
A Lagrangian Heuristic for Robustness,

with an Application to Train Timetabling
Valentina Cacchiani1, Alberto Caprara1, Matteo Fischetti2

1DEIS, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
e-mail:{valentina.cacchiani,alberto.caprara}@unibo.it

2DEI, University of Padova, Via Gradenigo 6/A, I-35131 Padova, Italy
e-mail:matteo.fischetti@unipd.it

Abstract

Finding robust yet efficient solutions to optimization problems is a major practical issue
that received large attention in recent years. Starting with stochastic programming, many of
the approaches to robustness lead to a significant change in the problem formulation with respect
to the non-robust (nominal) case. Besides requiring a much larger computational effort, this
often results into major changes of the associated software.

Lagrangian heuristics form a wide family of methods that work well in finding efficient (i.e.,
low cost) solutions for many problems. These methods approximately solve a relaxation of the
problem at hand through an iterative Lagrangian optimization scheme, and apply several times
a basic heuristic driven by the Lagrangian dual information (typically, the current Lagrangian
costs) so as to hopefully update the current best feasible solution. In this context, the underlying
Lagrangian optimization iterative method has the main purpose of producing “increasingly reli-
able” Lagrangian costs, while diversifying the search in the last iterations, when the Lagrangian
bound is very close to convergence.

The purpose of this paper is to propose, for the first time to the best of our knowledge, a very
simple modification of the Lagrangian optimization scheme capable of dealing with robustness.
This modification is based on two simple features: (a) we modify the problem formulation by
introducing artificial parameters intended to “control” the solution robustness; and (b) during
Lagrangian optimization, we dynamically change the weight of the control parameters so as to
produce subproblems where robustness becomes more and more important. In this way, during
the process we can easily collect a set of, roughly speaking, “Pareto optimal” heuristic solutions
that have a different tradeoff between robustness and efficiency, and leave the final user the
choice of the ones to analyze in more details—e.g., through a time-consuming validation tool.

As a proof-of-concept, our approach is applied to the well-known aperiodic Train Timetabling
Problem (TTP) on a corridor, and is computationally analyzed on real-world test cases from
the Italian Railways, showing that it produces within much shorter computing times solutions
whose quality is comparable with those produced by existing approaches to robustness. This
proves the effectiveness for the specific application, suggesting that a simple modification of
existing Lagrangian heuristics is a very promising way to deal with robustness in many other
cases.

Keywords: Lagrangian Heuristics, Robustness, Train Timetabling, Railways Optimization, Com-
putational Analysis.

1 Introduction

Finding robust yet efficient solutions to optimization problems is a major practical issue that
received large attention in recent years. The first approach in this direction is the use of stochastic
programming, in which not only the so-called nominal scenario, but also all the alternative ones,

1

along with an associated probability, are explicitly considered in the problem formulation. Of
course, this approach results in a much larger model than in the nominal case, whose solution is
unavoidably way more time consuming. Moreover, any solution software for the nominal problem
requires major modifications (and possibly to be rewritten from scratch) to be adapted to the
robust case according to stochastic programming. Although alternative approaches to robustness
exist, that tend to be less cumbersome than stochastic programming, for many of them these two
aspects remain, namely the computing times are much higher and the software modifications are
major with respect to the nominal case.

Lagrangian heuristics form a wide family of methods that work well in finding efficient solutions
for many problems. These methods approximately solve a relaxation of the problem at hand
through an iterative Lagrangian optimization scheme. During execution, a basic heuristic driven
by the Lagrangian dual information (typically, the current Lagrangian costs) is applied several
times so as to hopefully update the current best feasible solution. In this context, the underlying
Lagrangian optimization iterative method has the main purpose of producing “increasingly reliable”
Lagrangian costs, while diversifying the search in the last iterations, when the Lagrangian bound
is very close to convergence.

The main goal of the present paper is to investigate the performance of a simple modification
of a given Lagrangian heuristic, that is able to cope with robustness. In doing so, we expect to
obtain a rather cheap (in terms of programming effort) yet effective (in terms of both solution cost
and robustness) heuristic, that can be competitive with other approaches to robustness from the
literature. To the best of our knowledge, this approach is new. On the other hand, note that our
aim is not to introduce a new formal concept of robustness, but rather to borrow from exiting ones,
adapting them to be dealt with within the Lagrangian framework.

Our starting observation was that the Lagrangian optimization scheme is “natively” suited to
deal with robustness, provided that two simple features are embedded into it: (a) the problem
formulation is modified by introducing artificial parameters as “control variables” for solution ro-
bustness; and (b) during Lagrangian optimization, the weight of the control variables is gradually
increased so as to produce subproblems where robustness becomes more and more important. In
this way, during the process we can easily collect a set of, roughly speaking, “Pareto optimal”
heuristic solutions that have a different tradeoff between robustness and efficiency, and leave the
final user the choice of the ones to analyze at a later time in more details—e.g., through a time-
consuming validation tool.

To test our method, we focused on a railways problem that is often attacked through Lagrangian
heuristics, namely, the Train Timetabling Problem (TTP). This problem has been widely studied
both in its periodic (i.e., cyclic) and aperiodic versions. Most of the work from the literature deals
with the nominal problem, where uncertainty is not taken into account. Here, we are given a
set of “ideal timetables” for a set of trains, that however cannot be implemented due to capacity
restrictions. The goal is to change these ideal timetables as little as possible, while satisfying the
track capacity constraints (trains can be cancelled if needed).

As briefly reviewed in Section 2, different definitions (and measures) of robustness have been
applied to TTP. For the purpose of the present work, we decided to build on the recent approach
of Fischetti, Salvagnin and Zanette [11], using the same robustness concepts and measures. The
proof-of-concept here is to show how a relatively minor modification of a “nominal” Lagrangian
heuristic is able to produce solutions with a comparable (or even better) robustness than in [11],
but within a significantly shorter computing time. Our method is tested on real-world instances of

2

the Italian Railways. The robustness of the heuristic solutions found is measured, a posteriori, by
using the same simulation-based validation tool as in [11]. In spite of its simplicity, the proposed
approach turns out to be rather effective and (at least) competitive with other more sophisticated
methods. As expected, one of the main advantages of our method is that robust solutions require
only a small computational overhead with respect to the nominal problem, so large scale instances
can be attacked. In addition, the method produces several robust solutions with different efficiency
and robustness levels, among which one is allowed to choose.

Note that the adaptation of the Lagrangian optimization scheme to deal with robustness had
to be carefully defined for the specific problem at hand. On the other hand, we are convinced that
analogous, specific, but still minor adaptations can be found for other relevant problems, although
this is out the scope of the present paper.

The paper is organized as follows. The main literature on robust TTP is briefly reviewed
in Section 2. In Section 3 we formally describe the nominal version of our TTP, and illustrate a
known time-space graph representation of the problem along with an associated ILP formulation. In
Section 4 we modify the ILP formulation by adding the “control variables” to deal with robustness,
whereas in Section 5 we describe our Lagrangian heuristic algorithm. Computational experiments
on real-world instances from Trenitalia (the main Italian railways operator for passengers) are
presented in Section 6. Conclusions and future research are finally discussed in Section 7.

2 Literature on Robust TTP

In this section, we review the main papers investigating the concept of robustness related to TTP.
The reader interested in the various notions of robustness for railway optimization in general is
referred to, e.g., [1], whereas surveys on the nominal TTP, in both periodic and aperiodic variants,
can be found in [1, 6, 8].

Roughly speaking, a TTP solution is considered to be robust if it avoids delay propagation as
much as possible. A common way to avoid delay propagation is to introduce buffer times in the
planning phase. Buffer times correspond to empty time slots in the time schedule of the train,
used to absorb a possible delay. The question is how much and where the buffer times have to be
inserted, so as to guarantee a good tradeoff between the nominal quality (efficiency) and the delay
resistance (robustness).

A stochastic programming approach was used by Kroon et al. in [12] for the periodic version
of TTP, and tested on real-world instances from NS (the main operator of passenger trains in the
Netherlands). Computational experiments showed that the robustness of a timetable can greatly
be improved by only minor modifications of the timetable, obtaining rather stable results under
variation of the intensity of the disturbance distributions.

Fischetti and Monaci [10] later proposed a general heuristic scheme for robustness called Light
Robustness. A set of slack variables was used to measure (an estimate of) the solution robustness,
and their sum was minimized in the objective function. In addition, a maximum worsening of
the solution efficiency with respect to the best nominal value was imposed as a hard constraint.
For TTP, this approach was implemented by Fischetti et al. in [11] and compared with stochastic
programming methods. In their work, TTP was modelled as a Periodic Event Scheduling Problem
(PESP) (see [15]), adapted for the aperiodic case, and a validation tool was applied to assess
(off-line) the quality of the final robust solution in terms of delay absorption.

The general notion of Recoverable Robustness was introduced by Liebchen et al. in [13] and

3

applied in the TTP context. This framework combines recovery policies and robust planning in
the same concept. It deals with a limited set of scenarios (arising, e.g., from uncertainty in driving
and stopping times) and of recovery algorithms. The new notion was also used by D’Angelo et
al. in [9] for the case of TTP on single line corridors. These authors proposed an algorithm that
solves the problem of planning robust timetables when the input event activity network topology
is a tree. The algorithm was tested on real-world instances of the Italian Railways and the “price
of robustness” was computed with respect to different scenarios.

Liebchen et al. in [14] also addressed the robust version of the periodic TTP. Delay resistant
timetables are computed by means of an objective function that lies in between the traditional
timetabling objective and the delay management objective. The authors evaluated the delay resis-
tance of a timetable under several delay scenarios, and tested their method on real-world data of a
part of the German railway network of Deutsche Bahn AG.

A genetic robust TTP algorithm was developed by Tormos et al. in [17] and tested on real-world
instances of the Spanish Rail Network. It focused on an efficient allocation of time buffers so as
to obtain timetables that are less sensitive to disturbances, while keeping the total travel time at
satisfactory values.

3 Our nominal TTP

In this section we describe the nominal TTP that we consider in this paper and briefly recall, for
the sake of clarity, a formulation based on a time-space graph representation of the problem. We
refer the reader to Caprara et al. [7] for a detailed description.

In what follows we focus on the study of TTP on a corridor, i.e., on a single one-way line
connecting two major stations. Our method easily generalizes to railway networks of arbitrary
topology, as illustrated in [4], but here we restrict to the corridor case in order to be able to
compare with the method of [11] and to use the associated validation tool. We are given a sequence
of stations S = {1, . . . , s} along the corridor, 1 being the first station and s the last one, and a
set of trains T , each having to travel along a subsequence of stations (i.e., not necessarily from
1 to s). For each train an ideal timetable (i.e., the timetable suggested by a train operator)
is also given. In the nominal TTP the aim is to change the ideal timetable for the trains “as
little as possible”, while satisfying the track capacity constraints, imposing a minimum headway
time between two consecutive departures from a station and between two consecutive arrivals at a
station, and allowing overtaking only within stations. To obtain a feasible timetable one is allowed
to change the departure of any train from its first station (shift) and/or to increase the stopping
time in one or more of the visited stations (stretch). Each train is assigned an ideal (positive) profit
which is gained if it is scheduled according to its ideal timetable. The profit values, assigned by the
train operators, depend on the type of the train (intercity, regional, etc.): a higher profit means
that the train operator is willing to schedule the corresponding train according to the suggested
ideal timetable (without any change). The profit is decreased (according to a linear function) if
shift and/or stretch are applied; if the profit becomes null or negative, the train is cancelled. Shift
and stretch penalty functions are given on input, defined according to the suggestions of the train
operators.

A common approach to deal with the nominal TTP [7] is to discretize the time horizon (e.g., by
considering one time instant for each minute in a day) and to formulate the problem on a time-space
directed graph G = (V,A). Each node corresponds to a possible time instant where a train can

4

depart from or arrive at a station along the line. In addition, we consider a dummy source node
σ and a dummy sink node τ . Each arc in A represents the travel of a train from a station to the
next one (segment arc), or the stop of a train at a station (station arc). Node σ is connected to
every node corresponding to a possible departure of a train from its first station, while every node
corresponding to a possible arrival of a train at its last station is connected to node τ . Given the
graph representation above, each feasible timetable for a train corresponds to a suitable path from
σ to τ in G. In Figure 1, copied from [7], we show an example of the time-space graph G, for a
corridor with 4 stations and 3 trains. Time is represented on the horizontal axis. Each station is
represented by two lines, except from the first station and the last station. Nodes on the station
lines correspond to departure and arrival time instants. Train t1 departs from station 2, stops in
station 3 and arrives in station 4; train t2 departs from station 1, stops in stations 2 and 3 and
arrives in station 4; train t3 departs from station 1, stops in station 2 and arrives in station 3. In
Figure 1, we show three feasible paths (i.e., timetables) from σ to τ for the three trains.

station 1

station 2

station 3

station 4

b

b

b b
b

b
b b

b

b
b b

b

σ

τ

t1 t2 t3

-
time

A
A
A
A
A
A
AU

J
J
Ĵ

JĴ

@
@@R

PPPPPPPPPq

b

PPPPPPPPq

H
HHHHj

@
@
@R

ZZ~

A
A
AU

@@R

A
A
AU
Q

Q
Q

QQs

b
A
A
AU

?

B
B
BN

@
@

@
@

@
@

@@R

b

Figure 1: An example of time-space graph G (with s = 4, |T | = 3).

We next introduce some further notation.

- At ⊆ A is the set of the arcs in A that may be used by paths for train t ∈ T ;

- xa is a binary variable that has value 1 if arc a ∈ At is selected in the solution for train t ∈ T ,
and 0 otherwise;

- pa is the profit gained if arc a ∈ At is selected in the solution: if arc a connects σ to a node
of the first station of the train, then pa corresponds to the ideal profit of the train minus the
shift penalty; for any station arc a, pa is the stretch penalty; pa is null for any other arc;
notice that pa can be positive, null or negative for any arc a that connects σ to a node of
the first station of the train, depending on the shift penalty; as to station arcs, pa is always
negative because it represents the penalty for increasing the stopping time at the station;

- C is the collection of all the cliques of pairwise incompatible arcs, due to track capacity
constraints.

5

The ILP formulation then reads:

max
∑
t∈T

∑
a∈At

paxa, (1)

∑
a∈δ+(σ)∩At

xa ≤ 1, t ∈ T, (2)

∑
a∈δ+(v)∩At

xa −
∑

a∈δ−(v)∩At

xa = 0, t ∈ T, v ∈ V \ {σ, τ}, (3)

∑
a∈C

xa ≤ 1, C ∈ C, (4)

xa ∈ {0, 1}, a ∈ A. (5)

Objective function (1) maximizes the sum of the profits of the arcs associated with each path in
the solution. Constraints (2)-(3) impose to have at most one path from source σ to sink τ in G
(i.e., a feasible timetable) for each train t ∈ T . Finally, the exponentially many clique constraints
(4) avoid the selection of incompatible arcs, thus enforcing the track capacity restrictions.

The resulting Lagrangian problem then calls for a set of maximum Lagrangian profit paths for
the trains, taking into account the original profit (i.e., the ideal profit decreased according to the
shift and/or stretch that occurs) and the penalties for the relaxed constraints. If the maximum
Lagrangian profit of a path for a train is nonpositive, then the train is not scheduled in the solution.

It is worth mentioning that an alternative equivalent formulation is used in [7] and in the
subsequent [4, 5], as well as in our implementation, where node (instead of arc) variables are
introduced to express the track capacity constraints (4) to be relaxed in a Lagrangian way. For the
purposes of the current presentation, we will stick to the formulation with (4) since it is much more
convenient to illustrate, and everything adapts in an obvious way to the model actually used.

4 Our robust TTP

A main drawback of the nominal TTP illustrated in the previous section is that it does not take into
account, in the planning phase, possible delays that can occur at an operational level. These delays
can strongly affect the quality of the solution or even make it infeasible. For example, it may become
necessary to change (or even cancel) the scheduled timetable for some trains, thus deteriorating the
quality of service to the customers. On the other hand, all of the approaches to robustness listed
in Section 2 tend to share the two main drawbacks mentioned in the introduction, namely their
application generally requires significant changes in the existing software for the nominal TTP as
well as much higher computing times.

We now describe how to modify model (1)-(5) so as to get robust solutions that take the possible
presence of delays into account.

As already mentioned, delay propagation is typically reduced by means of buffer times, i.e.,
of idle times inserted in the timetables. In our formulation we consider fixed travel times, hence
buffer times correspond to station stops lasting longer than required: “short” delays can hopefully
be absorbed by the buffer time, thus retaining the feasibility of the schedule. On the other hand,
allowing buffer times that can absorb even “very long” (less likely to occur) delays would be a too
conservative choice and may produce inefficient solutions that are not acceptable in practice.

6

The aim of the robust problem is therefore a bi-objective problem: maximize the profit of the
scheduled trains as in the nominal problem (efficiency), but also maximize buffer times (robustness).

Our approach borrows from Light Robustness [10] the idea of estimating the robustness of a
solution through the slack variables associated with its constraints. In Light Robustness, “soft”
constraints are imposed in order to have at least a certain given additional time distance (w.r.t. the
minimal one) between any two events that occur at a station (i.e., two consecutive departures of
trains from a station). In order to guarantee feasibility, slack variables are introduced for the new
constraints and minimized in the objective function. Our approach works in a similar way, however
the additional desired time distances are not fixed, but determined on the fly by the approach
itself. In addition, contrarily to Light Robustness, we do not impose an explicit constraint on the
maximum efficiency loss.

To be more specific, in our TTP model the need of inserting buffer times corresponds to fa-
voring “short” stretches. So, we attach an artificial prize (parametric weight) to the station arcs
representing a stopping time lasting longer than the minimum stopping time, but only within a
fixed threshold (set to 15 minutes in our tests). In other words, the artificial prizes will tend to
increase the stopping time in each station up to 15 minutes, while longer stops will not receive any
additional prize because their utility is questionable.

Our robust version of ILP model (1)-(5) includes constraints (2)-(5) but uses the new objective
function:

max
∑
t∈T

∑
a∈At

paxa + Fk
∑
t∈T

∑
a∈At

btaxa (6)

where Fk is a dynamically-updated weighting factor (to be defined later), and bta ≥ 0 is a parameter
(also to be defined later) giving an additional profit depending on the amount of buffer time
associated with arc a for train t. The new objective function is of multi-objective type, that takes
the efficiency of a solution (i.e., its nominal cost given by the first sum) and its estimated robustness
(second sum) into account.

5 Lagrangian robustness

In this section we describe the heuristic algorithm that we use to solve the robust model of the
previous section. The algorithm follows closely the one of [7]. In fact, as anticipated in the
introduction, our aim is to design just a minor modification of an existing Lagrangian heuristic
that leads to a sound framework to produce alternative solutions taking robustness into account.

We consider the Lagrangian relaxation of constraints (4) for the model defined by the new
objective function (6) subject to constraints (2)-(5), and solve it within a simple subgradient opti-
mization framework to determine near-optimal Lagrangian multipliers. The Lagrangian objective
function reads:

max
∑
t∈T

∑
a∈At

(pa + Fkb
t
a)xa +

∑
C∈C

λC(1−
∑
a∈C

xa) =
∑
t∈T

∑
a∈At

ptaxa +
∑
C∈C

λC (7)

where factor Fk now depends on the subgradient iteration counter k, while for t ∈ T and a ∈ At we
have pta := pa + Fkb

t
a −

∑
C∈Ca λC , where Ca ⊆ C denotes the subfamily of cliques containing arc a.

The Lagrangian relaxation thus calls for a maximum profit path in G for each train. Constraints
(4) are handled via a dynamic constraint generation scheme that identifies, at each iteration of
the subgradient optimization procedure, some of the constraints that are violated by the current

7

Lagrangian solution and adds them to a “pool” containing the constraints that were violated
“recently”. At each iteration of the subgradient procedure, we also apply a constructive heuristic
algorithm based on the Lagrangian profits, that now includes the parametric prize bta given to
station arcs. The resulting feasible solution is characterized by an efficiency value and a total
buffer time, the latter figure being a rough estimate of its level of robustness. In addition, we
implemented a simple local search procedure, which tries to refine every heuristic solution we find:
in particular, it tries to reschedule any train that was subject to shift and/or stretch, while keeping
the others fixed, and while taking into account the goals of efficiency and robustness.

At this point we have our Lagrangian heuristic, plus a set of “control parameters” bta (and Fk)
to enforce robustness. Based on the work in [12], who studied the optimal distribution of buffers
on a single corridor, we apply the following formula for the definition of bta:

bta := min{qta,M} · (1− e−λp)(len(t)− p) (8)

Here, for a station arc a, qta is the number of minutes of buffer when used by train t; e.g., if a
connects an arrival node at time 8:00am to a departure node at time 8:15am and the minimum
waiting time for train t at that station is 2 minutes, the buffer time qta is 13 minutes. Moreover,
for a segment arc a, qta := 0, recalling that travel times between consecutive stations cannot be
increased with respect to the ideal timetable. Finally, M and λ are parameters (M = 15 and λ = 3
in our tests), len(t) is the number of stations visited by train t, and p is the position of arc a for
train t (i.e., p = 1 if arc a arises at the very beginning of train t, and p = len(t) if it arises at the
very end). In this way, a different weight is given to the buffer times, based on the position of the
stopping arc along the path. Indeed, it turns out that it is not worthwhile to give a large weight in
the very beginning of the path of the train (the buffer times may be unused because the probability
to face a delay in the early sections is low), nor in the very end of the path of the train (it may be
too late for the buffer times to be useful). As to Fk, we start with F0 := FstartEff (= 0.1), then
increase it to FstartRob (= 0.5) after KiterEff (= 900) subgradient iterations, and then increase it
by Fstep (= 0.5) every KiterRob (= 100) subgradient iterations, until Fk > Fend (= 2.0). In this way,
we concentrate on efficiency in the first iterations and give a larger weight to robustness later on.

Not surprisingly, solutions with large total buffer time are not necessarily more robust than
those with shorter buffers, because robustness also depends on where the buffer times are actually
placed. In order to evaluate the robustness of a given solution in a more precise way, an external
validation tool such as the one developed by [11] can be used. Given a TTP solution (the “published
timetable”), this tool considers different random perturbation scenarios (the perturbation affecting,
e.g., the duration of same train legs). For each scenario, the tool updates the published timetable
to make it feasible under the occurred perturbation, and computes the total delay incurred with
respect to the published one. The tool assumes that all the trains in the solution have to be
scheduled, and that all train precedences are fixed (i.e., major changes of the train circulation are
not taken into account). The average total delay across all scenarios is finally computed, which is
a reliable measure of robustness—the lower the average total delay, the more robust the timetable.
For a detailed description of how the perturbation scenarios are generated, we refer the reader to
Sections 4.2 and 7 of [11].

Unfortunately, the validation tool requires considerable computing time, so it cannot be used
“on the fly” to evaluate the robustness of the heuristic solutions computed at each subgradient step.
We therefore determined a simple “rule of thumb” to select the best solutions in terms of efficiency
and robustness among the several ones generated during subgradient optimization. On one hand,

8

we want to take the efficiency of the solution into account, so as to avoid a large worsening of
the nominal objective. Thus, we consider different efficiency thresholds with respect to the best
nominal value (99%, 95% and 90% as in [11]). On the other hand, we want to select solutions that
have a good quality in terms of robustness. Thus, among the solutions that respect the efficiency
threshold, we determine which are the “most robust” ones, based on the simple formula below.
We observe that a solution is robust if, for each pair of trains, there is “enough time” between the
departure/arrival time instants at each station that they both visit (so that delay propagation is
less likely to occur). This is formalized in the objective function used in [11], which is defined as
follows: ∑

(i,j)∈E

max{0, wij(∆− (θj − θi −mij))}. (9)

Here, E is the set of all the pairs of events (departures or arrivals) occurring at the same station,
θi and θj are the corresponding time instants in chronological order, mij is the minimum time
distance between the two events (due to the track capacity constraints), and ∆ is the number of
additional minutes that we require between any two events. Moreover, wij := wi +wj is the weight
of the pair of events, where wi := (1 − e−λp)(len(t) − p), already used in (8), t being the train
associated with event i and p the position of event i for t (and the same for wj). In other words, for
each station, we consider all the pairs of departure/arrival events and the additional time distance
(θj − θi−mij) that is left between them with respect to mij : if this distance is less than ∆ (= 3.5)
minutes, then we weigh the difference in the total sum according to the position of the events in
the timetables of the corresponding trains. The robustness of a solution can then be evaluated by
considering this sum (the smaller the better), which we call the robustness sum.

In [11], objective function (9) can easily be made linear in the θi variables used, associated with
events, whereas in our case it would be quadratic in the xa variables. Recalling that the main
purpose here is to consider a simple adaptation of the nominal method in [7], in the optimization
we stuck to the rougher robustness estimation provided by (6), linear in the xa variables, and used
(9) only in order to evaluate a posteriori the robustness of each solution found. In fact, we also
tried simple linearizations of (9) in our optimization process, which requires the determination of
an optimal path for each train both to solve the Lagrangian relaxation for the current multipliers
and to compute the heuristic solutions. Given that the results were not as good as those using (6),
we decided to stick to the latter.

As already mentioned, and following [11], to select the solutions to validate we adopt the
following rule: we consider different efficiency thresholds with respect to the best nominal solution
value (99%, 95% and 90%), and for each of them we validate only the solution whose efficiency
is above the threshold and whose robustness sum is smallest. In case no solution found is above
the threshold, we validate the one with the highest efficiency. In the selection process we consider
both the solutions obtained before and after the simple local search procedure. Of course, many
other solutions with different values of efficiency are obtained by our method and not validated:
by providing these on output anyhow, a user could adopt many other criteria to choose the most
desirable solution (among a large set of solutions), depending on the specific requirements.

Algorithm 1 illustrates the general structure of our robust Lagrangian approach (RobuLag).

9

Algorithm 1: Robust Lagrangian approach (RobuLag)—the basic scheme

1 C := ∅ (set of active clique constraints (4));
2 F := Fstart (current robustness factor Fk in objective function (7));
3 S := ∅ (set of candidate TTP feasible solutions);
4 i := 0 (sub-iteration counter);
5 while (F ≤ Fend) do
6 solve relaxed model (6),(2)-(5) (i.e., determine the maximum Lagrangian profit path in

G for each train) and obtain Lagrangian solution r;
7 compute a heuristic solution s based on Lagrangian profits (i.e., determine the maximum

Lagrangian profit path in G for each train, satisfying all constraints (4));
8 add s to S, compute its robustness sum by formula (9), and store its value;
9 refine solution s by the local search procedure and obtain s′;

10 add s′ to S, compute its robustness sum by formula (9), and store its value;
11 find and add to C some clique constraints violated by r (setting to zero their Lagrangian

multiplier λC);
12 update Lagrangian multipliers λC , C ∈ C (subgradient step);
13 set i := i+ 1;
14 if (i > KiterEff) then F := FstartRob, i := 0 ;
15 if (i > KiterRob) then F := F + Fstep, i := 0;
16 end
17 foreach efficiency threshold value θ ∈ {99%, 95%, 90%} w.r.t the best nominal one do
18 select a solution s ∈ S with efficiency above θ and minimum robustness sum;
19 if no such solution exists then select a solution s ∈ S with highest efficiency;
20 call validation tool on s and return s

21 end

6 Computational results

In this section we present computational experiments on real-world instances provided by the Italian
Railways. Our Lagrangian heuristic algorithm was coded in C and developed in the Microsoft Visual
Studio 6.0 environment. All tests were performed on a PC with a Pentium IV 3.2 GHz processor
with 2GB memory. We focused our attention on the instances listed in Table 1, all associated with
main corridors where several trains transit. All CPU times reported in the tables are expressed
in seconds. In each table we report the efficiency of the solution (Effic.) and the corresponding
Average Total Delay (ATD), as computed by the long-run validation. In particular, for our method
we report the values for the three robust solutions associated with the three efficiency thresholds.
Note that the reported solutions with smallest robustness sum associated with distinct thresholds
may coincide, and in fact this happens in a few cases. In addition we report the total computing
time.

A comparison of our method with the method for the nominal TTP from which it was derived
(see [7]) is shown in Table 2. As expected, the efficiency that we get for the robust solutions is
lower than the nominal one, but the gain in robustness is quite significant (especially when we
consider solutions with lower efficiency) and confirms effectiveness of the proposed approach. The
computing times are acceptable since the problem has to be solved in a planning phase.

10

Instance Corridor #trains #stations
MdMI1 Modane-Milan 100 54
MdMI2 Modane-Milan 200 54
MdMI3 Modane-Milan 300 54
MdMI4 Modane-Milan 400 54
ChMI Chiasso-Milan 194 16
ChRo Chiasso-Rome 41 102

Table 1: Testbed instances from the Italian Railways.

Nominal Lagrangian Heuristic Robust Lagrangian Heuristic
Instance Effic. ATD Effic. ATD
MdMI1 9,316 17,027 9,240 14,657
MdMI1 8,935 12,902
MdMI1 8,621 12,743

total CPU time = 566 total CPU time = 2,299
MdMI2 18,542 37,365 18,357 35,094
MdMI2 17,668 26,889
MdMI2 16,723 24,419

total CPU time = 1,830 total CPU time = 5,136
MdMI3 24,638 45,145 24,412 44,738
MdMI3 23,410 37,733
MdMI3 22,181 32,094

total CPU time = 3,479 total CPU time = 9,365
MdMI4 27,259 53,059 26,989 49,798
MdMI4 25,958 44,432
MdMI4 24,540 38,095

total CPU time = 5,227 total CPU time = 12,150
ChMI 20,816 3,068 20,618 2,906
ChMI 20,252 2,739
ChMI 20,252 2,739

total CPU time = 519 total CPU time = 1,471
ChRo 5,567 39,181 5,515 35,241
ChRo 5,418 33,658
ChRo 5,418 33,658

total CPU time = 462 total CPU time = 1,753

Table 2: Efficiency value and total average delay for the Lagrangian nominal and robust solutions,
respectively.

In Table 3 we present a comparison between our approach and the method proposed in [11],
that we call FSZ in the sequel. As already mentioned in the introduction, our purpose here is not
to show that our approach outperforms all the methods for robust TTP available in the literature,
but rather to show that, although it is a straightforward simple-minded modification of an existing
approach for the nominal case, it yields comparable (in fact, better) results with respect to a

11

state-of-the-art method such as FSZ (whose code was accessible to us).
FSZ works as follows. One starts by receiving on input the best nominal solution obtained

by the Lagrangian heuristic of [7], and, in a first phase, tries to improve it (without caring about
robustness) with a time limit of 2 hours by applying a commercial MIP solver (ILOG Cplex 11.0) to
the aperiodic counterpart of the PESP model. Then, in a second phase, the best nominal solution
found is provided as a first incumbent to the MIP solver, and one solves a Light Robustness model,
in which the new objective function is the minimization of (9), with the explicit constraint that
the efficiency be at least equal, respectively, to the three thresholds that we use in our selection,
leading to three distinct FSZ solutions. The time limit for this second phase is again 2 hours.
Note that, with respect to the input nominal solution, event precedences are left unfixed but train
cancellations are not allowed in both phases.

With respect to FSZ, working in two separate phases, our Lagrangian approach works in an
integrated way: it finds a feasible schedule for the trains by optimizing efficiency and robustness at
the same time, being also allowed to cancel trains during all the process. For this comparison, we
considered as best nominal efficiency value the one found by FSZ at the end of the first phase, and
this is the reason why the results for our method are different from those in Table 2. According to
Table 3, our Lagrangian heuristic turns out to be effective in producing robust solutions of good
quality, that often dominate the FSZ ones (dominated solutions are marked by d). In particular,
out of 18 solutions (6 instances times 3 efficiency thresholds), 13 are dominated by our method,
sometimes by a large amount. In the remaining 5 cases, for 2 solutions the ATD values obtained
by our method and by FSZ are very similar but the efficiency values that we find are higher. In
addition, the computing time of our method is generally much shorter.

In Table 4 we also present a comparison of the two methods when imposing a shorter time limit
of 20 minutes, so as to emphasize that our approach can be very attractive when it is necessary to
have a robust solution quickly—or when attacking larger instances. In our approach, we limited to
100 (rather than 900) the number KiterEff of subgradient iterations to find a high-efficiency robust
solution. Again, in most cases (13 out of 18) our robust solutions strictly dominate the FSZ ones,
while the opposite arises only once.

In order to show how the two methods scale when the number of trains increases, we also tested
them on the instances obtained by combining two or more instances of the line Modane-Milan.
In particular, we considered instances having from 500 up to 1000 trains. In Table 5, the results
obtained by the proposed method are compared with those obtained by applying FSZ [11]. In our
case, we halved the values of KiterEff (= 450 here) and KiterRob (= 50 here) as the subgradient
iterations are quite time consuming for these sizes. As it can be seen, in 14 out of 18 cases the
solutions of FSZ are dominated. In addition, the computing time of the our method is notably
shorter.

7 Conclusions and future research

In this paper we have shown how to modify an existing Lagrangian heuristic so as to produce
robust solutions. To this end, two simple features need to be implemented: (a) introduce artificial
parameters intended to “control” the solution robustness; and (b) during Lagrangian optimization,
dynamically update the weight of the control parameters so as to produce subproblems where
robustness becomes more and more important. In this way, during the process one can easily
collect a set of, roughly speaking, “Pareto optimal” heuristic solutions that have a different tradeoff

12

Robust Lagrangian Heuristic FSZ [11]
Instance Effic. ATD Effic. ATD
MdMI1 9,240 14,657 9,209d 16,683d

MdMI1 8,935 12,902 8,837d 14,070d

MdMI1 8,621 12,743 8,372 12,675
total CPU time = 2,299 total CPU time = 29,366

MdMI2 18,465 37,202 18,437 36,376
MdMI2 17,737 30,538 17,692d 32,355d

MdMI2 16,818 23,319 16,761d 29,716d

total CPU time = 5,136 total CPU time = 30,630
MdMI3 23,410 37,733 23,313d 45,465d

MdMI3 22,493 33,485 22,371d 40,433d

MdMI3 21,398 29,630 21,193d 37,673d

total CPU time = 9,365 total CPU time = 32,279
MdMI4 27,230 51,691 27,170d 52,202d

MdMI4 26,081 44,573 26,072d 47,527d

MdMI4 24,708 37,287 24,700d 44,258d

total CPU time = 12,150 total CPU time = 34,027
ChMI 20,252 2,739 20,041d 3,328d

ChMI 20,252 2,739 19,231 2,675
ChMI 20,252 2,739 18,219 2,703

total CPU time = 1,471 total CPU time = 29,319
ChRo 5,515 35,241 5,512d 37,332d

ChRo 5,418 33,658 5,289d 35,081d

ChRo 5,418 33,658 5,011 31,849
total CPU time = 1,753 total CPU time = 29,262

Table 3: Comparison on efficiency value and average total delay between our Lagrangian heuristic
and the method in [11].

between robustness and efficiency, and leave the final user the choice of the ones to analyze in more
details—e.g., through a time-consuming external validation tool.

Our approach has been applied to the well known (aperiodic) Train Timetabling Problem (TTP)
on a corridor, and has been computationally analyzed on real-world test cases from the Italian
Railways, with a comparison with the method recently proposed by [11]. It turned out that, in
spite of its simplicity, our approach is very competitive and often obtains robust solutions of good
quality in very short computing time.

Future research can be devoted to validate our approach to robustness on other classes of
problems. In particular, the application of our method for the case in which the paths to be
followed by trains are not fixed in advance—in a general railway network—could be investigated,
with the aim of understanding whether the availability of detours with not too long travel times
can lead to more robust solutions.

Still in the railways domain, another direction of research can be to address robustness for
rolling stock optimization or optimization of train paths within large railway stations.

Finally, an interesting research topic is the design of fast heuristics for multi-objective optimiza-

13

Robust Lagrangian Heuristic FSZ [11]
Instance Effic. ATD Effic. ATD
MdMI1 9,249 14,724 9,229d 16,652d

MdMI1 8,991 13,748 8,856d 14,088d

MdMI1 8,672 12,955 8,390 12,621
MdMI2 18,307d 38,017d 18,412 36,652
MdMI2 17,674 31,120 17,668d 32,544d

MdMI2 16,833 25,857 16,738d 29,776d

MdMI3 20,425 26,154 16,712d 44,223d

MdMI3 20,425 26,154 16,037d 40,745d

MdMI3 20,425 26,154 15,193d 40,403d

MdMI4 21,552 29,063 20,530d 53,917d

MdMI4 21,552 29,063 19,700d 51,021d

MdMI4 21,552 29,063 18,663d 48,508d

ChMI 20,080 2,826 20,011d 3,263d

ChMI 20,080 2,826 19,190 2,729
ChMI 20,080 2,826 18,192 2,656
ChRo 5,488 35,265 5,442d 51,788d

ChRo 5,398 33,333 5,222d 42,319d

ChRo 5,398 33,333 4,947d 46,857d

Table 4: Comparison on efficiency and average total delay between our Lagrangian heuristic and
the method in [11], with shorter time limit (1,200 CPU seconds).

tion, to be obtained as simple modifications of given Lagrangian heuristics for the single-objective
version of the problem—very much in the spirit of the approach proposed in the present paper.

Acknowledgements

This work was partially supported by the Future and Emerging Technologies Unit of EC (IST
priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL). We are very grateful to
Domenico Salvagnin and Arrigo Zanette for having provided us with the codes implementing the
method and the validation tool in [11], and with plenty of suggestions and remarks on their use.

References

[1] R.K. Ahuja, R. Möhring, C. Zaroliagis, Eds., Robust and Online Large-Scale Optimization,
Lecture Notes in Computer Science 5868, Springer-Verlag, Berlin Heidelberg, (2009).

[2] D. Bertsimas and M. Sim, “Robust discrete optimization and network flows”, Mathematical
Programming, 98, 49-71 (2003).

[3] D. Bertsimas and M. Sim, “The price of robustness”, Operations Research, 52, 35-53 (2004).

[4] V. Cacchiani, A. Caprara and P. Toth, “A Column Generation Approach to Train Timetabling
on a Corridor”, 4OR 6 (2), 125–142 (2008).

14

Robust Lagrangian Heuristic FSZ [11]
Instance (#trains) Effic. ATD Effic. ATD
MdMI (500) 29,570 61,025 29,911 63,184
MdMI (500) 28,793 56,816 28,702d 58,756d

MdMI (500) 27,239 47,950 27,192d 55,247d

total CPU time = 6,612 total CPU time = 34,892
MdMI (600) 32,476 70,241 32,776 75,690
MdMI (600) 31,494 60,659 31,452d 69,825d

MdMI (600) 29,836 51,478 29,796d 65,813d

total CPU time = 7,398 total CPU time = 36,383
MdMI (700) 32,392 65,756 33,570 73,186
MdMI (700) 32,308 63,148 32,214d 66,726d

MdMI (700) 30,836 57,467 30,519d 63,076d

total CPU time = 8,090 total CPU time = 36,677
MdMI (800) 32,610 67,533 33,675 75,052
MdMI (800) 32,610 67,533 32,315d 68,945d

MdMI (800) 30,887 58,184 30,614d 64,916d

total CPU time = 8,486 total CPU time = 37,634
MdMI (900) 31,870 64,617 33,144 69,508
MdMI (900) 31,870 64,617 31,805d 64,721d

MdMI (900) 30,356 58,113 30,131d 59,471d

total CPU time = 8,968 total CPU time = 38,440
MdMI (1000) 30,874 62,154 30,854d 67,606d

MdMI (1000) 29,630 56,307 29,607d 63,409d

MdMI (1000) 28,655 54,703 28,049d 59,900d

total CPU time = 9,319 total CPU time = 39,300

Table 5: Comparison on efficiency value and average total delay between our Lagrangian heuristic
and the method in [11] for larger instances.

[5] V. Cacchiani, A. Caprara and P. Toth, “Scheduling extra freight trains on railway networks”,
Transportation Research Part B, 44B, Issue 2, 215–231, (2010).

[6] V. Cacchiani and P. Toth, “Nominal and Robust Train Timetabling Problems”, Technical
Report OR-10-5, University of Bologna, (2010).

[7] A. Caprara, M. Fischetti and P. Toth, “Modeling and Solving the Train Timetabling Problem”,
Operations Research 50, 851–861 (2002).

[8] A. Caprara, L. Kroon, M. Monaci, M. Peeters and P. Toth, “Passenger Railway Optimization”,
in C. Barnhart, G. Laporte (eds.), Transportation, Handbooks in Operations Research and
Management Science 12, Elsevier, Amsterdam, 129–187 (2007).

[9] G. D’Angelo, G. Di Stefano and A. Navarra, “Recoverable-robust timetables for trains on single
line corridors”, in Proceedings of 3rd International Seminar on Railway Operations Modelling
and Analysis (RailZurich2009) (2009).

15

[10] M. Fischetti and M. Monaci, “Light Robustness”, in R.K. Ahuja, R. Möhring, C. Zaroliagis,
Eds., Robust and Online Large-Scale Optimization, Lecture Notes in Computer Science 5868,
Springer-Verlag, Berlin Heidelberg, 61–84 (2009).

[11] M. Fischetti, D. Salvagnin and A. Zanette, “Fast Approaches to Improve the Robustness of a
Railway Timetable”, Transportation Science 43, 321–335 (2009).

[12] L. Kroon, G. Maròti, M. R. Helmrich, M. Vromans and R. Dekker, “Stochastic improvement of
cyclic railway timetables”, in Algorithmoc Methods for Railway Optimization, Transportation
Research Part B, 42 (6), 553–570 (2008).

[13] C. Liebchen, M. Lübbecke, R. Möhring and S. Stiller, “The concept of recoverable robustness,
linear programming recovery, and railway applications”, in R.K. Ahuja, R. Möhring, C. Zaro-
liagis, Eds., Robust and Online Large-Scale Optimization, Lecture Notes in Computer Science
5868, Springer-Verlag, Berlin Heidelberg, 1–27, (2009).

[14] C. Liebchen, M. Schachtebeck, A. Schöbel, S. Stiller and A. Prigge, “Computing delay resistant
railway timetables”, Computers and Operations Research, 37, n. 5, 857–868, (2010).

[15] P. Serafini and W. Ukovich, “A Mathematical Model for Periodic Event Scheduling Problems”,
SIAM Journal on Discrete Mathematics 2 (1989), 550–581.

[16] F. Barber, L. Ingolotti, A. Lova, P. Tormos, and M.A. Salido, “Meta-Heuristic and Constraint-
based Approaches for Single-Line Railway Timetabling”, in R.K. Ahuja, R. Möhring, C. Zaro-
liagis, Eds., Robust and Online Large-Scale Optimization, Lecture Notes in Computer Science
5868, Springer-Verlag, Berlin Heidelberg, 145–181, (2009).

[17] M. P. Tormos, A. L. Lova, L. P. Ingolotti and F. Barber, “A Genetic Approach to Robust
Train Timetabling”, Technical Report ARRIVAL-TR-0173, ARRIVAL Project (2008).

16

