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Abstract
In this paper we consider robust optimization as a tool to face uncertainty affect-

ing some input parameter. Our starting point is the well-known Bertsimas-Sim (BS)
approach to robustness, leading to a compact robust counterpart of a (pure or integer)
linear program requiring the introduction of additional variables and constraints. Ro-
bustness can alternatively be enforced by working directly on the space of the original
variables, without the need of artificial variables, at the expenses of the addition of an
exponential number of “robustness cuts” that can be separated in a very efficient way.
The practical performance of the corresponding cutting-plane approach is investigated by
computational experiments, showing that a considerable speedup can be achieved with
respect to the standard BS model.

We also point out that the cutting plane approach to robustness has some important
features that can make it the method of choice (or even the only available option) in impor-
tant applications. Indeed, the approach can be applied to handle problems whose nominal
formulation is itself noncompact but requires an exponential number of constraints. In
addition, the separation procedure for robustness cuts can take into account uncertainty
domains that are much more complex (and realistic) than in the BS approach. A notable
case arises when the uncertainty domain involves yes-no decisions that cannot be mod-
eled by continuous variables (thus making the BS approach unapplicable), but can be
described by a knapsack constraint. We describe a practically relevant application of this
approach, namely the Uncertain Set Covering Problem where each column has a certain
probability of “disappearing” (a yes-no event), and each row has to be covered with a high
probability. An uncertain graph connectivity problem is also investigated. Computational
experiments on both instances from the literature and on randomly generated instances
are provided.
Key words: Robust Optimization, Cutting Planes, Uncertain Set Covering and Connec-
tivity Problems.

1 Introduction

One of the main issues when facing with real-world optimization problems is the determination
of robust solutions, i.e., solutions that are stable with respect to certain variations of the input
parameters. An increasing amount of research has been devoted to this subject in the last
years, since the exact value of the input data is generally unknown in real-world applications.
Two main approaches have been proposed so far for dealing with uncertain data: stochastic
programming and robust optimization.

Stochastic programming introduces additional variables and penalizes feasible solutions
that are most likely to become infeasible due to uncertainty. Hence, it requires some knowledge
of how uncertainty will act (which is not always the case in some practical applications) and
often leads to very huge models, that can be extremely hard to be solved.
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Robust optimization associates uncertainty with hard constraints restricting the solution
space, i.e., one is required to find a solution that is still feasible for worst-case parameters
chosen within a certain uncertainty domain. This is a simple way to model uncertainty, but it
can lead to overconservative solutions that are quite bad in terms of cost (actually, a feasible
solution may not exist at all). A breakthrough in robust optimization is the recent work
by Bertsimas and Sim (BS) [7], where a compact way to model the robust counterpart of a
given “nominal” model is proposed. The approach requires the introduction of a polynomial
number of new variables and constraints into the nominal model, hence it does not increase
the theoretical complexity of the problem to be solved with respect to the nominal one—
though the practical solution time can be affected heavily. A simplified version of the BS
approach named “light robustness” has been proposed recently by the authors in [14].

The starting point of the research reported in the present paper is the observation that
BS robustness can alternatively be enforced by working directly on the space of the original
(nominal) variables, without the need of artificial variables, at the expenses of the addition of
an exponential number of linear constraints that reduce the feasibility region. As explained
in more details in the sequel, the separation problem for these robustness cuts can be carried
out very efficiently, as it amounts to the solution of the LP relaxation of a simple cardinality-
constraint knapsack problem for each uncertain row of the nominal problem. As a result,
an effective cutting-plane approach for robustness is conceivable, that generates robustness
cuts on the fly. As far as we know, no computational experiments have been performed to
compare the practical performance of the BS compact formulation and of its cutting plane
counterpart. In this paper we investigate this issue, and show through extensive computation
tests that the cutting plane approach can be significantly faster—up to 2 orders of magnitude,
for certain LP instances.

Besides practical considerations, the cutting plane approach has some important features
that can make it the method of choice (or even the only available option) in important
applications. First of all, it can be applied to handle problems whose nominal formulation is
itself noncompact but requires an exponential number of constraints; e.g., routing problems
such as the Traveling Salesman Problem (TSP) that involve connectivity constraints. More
importantly, the separation procedure for robustness cuts can take into account uncertainty
domains that are much more complex (and realistic) than in the BS approach. A notable
case arises when the uncertainty domain involves yes-no decisions that cannot be modeled by
continuous variables (thus making the BS approach—that relies LP duality—unapplicable),
but can be described by a knapsack constraint. In this situation, separation can be still be
performed in an effective way, though its theoretical complexity becomes exponential. We will
address explicitly a practically relevant application of this approach, namely the Uncertain
Set Covering Problem (USCP) where each column has a certain probability of “disappearing”
(a yes-no event), and each row has to be covered with a high probability. Our USCP model
finds applications also in problems that can be reformulated through set covering constraints,
e.g., in the uncertain counterpart of connectivity problems in graphs modeled through cut
conditions.

The present paper is organized as follows. In Section 2 we present the main methods
proposed in the literature to handle uncertainty, focusing on the compact formulation by
Berstimas and Sim [7]. In the same section we introduce our cutting plane approach and
the associated separation procedure that implements the projection of the BS model onto
the space of the original variables. Section 3 introduces the Uncertain Set Covering Problem,
where cutting planes are the most natural way to face uncertainty. For this specific problem,
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we also propose an ad-hoc USCP formulation and analyze its computational behavior. Section
3.2 addresses a connectivity problem that has a set covering substructure that allows for the
application of our USCP formulation. Finally, Section 4 summarizes our findings and draws
some conclusions.

2 Modeling robustness

In this paper we concentrate on the robust counterpart of a generic “nominal” Linear Program
(LP) of the form

min
∑

j∈N

cj xj (1)

∑

j∈N

aij xj ≤ bi, i ∈ M, (2)

xj ≥ 0, j ∈ N, (3)

where N = {1, · · · , n} and M = {1, · · · ,m} denote the variable and constraint index sets,
respectively. Our results can be applied in a straightforward way to Mixed-Integer (or Pure)
Linear Programs as well—as a matter of fact, enumerative methods reduce the solution of
these problems to the solution of a sequence of LPs.

The first attempt to handle data uncertainty through mathematical models was performed
by Soyster [21], who considered uncertain problems of the form

min {
∑

j∈N

cj xj |
∑

j∈N

Aj xj ≤ b, ∀Aj ∈ Kj , j ∈ N}

where Kj are convex sets associated with “column-wise” uncertainty. This approach tends
to lead to overconservative models, thus to poor solutions in term of optimality. Later,
Ben-Tal and Nemirovski [2, 3, 4] defined less conservative models by considering ellipsoidal
uncertainties. Moreover, [2] shows that the robust counterpart of an uncertain LP is equiva-
lent to an explicit computationally tractable problem, provided that the uncertainty is itself
“tractable”. On the contrary, when the problem to be considered is an ILP, these nonlinear
(convex) models become computationally hard problems.

2.1 The Bertsimas and Sim approach

Recently, Bertsimas and Sim [7, 6] considered a different concept of robustness. Taking into
account the fact that we require x ≥ 0 in our setting, the BS definition of robustness can
be outlined as follows. It is assumed that each coefficient in the constraint matrix A can
take any value ãij ∈ [aij − âij , aij + âij ] and the deviation of such value with respect to the
nominal one is independent of the changes of the remaining coefficients. As it is unlikely
that all coefficients take their worst value, a solution is considered robust if it remains feasible
when at most Γi coefficients (chosen in any way) in row i (i ∈ M) take their worst value. The
underlying assumption here is that, when more than Γi coefficients change, their deviation
will tend to compensate one each other, the net effect being comparable with the worst-case
deviation of no more than Γi coefficients.

For the sake of simplicity, we will assume that all Γi’s are integer, although this is not
required in original BS approach. Note that Γi = 0 means that robustness is not taken
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into account and the nominal constraint is considered, whereas Γi = |N | means that each
coefficient in row i can take its worst value, and corresponds to the conservative method by
Soyster [21].

According to BS, given the nominal LP (1)–(3) one defines another LP (in an extended
space) whose optimal solution remains feasible for every change of, at most, Γi coefficients
(up to their worst value) in each row i ∈ M . To this end, the i-th constraint of the nominal
problem is first replaced by ∑

j∈N

aij xj + β(x,Γi) ≤ bi (4)

where term
β(x,Γi) = max

S⊆N :|S|≤Γi

∑

j∈S

âij xj (5)

indicates the level of protection of the solution found with respect to the uncertainty associated
with row i (recall that we assume x ≥ 0). By using LP duality, the robust counterpart of the
nominal problem (1)–(3) then becomes:

min
∑

j∈N

cj xj (6)

∑

j∈N

aij xj + Γi zi +
∑

j∈N

pij ≤ bi, i ∈ M, (7)

−âij xij + zi + pij ≥ 0, i ∈ M, j ∈ N, (8)
zi ≥ 0, i ∈ M, (9)

pij ≥ 0, i ∈ M, j ∈ N, (10)
xj ≥ 0, j ∈ N. (11)

2.2 Robust optimization through cutting planes

The robust BS formulation (6)-(11) given in the previous section has the very nice property
of being compact, in the sense that it involves a number of variables and constraints that is
polynomial in the input size. Its projection onto the space of the original x variables requires
however an exponential number of cuts, and can be obtained along the following lines.

Given the i-th constraint of the nominal problem, the robust constraint (4) can be ex-
pressed through the following robustness cuts:

∑

j∈N

aij xj +
∑

j∈S

âij xj ≤ bi, ∀S ⊆ N : |S| ≤ Γi. (12)

The separation problem for robustness cuts can be stated as follows: given the current solution
x∗, find a set S ⊆ N such that: (i) |S| ≤ Γi, and (ii)

∑
j∈S âij x∗j is a maximum. The former

condition imposes that at most Γi coefficients change with respect to their nominal values,
while the latter looks for the constraint (12) associated with row i that is most violated by
the current solution x∗.

For each row i, the above separation problem can be solved easily by associating each
variable xj with a profit âij x∗j and by finding a maximum-profit subset S with at most Γi

elements. If the sum of the profits of the selected items exceeds bi −
∑

j∈N aij x∗j , a violated
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constraint is found; otherwise all constraints (12) associated with row i are satisfied by x∗.
The separation problem can therefore be solved by just selecting the (at most) Γi variables
with largest positive profit, and requires O(n) time by using a partial-sorting technique for
determining the Γi-th largest entry in the profit array [13].

It then follows that the robust BS model can be solved in polynomial time also by cutting
planes. Obviously, the approach leads to a branch-and-cut algorithm when (M)ILPs (as
opposed to LPs) have to be faced.

2.3 Computational experiments

In this section we compare computationally the performance of the original BS approach and
of our cutting planes algorithm.

Our algorithm was coded in C language and embedded into the commercial solver ILOG-Cplex
version 11.0, by using its default parameter setting. At each iteration, the most violated ro-
bustness cut associated with each nominal constraint is added to the current problem. All
codes were run on a PC AMD Athlon 4200+ with 4 GB ram.

We considered a large testbed of LP instances from the NETLIB, as suggested by Ben-Tal
and Nemirovski in [3]. In particular, we addressed all instances with at least 1000 variables
and 1000 constraints, for which all variables are required to be nonnegative and that include
at least one inequality constraint (as customary, the coefficients arising in equality constraints,
if any, are assumed not to be affected by uncertainty).

Table 1 reports, for each instance in our test bed, the number of variables n and constraints
m of the nominal problem and the number of additional variables n′ and constraints m′

required by the compact formulation (6)–(11).

Instance n m n′ m′

BNL2 3489 2325 11555 9437
D2Q06C 5167 2172 17426 13766
DEGEN3 1818 1504 23692 22591
GANGES 1681 1310 2006 1609
PILOT 3652 1442 44330 40911
SCTAP2 1880 1091 7804 6394
SCTAP3 2480 1481 10354 8494
SHIP12L 5427 1152 11068 6686
SHIP12S 2763 1152 5740 4022
STOCFOR2 2031 2158 6459 5571
STOCFOR3 15695 16676 50013 43147
WOODW 8405 1099 9891 2571

Table 1: LP instances from the NETLIB in our test bed.

Uncertainty was modeled by allowing each coefficient appearing in an inequality constraint
to differ by at most 1% from its nominal value, in a similar way to what suggested in [7].
Moreover, we considered Γi = Γ for each row i, where Γ ∈ {1, 10, 50}.

Table 2 reports computational results on LP instances and gives, for each instance, the
optimal solution value z and associated computing time T for the nominal problem. In
addition, for each value of Γ we give the percentage increase of the robust solution value zR
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with respect to the nominal one (namely, %∆z = 100 ∗ (zR − z)/|z|), the computing time
tBS required for solving model (6)–(11), the computing time tCP required by our cutting
plane method, along with the number #cuts of robustness cuts added. Note that we let
ILOG-Cplex choose the most appropriate algorithm for solving both model (6)–(11) and the
first LP within our cutting plane scheme (i.e., the nominal problem), whereas LPs after
separation are reoptimized by using the dual simplex. Finally, the last line of the table gives
the average computing time of each method over all the instances in the testbed.

Instance Γ = 1 Γ = 10 Γ = 50
z T %∆z tBS tCP #cuts %∆z tBS tCP #cuts %∆z tBS tCP #cuts

BNL2 1811.237 0.07 0.790 1.26 0.50 647 1.840 1.69 0.97 839 1.847 1.96 0.30 411
D2Q06C 122784.211 2.71 inf. 18.76 3.84 285 inf. 41.77 5.26 306 inf. 25.90 5.84 308
DEGEN3 -987.294 0.43 inf. 58.34 1.45 492 inf. 88.69 1.84 492 inf. 339.47 2.07 496
GANGES -109585.736 0.01 0.053 0.02 0.01 25 0.430 0.02 0.05 31 0.474 0.02 0.02 24
PILOT -557.490 3.05 inf. 661.72 12.95 1091 inf. 58.95 4.85 1094 inf. 47.14 4.95 1094
SCTAP2 1724.807 0.01 1.533 0.12 0.24 403 2.814 0.18 0.62 631 2.844 0.15 0.05 126
SCTAP3 1424.000 0.02 1.602 0.17 0.39 466 2.995 0.24 1.46 823 3.040 0.23 0.08 150
SHIP12L 1470187.919 0.04 0.060 0.10 0.05 45 0.346 0.11 0.08 63 0.353 0.14 0.09 61
SHIP12S 1489236.134 0.02 0.062 0.06 0.03 57 0.386 0.09 0.05 77 0.390 0.08 0.05 63
STOCFOR2 -39024.409 0.06 0.759 0.56 0.18 484 1.522 0.55 0.17 459 1.522 0.72 0.18 459
STOCFOR3 -39976.784 1.58 0.733 11.68 12.95 4135 1.482 10.41 11.61 3958 1.482 16.86 11.59 3958
WOODW 1.304 0.09 0.447 0.12 0.12 5 1.280 0.15 0.11 3 1.280 0.15 0.10 3
avg. 0.67 62.74 2.73 16.90 2.26 36.07 2.11

Table 2: Results on robust LP instances from the NETLIB (inf. indicates that no feasible
robust solution exists)

Results of Table 2 show that, for most instances, the computing time required by our
cutting plane approach is considerably smaller than that required to solve the compact BS
formulation. In particular, a speedup of 1-2 orders of magnitude is achieved in the cases
where a feasible robust solution does not exist.

3 Cutting planes as the only option

The computational experiments reported in Section 2.3 show that the cutting planes approach
is typically more efficient in handling uncertainty with respect to the compact formulation.

In this section we address situations where a cutting plane approach is actually the only
possible way to face uncertainty. These situations arise when the uncertainty domain cannot
be fully described by a linear system, hence making it impossible to use the compact BS
formulation that heavily relies on LP duality.

We first consider an uncertain version of the Set Covering Problem, and propose alterna-
tive ILP models for its solution. Then, our results are extended to a class of problems that
admit a set covering formulation, focusing in particular on the connectivity problem on a
“uncertain” graph whose edges can disappear with a certain probability.

3.1 The Uncertain Set Covering Problem

Given a 0-1 m×n matrix A = (aij) and an n-dimensional integer vector c = (cj) representing
the cost of each column, the Set Covering Problem (SCP) requires to select a subset S of
columns such that
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• the sum of the costs of the selected columns is minimized;

• for each row i (i = 1, . . . , m) there exists at least one column j ∈ S such that aij = 1.

Set Covering is a a useful model for several important practical problems, and arises as
a subproblem in many applications; see Caprara et al. [10] and Gamache et al. [15] for
applications to railways and airline crew scheduling, or Balas [1] and Ceria et al. [11] for
surveys on applications of SCP to location, routing and other problems. The huge amount of
literature on SCP includes both exact and heuristic algorithms; a computational comparison
of the main solution methods is reported in Caprara et al. [9].

Let N = {1, . . . , n} and M = {1, . . . , m} be the column set and the row set, respectively.
Moreover, for each row i ∈ M , let Ji = {j ∈ N : aij = 1} denote the set of columns covering
row i. A straightforward ILP model for SCP is as follows:

min
∑

j∈N

cj xj (13)

∑

j∈Ji

xj ≥ 1, i ∈ M, (14)

xj ∈ {0, 1}, j ∈ N, (15)

where each variable xj takes value 1 if column j is selected, and 0 otherwise.
We next introduce a variant of SCP called the Uncertain Set Covering Problem (USCP),

arising when each column j ∈ N has an associated positive value pj , denoting the probability
that the column disappears (i.e., that all coefficients in column j become zero), and each
row i ∈ M has associated a positive value Pi representing the minimum probability for row
i to be covered by at least one selected column. We assume that probabilities associated
with columns are independent. The problem requires to determine a set S of columns that
minimizes objective function (13) and satisfies the i-th constraint (14) with probability greater
than Pi. USCP is strongly NP-hard, since it generalizes SCP, and arises in many practical
problems, including crew scheduling applications where columns are associated with feasible
pairings, and a column disappearing from the model corresponds to the nonshow of a crew.

USCP is akin to a probabilistic problem from the literature known as the Probabilistic
Set Covering Problem (PSCP) [5], in which one wants to optimize over the set of binary
vectors x such that P{AT x ≥ ξ} ≥ p, where ξ is a random binary right-hand side and p is
a threshold input value. Clearly, requiring that constraints AT X ≥ ξ are satisfied for all
possible realizations of ξ would lead to deterministic SCP; on the contrary, PSCP requires
to satisfy constraints with a probability no smaller than p. PSP was first studied in the
literature by Beraldi and Ruszczyński [5], who proposed an exact algorithm based on the
iterative solution of deterministic SCPs. Recently, Saxena et al. [20] reformulated PSCP
as a mixed integer nonlinear program, linearized the corresponding model, and solved the
resulting MILP with a general purpose commercial code.

Using again variables xj (j ∈ N), USCP can be formulated as follows:

min
∑

j∈N

cj xj (16)

P{aT
i x ≥ 1} > Pi, i ∈ M, (17)

xj ∈ {0, 1}, j ∈ N. (18)
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Recall that probabilities associated with columns are assumed to be independent.
Given a solution x∗ we will denote by J∗i = {j ∈ Ji : x∗j = 1} the set of columns covering

row i ∈ M . If solution x∗ satisfies the i-th nominal constraint (14), the probability that the
associated uncertain constraint is violated is given by P{aT

i x∗ < 1} =
∏

j∈J∗i
pj . We define

as feasible only those solutions for which this probability is not larger than 1 − Pi, i.e., the
solutions such that, for each row i ∈ M

P{aT
i x < 1} =

∏

j∈Ji

pj ≤ 1− Pi (19)

Defining the nonnegative quantities wj = − ln pj (j ∈ N) and Wi = − ln(1−Pi), the feasibility
condition with respect to row i reads:

∑

j∈Ji

wj ≥ Wi (20)

Without loss of generality we assume that, for each row i, condition (19) is satisfied by
selecting J∗i = Ji, since otherwise it would be impossible to cover row i with the required
probability Pi, and USCP would be infeasible—despite the feasibility of the deterministic Set
Covering Problem (13)–(15).

3.1.1 A basic ILP model for USCP

Following the approach described in Section 2.2, a model for USCP can be derived by (16)–
(18) by replacing the i-th covering constraint with its “uncertain” counterpart

∑

j∈Ji

xj − β(x,Wi) ≥ 1, (21)

where term β(x,Wi) represents the maximum decrease of the left-hand side associated with
uncertain situations we want to take care of. In our problem, these situations are those that
can arise with a probability not smaller than 1− Pi.

Our first way to model constraints (21) in a linear way is through the following (noncom-
pact) ILP:

(M1) min
∑

j∈N

cj xj (22)

∑

j∈Ji

xj −
∑

j∈S

xj ≥ 1, S ⊆ Ji :
∑

j∈S

wj < Wi, i ∈ M, (23)

xj ∈ {0, 1}, j ∈ N. (24)

Constraints (23) impose that each row i ∈ M must be covered by a subset of columns
having a small probability to disappear all together. This means that a nonempty set S of
columns corresponding to a solution which is not feasible according to (20), is not enough
for covering row i: some additional column must be selected in order to provide a feasible
solution.

The exponential number of constraints in the model immediately suggests to adopt a
cutting planes algorithm where constraints (23) are added to the formulation on the fly, when
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they are needed. Given the current (possibly fractional) solution x∗, the separation problem
associated to a given row i requires to find (if any) a set Si ⊆ Ji such that

∑
j∈Si

wj < Wi

and
∑

j∈Si
x∗j >

∑
j∈Ji

x∗j − 1, and can be solved through the following ILP:

β(x∗,Wi) = max
∑

j∈Ji

x∗j dij (25)

∑

j∈Ji

wj dij < Wi, (26)

dij ∈ {0, 1}, j ∈ Ji. (27)

Then, set Si if defined as Si = {j ∈ Ji : d∗ij = 1}. If β(x∗, Wi) =
∑

j∈Si
x∗j >

∑
j∈Ji

x∗j − 1,
then constraint (23) associated with row i and set Si is violated by x∗ and has to be added
to the current formulation.

3.1.2 An alternative ILP model for USCP

The separation problem for (23) is a genuine ILP (actually, a 0-1 knapsack problem), so we
cannot apply LP duality to fully characterize the solutions x∗ that do not lead to violated
cuts—as in the BS approach. In other words, a compact LP is not readily available that
provides the same LP bound attainable through a pure cutting plane procedure based on the
exact separation of cuts (23). However, this does not imply that a compact ILP formulation
for USCP does not exist, whose LP relaxation provides a different bound than the exponential
formulation (22)-(24). As a matter of fact, by noting that constraints (23) require each row
i ∈ M be covered by a suitable subset of columns, a compact ILP model for USCP is as
follows:

(M2) min
∑

j∈N

cj xj (28)

∑

j∈Ji

wj xj ≥ Wi, i ∈ M, (29)

xj ∈ {0, 1}, j ∈ N, (30)

where each xj variable has the same meaning as in model M1.
The validity of model M2 heavily depends on the fact that the deterministic SCP only

involves constraints with 0-1 coefficients and right-hand sides, and is formally established by
the following theorem.

Theorem 1 Let S1 = {x ∈ {0, 1}n : (23) hold } and S2 = {x ∈ {0, 1}n : (29) hold } the set
of feasible solutions to M1 and to M2, respectively. Then S1 = S2.

Proof. We first prove that any solution x∗ feasible for M1 satisfies the i-th constraint (29).
Recall that J∗i = {j ∈ Ji : x∗j = 1} and assume, by contradiction, that x∗ violates the i-
th constraint (29) in M2, i.e.,

∑
j∈J∗i

wj < Wi. A feasible (indeed, optimal) solution to the
separation problem (25)–(27) associated to solution x∗ is Si = J∗i , thus β(x∗, Wi) =

∑
j∈J∗i

x∗j ,
which makes constraint (23) associated with set Si violated. Hence, it is impossible that
constraint (29) is violated by solution x∗.
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Analogously we prove that, given any feasible solution x∗ to M2, the i-th constraint (23)
is satisfied by x∗ as well. Note that only variables dij associated with columns j ∈ J∗i have to
be taken into account in the separation problem (25)–(27). As x∗ is feasible for M2, we have∑

j∈J∗i
wj ≥ Wi, hence constraint (26) imposes that not all the dij variables are set to 1. This

implies β(x∗, Wi) < |J∗i |, which makes all constraints (23) associated with row i satisfied by
x∗. ¤

Theorem 1 states that the sets of feasible solutions to M1 and M2 coincide. However,
as already mentioned, this equivalence does not necessarily hold when solutions to the LP
relaxations of the two models are considered. The following example shows that no dominance
exists among the optimal solution value of the LP relaxation of M1 and the optimal solution
value of the LP relaxation of model M2.

Example 1
We are given the following SCP instance with m = 1, n = 3, cj = 1, wj = 3 (j = 1, . . . , 3) and
W1 = 4. The LP relaxation of M1 yields solution x1 = x2 = x3 = 1/2, with a lower bounds
equal to 3/2, while an optimal solution for the LP relaxation of M2 is x1 = 1, x2 = 1/3, x3 = 0,
having value 4/3. When considering the same instance with W1 = 5, the optimal solution of
the LP relaxation of M1 is the same, while the optimal solution of the LP relaxation of M2
is x1 = 1, x2 = 2/3, x3 = 0, having value 5/3 (worse than the value of the value of the LP
relaxation of M1). ¤

The LP relaxation of model M2 can be strengthened by exploiting the integrality of the x
variables appearing in (29). As a matter of fact, due to the definition of the wj ’s, these latter
constrains are quite “weird” and typically lead to nasty knapsack conditions that are very
challenging for MIP solvers.1 A first trivial strengthening is obtained by just replacing wj

by wj := min{wj , W i}. In addition, given a positive integer k, a simple rounding argument
similar to that used to derive Gomory’s fractional cuts allows one to derive the valid inequality

∑

j∈Ji

d k − 1
Wi − ε

wje xj ≥ d k − 1
Wi − ε

Wie = k (31)

where k ≥ 2 is an integer parameter giving the desired right-hand side value, and ε is a small
positive value. Because of their combinatorial nature, constraints (31) are numerically more
stable than (29). However, it is easy to see that no dominance between (29) and (31) exists.

In order to accelerate the convergence of MIP solver even further, we implemented an
ad-hoc heuristic procedure aimed at producing an initial upper bound value. Our heuristic
is a simple greedy that starts from a partial solution and iteratively adds a column to the
current solution, until the solution becomes feasible. Given the current solution, we check
feasibility by scanning constraints (29). If the current solution is feasible, the algorithm stops.
Otherwise, a minimum-cost unselected column appearing in the first violated constraint is
added to the solution. The algorithm is executed several times, starting from different partial
solutions, and returns the best solution found. In our implementations, we start with (i)
an empty solution, or (ii) an optimal solution of the nominal problem, or (iii) an optimal
solution of the nominal problem restricted to the columns with wj ≥ maxi{W i : aij = 1},

1Fortunately, as shown in the computational section, the rich arsenal of general-purpose preprocessing and
cut-generation procedures embedded in modern MIP solvers turns out to be quite effective for M2.
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with high-cost slack variables added for each constraint so as to ensure feasibility (this latter
starting solution turns out to be quite effective for problems with small P i’s).

3.1.3 Computational experiments on USCP instances

In this section we report two different kinds of experiments on USCP instances derived from
SCP instances of the literature.

The first set of experiments focuses on the best method for an efficient solution of USCP.
We considered all the set covering instances publicly available at the ORLIB library (web

site http://people.brunel.ac.uk/~mastjjb/jeb/info.html) and selected 59 of them, namely
those that were solved to proven optimality within 600 CPU seconds using ILOG-Cplex version
11.0 on our computer.

Starting from these instances, we set the threshold probability associated with each row
i ∈ M as Pi = P min, where P min is a parameter. Probabilities pj associated with columns
j ∈ N were randomly generated according to a uniform distribution in [0, 0.2]. As to the
definition of coefficients wj (resp. Wi), we computed the logarithm of each pj (resp. Pi),
multiplied it by 1,000 and rounded the result to the nearest integer.

Tables 3 and 4 report the outcome of our experiments for different values of P min ∈
{0.85, 0.90, 0.95, 0.99}. In particular, for each instance we report the following information:

• optimal value (z∗) and solution time (T ) of the nominal problem;

• the best solution found (zh) by the initial heuristic and the associated computing time
(Th);

• optimal value (zu) of the uncertain version of the problem (an asterisk indicates that
the optimal value is not known);

• computing times for model M1 (22)–(24), for model M2 (28)–(30), and for model M2’,
i.e., model M2 when constraints (31) for k = 2 and k = 3 are added to the initial
formulation as “lazy constraints”; a time limit equal to 1,800 seconds was given to each
model.

The last rows of each table report, for each solution method, the average computing time, in
seconds (for the unsolved instances, the time limit is considered), and the number of instances
solved to proven optimality within the given time limit.

Computational results show that model M2 (28)–(30) qualifies as the best method to
solve USCP. This compact formulation is able to solve all instances but 18, with a reasonable
average computing time. Note that increasing the value of P min from 0.85 to 0.99 leads
to increasingly difficult problems and, as be expected, to worse solution values—being the
associated problem more constrained.

Quite surprisingly, the addition of constraints (31) in M2’ did not improve the overall
performance—actually, it produced a certain slow-down. This behavior is due not only to the
extra time required to handle the additional cuts, but also to the effectiveness of the general-
purpose preprocessing and cut-generation procedures embedded in ILOG-Cplex. Indeed, these
procedures were able to “squeeze” automatically most of the information conveyed by the
additional cuts (31). As a matter of fact, turning preprocessing and cut-generation off the
performance of both M2 and M2’ deteriorates considerably, with M2’ becoming significantly
better than M2. E.g., the very easy instance scpe2 with P min = 0.85 is solved by M2
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Nominal problem P min = 0.85 P min = 0.90
name z∗ T zh Th zu TM1 TM2 TM2′ zh Th zu TM1 TM2 TM2′
scp41 429 0.01 610 0.04 592 0.04 0.08 0.06 824 0.02 701 0.06 0.05 0.09
scp42 512 0.02 623 0.08 612 0.08 0.08 0.07 830 0.02 782 0.14 0.07 0.10
scp43 516 0.01 662 0.11 662 0.10 0.17 0.10 967 0.03 830 0.64 0.30 0.38
scp44 494 0.04 660 0.09 602 0.07 0.08 0.08 878 0.11 740 0.40 0.20 0.24
scp45 512 0.01 691 0.24 656 0.15 0.13 0.18 907 0.02 797 0.63 0.24 0.34
scp46 560 0.03 674 0.05 655 0.03 0.03 0.07 922 0.09 796 0.48 0.11 0.16
scp47 430 0.02 608 0.02 579 0.05 0.06 0.08 789 0.03 695 0.07 0.06 0.10
scp48 492 0.05 678 0.10 647 0.13 0.08 0.11 900 0.05 841 0.97 0.42 0.27
scp49 641 0.04 813 0.07 809 0.15 0.15 0.18 1070 0.15 984 1.03 0.15 0.62

scp410 514 0.02 715 0.04 708 0.09 0.07 0.11 880 0.02 811 0.17 0.06 0.11
scp51 253 0.10 307 0.13 302 0.10 0.12 0.13 436 0.11 391 0.95 0.27 0.24
scp52 302 0.16 371 0.25 371 0.19 0.25 0.24 501 0.17 459 1.44 1.33 1.03
scp53 226 0.02 303 0.03 300 0.03 0.04 0.07 408 0.04 344 0.16 0.08 0.09
scp54 242 0.07 321 0.08 321 0.09 0.09 0.15 435 0.10 370 0.41 0.13 0.17
scp55 211 0.06 308 0.06 300 0.05 0.09 0.07 420 0.09 350 0.40 0.19 0.18
scp56 213 0.03 300 0.05 291 0.09 0.06 0.12 447 0.05 369 0.66 0.13 0.18
scp57 293 0.09 395 0.14 386 0.09 0.14 0.14 560 0.14 480 0.82 0.37 0.43
scp58 288 0.08 351 0.10 351 0.14 0.09 0.15 433 0.08 415 0.50 0.21 0.15
scp59 279 0.06 370 0.07 370 0.05 0.06 0.08 606 0.13 477 1.71 0.75 0.74

scp510 265 0.03 366 0.07 360 0.17 0.14 0.16 513 0.04 429 0.51 0.21 0.27
scp61 138 0.45 156 0.58 153 0.16 0.29 0.27 212 0.66 199 0.84 0.72 0.71
scp62 146 0.51 181 1.05 174 0.49 0.65 0.54 212 0.61 199 0.80 0.77 0.92
scp63 145 0.37 169 0.48 169 0.21 0.28 0.28 225 0.59 218 2.54 0.90 0.86
scp64 131 0.07 165 0.11 157 0.20 0.20 0.23 213 0.12 196 0.90 0.93 1.22
scp65 161 0.65 220 1.11 219 0.81 0.68 0.78 260 0.66 251 2.47 1.19 1.25
scpa1 253 1.47 299 1.60 291 0.46 0.37 0.48 442 1.79 385 8.68 2.72 3.88
scpa2 252 1.08 318 1.09 300 0.28 0.22 0.27 415 1.06 368 2.06 1.28 1.20
scpa3 232 0.73 288 1.00 278 0.59 0.88 0.59 373 0.72 343 1.85 0.54 0.76
scpa4 234 0.47 287 1.49 284 0.46 0.89 0.65 379 1.75 359 9.68 2.59 3.47
scpa5 236 0.18 328 0.25 312 0.77 0.81 0.94 416 0.22 359 2.87 1.13 1.22
scpb1 69 1.57 97 3.12 97 15.38 9.33 9.69 118 2.49 109 77.24 14.71 33.21
scpb2 76 2.53 90 5.05 89 14.92 3.52 18.65 110 3.47 101 42.92 7.20 21.35
scpb3 80 1.57 101 3.58 100 12.39 3.04 10.03 128 2.73 125 584.20 30.44 45.14
scpb4 79 3.10 92 4.21 91 1.34 1.68 1.54 117 3.58 109 97.96 15.85 14.77
scpb5 72 1.36 88 2.93 88 3.41 1.73 4.44 104 1.60 99 3.94 2.26 2.50
scpc1 227 1.12 288 2.90 287 1.23 1.60 2.38 382 2.74 360 54.56 9.18 16.06
scpc2 219 2.50 275 4.35 275 5.24 3.24 5.83 385 5.09 340 556.18 11.07 26.48
scpc3 243 2.80 311 4.56 310 5.43 2.96 3.26 413 3.60 373 301.95 32.11 32.54
scpc4 219 1.48 275 1.81 275 2.49 2.21 3.60 374 2.82 328 22.91 5.52 5.89
scpc5 215 1.36 278 2.37 278 2.52 1.66 2.87 355 1.94 333 100.92 8.73 11.01
scpd1 60 2.64 79 14.88 76 17.49 13.54 27.42 105 5.43 89 129.47 9.21 21.57
scpd2 66 11.63 82 18.81 82 99.34 32.98 141.47 103 12.78 96 883.13 35.46 60.70
scpd3 72 11.43 90 25.43 90 376.81 55.10 164.62 108 13.62 100 1128.05 45.03 65.99
scpd4 62 5.02 78 7.99 78 29.48 17.79 43.45 101 7.07 91 1086.46 80.37 95.08
scpd5 61 1.91 81 4.39 81 59.84 13.90 21.27 113 4.20 91 38.92 8.34 13.77
scpe1 5 0.39 5 0.61 5 63.80 1.22 0.28 5 1.29 5 74.92 2.34 5.40
scpe2 5 0.44 5 0.70 5 53.17 5.74 8.06 5 0.62 5 255.68 3.85 7.59
scpe3 5 0.46 5 0.84 5 29.52 0.37 0.56 5 0.64 5 189.53 2.93 4.82
scpe4 5 0.41 5 0.79 5 66.04 0.37 13.15 5 1.36 5 102.34 2.44 3.90
scpe5 5 0.42 5 0.80 5 1.00 0.38 7.69 5 0.63 5 4.10 3.35 6.25

scpnre1 29 94.62 33 173.31 33 >1800.00 566.03 1155.20 40 140.98 ∗ >1800.00 >1800.00 >1800.00
scpnre2 30 416.43 32 525.58 32 >1800.00 222.82 296.41 38 531.79 ∗ >1800.00 >1800.00 >1800.00
scpnre3 27 100.21 31 112.86 31 >1800.00 298.71 1192.15 36 99.92 35 >1800.00 416.65 795.02
scpnre4 28 164.20 33 223.15 33 >1800.00 334.70 960.96 38 168.57 38 >1800.00 1543.10 >1800.00
scpnre5 28 66.98 32 82.47 32 1160.49 122.07 272.46 40 68.67 ∗ >1800.00 >1800.00 >1800.00
scpnrf1 14 113.12 14 133.39 14 243.50 59.72 188.70 16 124.73 16 >1800.00 114.98 291.87
scpnrf2 15 88.24 16 103.17 16 274.09 43.24 117.31 19 101.80 19 >1800.00 1552.88 >1800.00
scpnrf3 14 53.89 15 57.05 15 188.84 26.18 226.03 19 74.95 ∗ >1800.00 >1800.00 >1800.00
scpnrf4 14 156.36 19 239.12 15 >1800.00 132.21 750.47 17 221.11 ∗ >1800.00 >1800.00 >1800.00

avg. 22.29 30.01 > 198.88 33.65 95.89 27.47 > 372.56 > 219.96 > 240.77
# solved 59 54 59 59 50 54 52

Table 3: Results on uncertain set covering instances for P min ∈ {0.85, 0.90} (∗ indicates that
the optimal value is not known).
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Nominal problem P min = 0.95 P min = 0.99
name z∗ T zh Th zu TM1 TM2 TM2′ zh Th zu TM1 TM2 TM2′
scp41 429 0.01 1105 0.07 921 1.32 0.09 0.17 1820 0.01 1421 >1800.00 0.91 0.74
scp42 512 0.02 1234 0.02 983 3.61 0.15 0.22 1763 0.01 1379 >1800.00 1.03 0.89
scp43 516 0.01 1229 0.02 1048 80.74 1.63 1.89 2157 0.02 1526 >1800.00 2.24 2.10
scp44 494 0.04 1213 0.05 977 5.87 0.48 0.43 1927 0.04 1388 1021.33 0.82 0.54
scp45 512 0.01 1309 0.02 1065 6.21 1.03 0.93 1970 0.02 1429 529.12 1.75 1.40
scp46 560 0.03 1371 0.04 1113 63.21 0.65 0.57 2026 0.03 1522 >1800.00 3.43 3.21
scp47 430 0.02 1133 0.02 975 2.58 0.12 0.22 1677 0.01 1337 434.94 0.96 1.08
scp48 492 0.05 1292 0.07 1054 13.79 0.69 0.68 2005 0.05 1462 >1800.00 1.91 2.27
scp49 641 0.04 1460 0.06 1222 162.20 1.47 1.47 2221 0.03 1647 >1800.00 1.96 1.34

scp410 514 0.02 1375 0.03 1117 4.03 0.37 0.35 2265 0.02 1638 >1800.00 3.47 3.94
scp51 253 0.10 564 0.11 467 20.76 0.77 0.60 892 0.10 682 >1800.00 1.19 0.87
scp52 302 0.16 725 0.17 567 466.65 0.89 1.23 1030 0.15 786 >1800.00 3.12 2.07
scp53 226 0.02 589 0.04 446 1.59 0.08 0.11 901 0.04 696 >1800.00 1.62 2.00
scp54 242 0.07 604 0.10 466 21.21 0.43 0.48 926 0.08 672 >1800.00 2.32 1.67
scp55 211 0.06 515 0.07 425 1.30 0.24 0.21 811 0.06 640 311.69 1.03 0.80
scp56 213 0.03 554 0.04 465 8.95 0.58 0.49 940 0.04 723 >1800.00 4.81 6.70
scp57 293 0.09 739 0.15 597 14.38 0.20 0.31 1166 0.09 873 >1800.00 2.53 2.58
scp58 288 0.08 648 0.11 527 54.13 0.61 0.51 978 0.07 753 >1800.00 2.51 2.16
scp59 279 0.06 742 0.09 578 50.68 1.81 1.77 1143 0.07 823 >1800.00 4.84 3.78

scp510 265 0.03 614 0.06 537 19.44 1.04 1.04 1023 0.03 762 >1800.00 1.96 0.98
scp61 138 0.45 303 0.50 236 11.86 0.97 1.05 445 0.43 340 >1800.00 3.27 4.79
scp62 146 0.51 301 0.51 253 48.57 1.46 1.77 447 0.48 341 1741.75 3.03 2.72
scp63 145 0.37 344 0.68 275 197.92 2.08 2.38 457 0.35 370 >1800.00 13.47 12.37
scp64 131 0.07 308 0.09 235 9.92 1.30 1.66 456 0.06 338 >1800.00 5.02 6.49
scp65 161 0.65 362 0.85 311 271.40 2.48 2.92 559 0.62 441 >1800.00 36.31 44.61
scpa1 253 1.47 605 1.44 472 1152.59 5.03 11.60 915 1.36 676 >1800.00 103.26 101.57
scpa2 252 1.08 555 1.43 452 816.09 2.92 4.40 859 0.99 661 >1800.00 10.85 6.57
scpa3 232 0.73 552 1.18 442 >1800.00 4.09 4.60 830 0.67 630 >1800.00 34.10 43.10
scpa4 234 0.47 565 0.52 448 >1800.00 5.67 9.51 806 0.41 617 >1800.00 39.11 29.69
scpa5 236 0.18 577 0.22 447 >1800.00 2.62 3.37 882 0.16 658 >1800.00 29.52 22.89
scpb1 69 1.57 161 1.84 125 1455.35 7.03 12.85 230 2.08 176 >1800.00 976.58 1715.20
scpb2 76 2.53 153 3.53 118 981.15 6.28 11.12 232 2.60 167 >1800.00 152.33 329.05
scpb3 80 1.57 177 2.66 141 >1800.00 19.32 40.61 247 2.01 191 >1800.00 94.26 142.84
scpb4 79 3.10 174 3.82 135 >1800.00 40.74 95.85 260 3.35 185 >1800.00 108.63 124.74
scpb5 72 1.36 150 2.26 122 390.71 3.46 6.73 226 1.62 170 >1800.00 42.10 77.12
scpc1 227 1.12 552 1.19 442 >1800.00 122.30 63.91 896 0.98 ∗ >1800.00 >1800.00 >1800.00
scpc2 219 2.50 523 2.98 404 >1800.00 60.12 84.76 781 2.27 ∗ >1800.00 >1800.00 >1800.00
scpc3 243 2.80 575 4.79 455 >1800.00 163.70 119.57 817 2.51 ∗ >1800.00 >1800.00 >1800.00
scpc4 219 1.48 523 2.10 417 >1800.00 122.68 200.73 728 1.36 561 >1800.00 364.49 334.86
scpc5 215 1.36 548 2.09 422 >1800.00 103.41 110.41 806 1.23 565 >1800.00 49.40 70.53
scpd1 60 2.64 129 4.13 106 >1800.00 35.70 70.01 187 3.75 145 >1800.00 445.02 800.93
scpd2 66 11.63 137 12.94 116 >1800.00 141.45 200.22 203 11.36 ∗ >1800.00 >1800.00 >1800.00
scpd3 72 11.43 157 11.77 124 >1800.00 243.09 1246.25 219 11.56 ∗ >1800.00 >1800.00 >1800.00
scpd4 62 5.02 138 6.58 108 >1800.00 91.75 96.33 194 6.14 ∗ >1800.00 >1800.00 >1800.00
scpd5 61 1.91 152 3.80 118 >1800.00 73.40 90.78 204 3.63 156 >1800.00 313.21 809.73
scpe1 5 0.39 6 0.65 6 110.30 4.09 9.72 8 0.36 8 >1800.00 4.87 6.93
scpe2 5 0.44 6 0.72 6 218.22 5.67 17.24 10 0.40 7 >1800.00 1.14 0.30
scpe3 5 0.46 5 0.48 5 95.56 0.25 0.56 7 0.42 7 >1800.00 2.75 1.89
scpe4 5 0.41 6 0.72 6 157.53 0.33 0.96 7 0.38 7 >1800.00 1.27 1.53
scpe5 5 0.42 6 0.76 6 353.88 0.40 5.47 7 0.39 7 >1800.00 1.29 1.46

scpnre1 29 94.62 61 120.78 45 >1800.00 1017.23 >1800.00 82 113.14 ∗ >1800.00 >1800.00 >1800.00
scpnre2 30 416.43 51 499.74 44 >1800.00 1166.51 >1800.00 81 509.16 ∗ >1800.00 >1800.00 >1800.00
scpnre3 27 100.21 51 97.47 40 >1800.00 135.32 648.17 67 83.94 ∗ >1800.00 >1800.00 >1800.00
scpnre4 28 164.20 57 158.24 44 >1800.00 1335.58 >1800.00 73 135.57 ∗ >1800.00 >1800.00 >1800.00
scpnre5 28 66.98 60 68.08 ∗ >1800.00 >1800.00 >1800.00 84 56.18 ∗ >1800.00 >1800.00 >1800.00
scpnrf1 14 113.12 23 122.92 19 >1800.00 69.21 184.62 30 93.29 23 >1800.00 466.14 1063.87
scpnrf2 15 88.24 25 95.52 21 >1800.00 76.52 696.33 35 71.18 26 >1800.00 954.22 1364.97
scpnrf3 14 53.89 25 59.66 21 >1800.00 127.28 383.97 34 44.56 26 >1800.00 1229.53 >1800.00
scpnrf4 14 156.36 21 200.22 20 >1800.00 756.29 >1800.00 34 209.79 ∗ >1800.00 >1800.00 >1800.00

avg. 22.29 25.44 > 855.51 > 131.72 > 228.08 23.42 >1717.99 > 459.86 > 518.06
# solved 59 35 58 54 5 47 46

Table 4: Results on uncertain set covering instances for P min ∈ {0.95, 0.99} (∗ indicates that
the optimal value is not known).
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(resp., M2’) in just 5.74 seconds and 4,299 nodes (resp., 8.06 seconds and 3,355 nodes), but
deactivating ILOG-Cplex preprocessing and cut generation these figures become 15.67 seconds
and 5,842 nodes for M2, and 12.08 seconds and 4,985 nodes for M2’.

As to the quality of our simple initial heuristic, it turns out to be very satisfactory for
problems with P min = 0.85, and tends to deteriorate when P min increases.

Finally, we performed a set of experiments aimed at evaluating the quality of the USCP
solutions with respect to the nominal SCP ones for a given real-world problem arising in crew
scheduling in railways. Problem rail2536c has 2,536 rows, each corresponding to a duty to
be performed by a crew, and 15,284 columns, each corresponding to a feasible pairing (this
instance corresponds to a suitable “core” problem of the original railway instance; see [8] for
more details). Costs of columns are either 1 or 2. We eliminated 6 rows which can be covered
by one or two columns, since the associated columns should be active in each feasible solution.
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Figure 1: Lower and upper bounds for different values of P min on a real-world set covering
instance.

We randomly generated probabilities pj in [0, 0.2] and solved the uncertain problem with
different values of the threshold probability P min (again, we require the same probability for
each row i ∈ M). Figure 1 reports the value of the optimal uncertain solution as a function
of parameter P min. For each value of P min the associated instance was solved using model M2
(28)–(30) with a time limit of 10 hours.
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3.2 Uncertain graph connectivity

Given an undirected graph G = (V,E) with nonnegative edge costs ce, the classical Minimum
Spanning Tree Problem (MSTP) requires to find a minimum-cost set of edges so that the
associated subgraph is connected. In many practical applications arising in communications
networks, survivability of the network is a major issue. Hence, one has to take care of possible
link failures, which is often modeled by solving a variant of MSTP in which the set of selected
edges must provide (at least) k edge-disjoint paths between each pair of nodes, k being an
input parameter; see, e.g., Monma, Munson and Pulleyblank [19], Grötschel and Monma [17],
and Grötschel, Monma and Stoer [18].

Despite the deterministic version of the problem is polynomially solvable, the uncertain
graph connectivity problem turns out to be strongly NP-hard as stated by the following
theorem.

Theorem 2 The uncertain graph connectivity problem is strongly NP-hard, even if edge costs
satisfy the triangular condition.

Proof. We prove NP-hardness of our problem through a reduction from the min-cost 2-edge
connected subgraph problem (2ECSP). 2ECSP is known to be NP-hard even when edge costs
satisfy the triangular condition [16]. Given a 2ECSP instance, define an instance of uncertain
graph connectivity as follows: each edge has probability 1/2 of disappearing, and the required
probability for connection is equal to 3/4. This imposes that at least two edges are selected
for each cut, hence the set of feasible solutions of the two problems coincide. ¤

By associating to each edge e ∈ E a binary variable xe taking value 1 iff edge e is selected,
a set covering model for MSTP is as follows:

min
∑

e∈E

ce xe (32)

∑

e∈δ(S)

xe ≥ 1, S ⊂ V, S 6= ∅, (33)

xe ∈ {0, 1}, e ∈ E. (34)

Possible failures in the connections can be modeled by associating each edge e ∈ E with
a failure probability pe and requiring a minimum probability P for the connection to be
provided. The same reasoning used in Theorem 1 shows that, if probabilities are independent
each other, the uncertain version of the problem can be modeled as:

min
∑

e∈E

ce xe (35)

∑

e∈δ(S)

wexe ≥ W, S ⊂ V, S 6= ∅, (36)

xe ∈ {0, 1}, e ∈ E, (37)

where we = − ln(pe) (e ∈ E) and W = − ln(1− P ).
The exponential number of constraints (36) makes it natural to approach the above ILP

by means of a branch-and-cut algorithm based on cutting planes. Given a solution x∗, the
separation problem for constraints (36) calls for the determination of a subset S∗ of nodes
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for which
∑

e∈δ(S∗) wex
∗
e is a minimum: if such value is smaller than W , a violated con-

straint is found and the process is iterated. Otherwise x∗ is the optimal solution of the LP
relaxation of the current subproblem. Thus, the separation problem amounts to finding a
minimum-capacity cut in an undirected graph with edge capacities wex

∗
e, and can be solved

in polynomial time through max-flow techniques—very much in the spirit of separation of
subtour elimination constraints for the TSP (see, e.g., Crowder and Padberg [12]).

3.2.1 Computational experiments on Uncertain Graph Connectivity

In our computational experiments, we considered all the instances for the Symmetric Traveling
Salesman Problem in the TSPLIB with at most 50 nodes. In order to simulate practical
networks, for each instance we considered a sparse graph containing only the edges belonging
to the 5 disjoint minimum-cost spanning trees.

Probabilities pj associated with edges were randomly generated as in Section 3.1.3, i.e.,
according to a uniform distribution in [0, 0.2], and were used to determine coefficients wj and
W in the same way.

Tables 5 and 6 give, for each instance and for each value of P min ∈ {0.85, 0.90, 0.95, 0.99},
the following information:

• the best solution found (zh) by the initial heuristic—the associated computing times
are omitted since they are always negligible;

• best solution found, best lower bound and computing times for model M2 defined by
(35)–(37);

• best solution found, best lower bound and computing times for model M2’ defined by
(35)–(37) in which constraints (31) with k = 2 and k = 3 are separated before (36) are
considered; for each value of k, separation for constraints (31) requires the solution of
an additional min-cut problem with modified edge capacities.

A time limit of 10,000 seconds was given to each model. The last row of the table reports,
for each solution method, the average computing time, in seconds (for the unsolved instances,
the time limit is considered), and the number of instances solved to proven optimality within
the given time limit.

Computational results clearly show that the separation of constraints (31) before (36)
plays a relevant role for this problem. Indeed, model M2’ is able to solve all the instances
with n ≤ 26 within the given time limit. In addition, for the instances that are not solved to
proven optimality, model M2’ finds better solutions and lower bounds than model M2. This
is not surprising, since the robust connectivity constraints are generated at run time, so the
initial MIP preprocessing and cut generation procedures are ineffective.

As in the USCP case, the initial heuristic is very tight for P min = 0.85, with a performance
worsening for larger values of P min.

Figure 2 gives a graphical illustration of the optimal robust solutions for instance burma14
for different values of P min.

4 Conclusions

In this paper we considered optimization problems where the exact value of some input
data is not known in advance. Based on the well-known concept of robustness as defined
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Nominal problem P min = 0.85 P min = 0.90
Model M2 Model M2’ Model M2 Model M2’

name n m zh z LB T z LB T zh z LB T z LB T
att48 48 235 9696 9696 6704 >10000.00 9696 7563 >10000.00 10997 10997 7021 >10000.00 10454 8458 >10000.00

bayg29 29 140 1373 1373 1059 >10000.00 1373 1110 >10000.00 1566 1566 1105 >10000.00 1489 1337 >10000.00
bays29 29 140 1728 1728 1319 >10000.00 1728 1480 >10000.00 1899 1899 1459 >10000.00 1789 1696 >10000.00

burma14 14 65 2671 2671 2671 142.67 2671 2671 1.06 2850 2811 2811 80.53 2811 2811 0.49
dantzig42 42 205 642 642 481 >10000.00 642 514 >10000.00 729 729 499 >10000.00 668 595 >10000.00

fri26 26 125 802 802 692 >10000.00 780 780 8714.49 894 894 713 >10000.00 841 841 1548.62
gr17 17 80 1496 1496 1496 1.56 1496 1496 0.25 1693 1599 1599 28.89 1599 1599 0.21
gr21 21 100 2330 2330 2330 945.45 2330 2330 5.42 2701 2701 2416 >10000.00 2554 2554 58.67
gr24 24 115 1124 1124 948 >10000.00 1124 1076 >10000.00 1233 1233 998 >10000.00 1142 1142 136.62
gr48 48 235 4365 4365 3128 >10000.00 4365 3420 >10000.00 5346 5346 3344 >10000.00 4603 3984 >10000.00
hk48 48 235 11013 11013 7389 >10000.00 1013 8525 >10000.00 12910 12910 8069 >10000.00 11362 9432 >10000.00

swiss42 42 205 1199 1199 841 >10000.00 1199 935 >10000.00 1349 1349 908 >10000.00 1226 1052 >10000.00
ulysses16 16 75 4985 4985 4985 372.67 4985 4985 1.97 5544 5540 5540 2120.25 5540 5540 10.53
ulysses22 22 105 4952 4952 4952 619.95 4952 4952 18.93 5557 5557 5269 >10000.00 5410 5410 18.22

avg. > 6577.32 > 6338.74 > 8016.42 > 5126.68
# solved 5 6 3 7

Table 5: Results on uncertain graph connectivity for P min ∈ {0.85, 0.90}.
Nominal problem P min = 0.95 P min = 0.99

Model M2 Model M2’ Model M2 Model M2’
name n m zh z LB T z LB T zh z LB T z LB T
att48 48 235 12332 11382 8093 >10000.00 10246 9985 >10000.00 16740 15483 10892 >10000.00 13959 11706 >10000.00

bayg29 29 140 1905 1751 1321 >10000.00 1570 1570 92.35 2569 2070 1712 >10000.00 1875 1875 1244.62
bays29 29 140 2391 2099 1661 >10000.00 1945 1945 7.30 3281 2619 2232 >10000.00 2499 2283 >10000.00

burma14 14 65 4039 3182 3182 50.89 3182 3182 0.14 4859 3881 3881 3.71 3881 3881 1.94
dantzig42 42 205 911 760 577 >10000.00 675 675 182.65 1134 933 742 >10000.00 870 783 >10000.00

fri26 26 125 1180 890 855 >10000.00 874 874 2.80 1445 1081 1058 >10000.00 1080 1080 281.15
gr17 17 80 2197 1807 1807 5.95 1807 1807 0.12 2943 2495 2426 >10000.00 2466 2466 925.66
gr21 21 100 3258 2584 2584 267.82 2584 2584 0.29 3716 3113 3113 267.64 3113 3113 23.15
gr24 24 115 1503 1284 1148 >10000.00 1255 1255 5.56 2128 1677 1453 >10000.00 1592 1592 7418.44
gr48 48 235 5410 4663 3768 >10000.00 4528 4528 1873.00 7618 7618 4889 >10000.00 6587 5871 >10000.00
hk48 48 235 15754 12871 9018 >10000.00 11114 11114 656.09 20190 17575 11812 >10000.00 15770 13455 >10000.00

swiss42 42 205 1652 1425 1043 >10000.00 1237 1237 25.22 2116 1848 1339 >10000.00 1658 1447 >10000.00
ulysses16 16 75 7676 6414 6414 8.49 6414 6414 0.21 9766 7770 7770 17.21 7770 7770 0.63
ulysses22 22 105 6732 6241 5797 >10000.00 5999 5999 0.30 9621 7061 7061 2982.58 7061 7061 133.77

avg. > 7166.70 > 917.57 > 7376.64 > 5002.12
# solved 4 13 4 8

Table 6: Results on uncertain graph connectivity for P min ∈ {0.95, 0.99}.
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Figure 2: Optimal solutions of instance burma14 for P min ∈ {0.85, 0.90, 0.95, 0.99}.
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by Bertsimas and Sim [7], we proposed a cutting planes approach for robust optimization,
pointing out situations where this method has practical performances comparable or better to
those of the Bertsimas-Sim method. Moreover, we pointed out that our cutting plane approach
has some important features that can make it the most natural (or even the only available)
option to face uncertainty in important applications. Indeed, we considered problems in which
uncertainty domain involves yes-no decisions that cannot be modeled by continuous variables,
and proposed mathematical formulations for these uncertain problems. In particular, we
introduced an uncertain version of the well-known Set Covering Problem, arising when each
column has a positive probability of disappearing and each row must be covered with a
given probability. We also studied an uncertain version of the classical minimum-cost graph
connectivity problem, arising when edge failures are taken into account and connectivity has
to be guaranteed with a certain probability.
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