate the potential of Proximity Benders, but the
instances are inadequate to fully reveal the power of Proximity Benders. As mentioned, most of the
instances can be solved to optimality by Cplex in less than one hour. That is not the setting for which
is designed. Proximity Benders is designed to be used in settings where the instances are large, difficult,
and cannot be solved in a reasonable amount of time by providing the MILP formulation to a solver,
indeed for which solving the root relaxation may already be computationally prohibitive. In the next two
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subsections, we present results on instances that are (somewhat) more appropriate to show the benefits
of

4.3 Stochastic Network Interdiction

Our second set of benchmark instances among those described by Bodur et al. [5] and includes instances
of the stochastic network interdiction problem (SNIP) described by Pan and Morton [13]. In SNIP one
is given a directed graph G = (N,A) and a subset of candidate arcs D on which sensors can be installed,
so as to maximize the probability of catching an intruder that traverses some path in the graph. First-
stage decisions concern the installation of the sensors. In the second stage, a scenario corresponds to
an intruder selecting a path that has minimum probability of being detected when traversing the path
from the intruder’s origin to his destination. Denoting by K the set of scenarios, the problem can be
formulated as follows

min
∑
k∈K

pkx
k
sk∑

(i,j)∈D

cijyij ≤ b

xktk = 1 k ∈ K
xki − qijxkj ≥ 0 (i, j) ∈ D; k ∈ K
xki − rijxkj ≥ 0 (i, j) ∈ A \D; k ∈ K

xki − rijxkj ≥ −(rij − qij)ψk
j yij (i, j) ∈ D; k ∈ K

yij ∈ {0, 1} (i, j) ∈ D
xki ≥ 0 i ∈ N ; k ∈ K

where pk is the probability of scenario k, which corresponds to a path from origin sk to destination tk,
cij is the cost of installing a sensor on arc (i, j) ∈ D, b is the available budget, and qij and rij denote
the probability of failing to detect the intruder with and without a sensor on each arc (i, j), respectively.
Finally, coefficients ψk

j represent the value of the maximum-reliability path from j to tk when no sensors
are placed and can be determined by shortest-path computation. In this case too, the reader is referred
to Bodur et al. [5] for a complete description of objective function and constraints.

We focus our experiments on the more difficult instances, which are obtained by drawing rij uniform
randomly from [0.3, 0.6] and setting qij = 0.1rij (Class 3 instances) and qij = 0 (Class 4 instances) for
all (i, j) ∈ A, respectively. The available budget ranges from 30 to 90. Table 2 gives the corresponding
results.

In Figure 1, we show the best known solution value for each of the heuristics over time for one of the
instances (namely, We see that all algorithms start with the same initial solution of value 0.199, and
ProxyBenders finds many improving feasible solutions during its execution; the final one after about

4.4 Stochastic Fixed-Charge Multi-Commodity Network Design

Finally, we consider large instances of a stochastic fixed charge multi-commodity network design problem.
Given a directed network G = (N,A) and a set K of commodities, the deterministic problem seeks a
minimum cost set of arcs that allows the required amount of flow for each commodity to be send from
its origin to its destination (i.e., to satisfy demand). In the stochastic version of the problem, first-stage
binary variables determine the network design, i.e., the set of arcs to be installed, whereas second-stage
continuous variables determine the flow of a commodity along an arc for a given scenario (i.e., for a given

8
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Figure 1: The best known solution value over time for the three heuristics.

demand realization). Denoting by S the set of scenarios, the model reads as follows

min
∑

(i,j)∈A

fijyij +
∑
s∈S

ps(
∑
k∈K

∑
(i,j)∈A

ckijx
ks
ij )

∑
j∈N+(i)

xksij −
∑

j∈N−(i)

xksji = dksi i ∈ N ; k ∈ K; s ∈ S

∑
k∈K

xksij ≤ uijyij (i, j) ∈ A; s ∈ S

yij ∈ {0, 1} (i, j) ∈ A
xksij ≥ 0 (i, j) ∈ A; k ∈ K; s ∈ S,

where fij and uij denote the fixed cost and capacity, respectively, of arc (i, j) ∈ A, ckij denotes the cost
of sending one unit of commodity k ∈ K along arc (i, j) ∈ A, dksi denotes the net flow (i.e., the difference
between inflow and outflow) at node i ∈ N for commodity k ∈ K in scenario s ∈ S, and ps denotes the
probability of scenario s ∈ S. Further details about the model can be found in Crainic et al. [7].

We consider seven of the instance classes (namely, instance classes 4 through 10) used in Crainic et al.
[7], which, in turn, were derived from the set of R-instances of Crainic et al. [6]. For each instance class,
we consider five networks (namely, networks 1, 3, 5, 7, and 9) with an increasing ratio of fixed to variable
costs and total demand to capacity. For each of the 35 networks, Crainic et al. [7] generated 5 instances
with 64 scenarios. In order to have instances with a larger number of scenarios, we generate scenarios as
follows. For each commodity and for each network, we determine the minimum and maximum demand
over all scenarios considered in Crainic et al. [7]. Then, we generate the demand for the commodity in
each of the |S| scenarios by drawing uniform randomly from the interval determined by the minimum
and maximum demand.

Table 3 provides results for instances with 2, 000 scenarios. The table reports the same information
as Tables 1 and 2, but each line now refers to a specific instance. Because for many instances the optimal
solution value is not known, the primal integral has been computed with respect to the best known
solution value.

For instances, none of the heuristics was able to improve on the initial feasible solution in one hour.
For these instances all entries in the table are set to zero. For twenty instances, Cplex was unable to
even solve the LP relaxation in one hour. These instances are marked by a star.
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We see that On the other hand, ProxyBenders is reasonably effective, especially for the largest
instance classes (namely, instance classes 8, 9 and 10). When restricting ourselves to these instance
classes, we see that Cplex finds improving solutions for only . Although ProxyBenders is not guaranteed
to find a feasible solution at each iteration, using a large value Mk in problem P̃k(y, µk) enforces feasibility
in many cases. And, whenever this is not the case, the repair heuristic recovers feasibility, which may or
may not provide an improving solution.

These result reinforce that Proximity Benders should be the method of choice in situations where
high-quality solutions to very large instances of stochastic programming problems need to be found
quickly.

5 Final remarks

The computational results presented in this paper provide a proof-of-concept demonstration of the po-
tential of Proximity Benders. The computational results suggest that Proximity Benders should be the
method of choice in situations where high-quality solutions to very large instances of certain types of
stochastic programming problems need to be found quickly. This is true, in particular, for situations
in which solving the LP relaxation is already computationally prohibitive. Proximity Benders naturally
and easily parallelizes, which will further amplify its advantages and benefits.

We next mention just a few possible directions for future research. Investigating the sensitivity of
Proximity Benders to the quality of the initial feasible solution is of interest. We have used a non-
aggressive policy for setting the minimum improvement required in the cutoff constraint of Proximity
Benders. Investigating the performance of Proximity Benders for different (more aggressive) schemes for
setting and updating the minimum improvement required is of interest. Exploring whether the efficiency
of Proximity Benders can be improved by incorporating more sophisticated cut management schemes
or by not solving all in each iteration is also of interest. There are similarities between Proximity
Benders and the Feasibility Pump for finding feasible solutions to MILP (Fischetti et al. [8]). The use
of randomization is critical to the performance of the feasibility pump and, therefore, randomization
schemes for Proximity Benders, e.g., randomizing ỹ, are worth studying.

Finally, we observe that our proof-of-concept implementation did not target a specific problem, and
we anticipate that tailored implementations for specific problems would likely be far more efficient. Thus,
we expect that Proximity Benders can lead to quite effective ad-hoc heuristics for very large stochastic
programming applications.

Acknowledgments

This research of Fischetti and Monaci was supported by the University of Padova (Progetto di Ateneo
“Exploiting randomness in Mixed Integer Linear Programming”), and by MiUR, Italy (PRIN project
“Mixed-Integer Nonlinear Optimization: Approaches and Applications”). We thank Merve Bodur and
Mike Hewitt for their support and for providing the data used in the computational analysis.

References

[1] Achterberg, T., Berthold, T., and Hendel, G. (2012). Rounding and propagation heuristics for mixed
integer programming. Operations Research Proceedings 2011, pages 71–76.

[2] Beasley, J. (1990). Or-library: Distributing test problems by electronic mail. Journal of Operational
Research Society, 41:1069–1072.

[3] Benders, J. (1962-63). Partitioning procedures for solving mixed-variables programming problems.
Numerische Mathematik, 4(1):238–252.

[4] Berthold, T. (2013). Measuring the impact of primal heuristics. Operations Research Letters,
41(6):611–614.

12
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