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Abstract

We present an exact Mixed Integer Programming (MIP) solution scheme where a
set covering model is used to find a small set of first-choice branching variables. In a
preliminary “sampling” phase, our method quickly collects a number of relevant low-
cost fractional solutions that qualify as obstacles for the Linear Programming (LP)
relaxation bound improvement. Then a set covering model is solved to detect a small
subset of variables (a “backdoor”, in the AI jargon) that “cover the fractionality”
of the collected fractional solutions. These backdoor variables are put in a priority
branching list, and a black-box MIP solver is eventually run—in its default mode—
by taking this list into account, thus avoiding any other interference with its highly-
optimized internal mechanisms. Computational results on a large set of instances
from the literature are presented, showing that some speedup can be achieved even
with respect to a state-of-the-art solver such as IBM ILOG Cplex 12.2.

1 Introduction

Consider a generic Mixed-Integer linear Program (MIP) of the form:

(P ) v(P ) := min cTx (1)

Ax ≥ b, (2)

xj integer, ∀j ∈ I, (3)

xj continuous, ∀j ∈ C, (4)

where A is an m × n input matrix, and b and c are input vectors of dimension m and n,
respectively. The variable index set N := {1, . . . , n} is partitioned into (I, C), where I
is the index set of the integer variables, while C indexes the continuous variables, if any.
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Bounds on the variables, if any, are assumed to be part of system (2). For a given S ⊆ I,
let

L(S) := min{cTx : Ax ≥ b, xj integer ∀j ∈ S}
denote the lower bound on v(P ) obtained by dropping the integrality requirement for all
variables but for those in S. Hence L(∅) corresponds to the LP relaxation bound, whereas
L(I) = v(P ).

With a little abuse of terminology, in what follows we will say that a point x is integer
if xj is integer for all j ∈ I (no matter the value of the other components), fractional
otherwise.

The exact solution of (P) is typically performed by using enumerative schemes where
branching is used to partition the solution space; see, e.g., [12]. A large amount of research
has been devoted the way branching is actually performed. A customary approach is to
branch on a single variable, to be selected according to its impact in the LP bounds of the
descendant nodes ([4, 2]), or in the binding constraints ([14, 15]). A different strategy was
recently proposed in [11], where a restart scheme is adopted to gather suitable branching
information.

The final goal of enumerative methods is to build a tree whose leaf nodes satisfy the
following certificate condition: the LP relaxation optimal solution x∗ is either integer, or
cTx∗ ≥ v(P )—the LP cost being +∞ in case of infeasibility. A branching tree whose leaves
satisfy the certificate condition is called a certificate tree. For the sake of simplicity, in the
above definition we consider a pure branch-and-bound scheme, i.e., cut generation as well
as variable fixing and node preprocessing are not taken into account when checking the
certificate conditions. In addition, in our definition we assume the optimal solution value
v(P ) is known in advance, though this hypothesis will be relaxed when actual solution
algorithms will be presented.

The computational effort for solving (P) depends on the number of nodes of the cer-
tificate tree, that in turn depends on the number of branching variables involved. So,
it makes sense to define the compactness of a branching tree as the number of distinct
branching variables associated to it—the fewer the variables, the more compact the tree.
Note however that this measure is not perfect, in the sense that not all tree nodes need
to be evaluated explicitly, hence the final computational effort also depends on the tree
“shape” and not just on the number of involved variables. In addition, branching on a
general integer (as opposed to binary) variable might not fix its fractionality, hence these
variables should be counted, e.g., in a way proportional to the logarithm of their range.

A set of variables leading to a compact certificate tree is called a backdoor in the AI
community. As a matter of fact, different backdoor definitions are possible. We consider
the following definition, strictly related to the concept of strong backdoor in [16]:

Definition 1 A set S ⊆ I is a backdoor if L(S) = v(P ).

Roughly speaking, a backdoor can be viewed as a (hopefully small) set of branching
variables leading to certificate tree, i.e., it is enough to require integrality for these variables
to get the optimal solution value v(P ).
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In [9] backdoors are applied to optimization problems, and the backdoor size for some
problems from MIPLIB 2003 is reported for the first time. The outcome of this analysis is
that, for some problems, fixing values for a very small fraction of the decisional variables
is enough to easily solve the problem to optimality.

Our first order of business is to define a model that allows us to exactly compute the
minimum size of a set of integer variables leading to a certificate tree. To this end, we
first compute the optimal MIP value, v(P ), and then treat all the vertices x of P with
cTx < v(P ) as obstacles whose fractionality has to be covered by the branching variable
set. This approach is reminiscent of Chvátal resolution search [7], where obstacles are
associated with minimal sets of integer variables whose fixing leads to infeasibility.

Our second step is more ambitious: we try to use backdoor information on the fly,
within the solution procedure, so as to reduce the total computational effort of the MIP
solver at hand. As a simple proof-of-concept of the potential of the idea, we implemented
the following multiple restart scheme. We make a sequence of short enumeration runs in
a “sampling mode” intended to gather information relevant for branching. This approach
is in the spirit of the recent work in [11], but in our case we intend to discover and store
a collection of relevant low-cost fractional solutions qualifying as obstacles that block the
lower bound improvement. More specifically, we use a dynamically-updated cost threshold,
and maintain a list of fractional solutions whose cost does not exceed the current threshold.
At each sampling run, we start by solving a set covering model to determine a small-
cardinality set of branching variables “covering” all fractional solutions in our current list,
and treat them as first-level variables with priority 1 for branching (all other variables
having priority 0). We then run the MIP solver by using the above branching priorities,
and collect additional low-cost fractional solutions. After a while, we abort the current
run, and repeat. In this way, more and more low-cost fractional solutions are collected
and used to find a clever set of first-level branching variables. After a certain number
of restarts, the “final run” is executed by using the MIP solver as a black box, without
interfering with its highly-optimized criteria but just giving branching priority 1 to all the
variables in the solution of the last set covering problem, and 0 to the remaining ones.

Computational results on a large set of instances from the literature (possibly involving
general-integer variables, treated by our set covering model in a heuristic way) are reported,
with a comparison with IBM ILOG Cplex 12.2. The outcome is that even a simple proof-
of-concept implementation of backdoor branching can lead to a performance improvement.

An early version of the present paper was presented at the IPCO XV meeting, Yorktown
Heights, New York, June 15–17, 2011.

2 A basic set covering model

We next show how to compute the compactness of a given MIP, defined as size of its
minimum-cardinality backdoor—i.e., as the minimum number of branching variables lead-
ing to a certificate tree. To have a more meaningful setting, in this section we restrict our
attention to 0-1 MIPs, i.e., all integer variables are assumed to be binary, hence the smaller
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the number of variables in the backdoor, the smaller the associated (complete) certificate
tree—assuming again that all the nodes of this tree need to be generated explicitly.

Branching on 0-1 variables (or, more generally, on faces of P ) has the nice property of
not introducing new vertices of P ; see, e.g., [5]. The key property here is that branching
could in fact be implemented by just adding (resp. subtracting) a large constant M > 0
to the cost cb of all branching variables fixed to 0 (resp., to 1), so the LP relaxation poly-
hedron at any node does not change. More formally, if xk is a vertex of the LP relaxation
polyhedron P k (say) at any given branching node k, then there exists an objective func-
tion wkx that attains its unique minimum over P k at xk. By adding/subtracting M to the
weight wk

b of the branching variables xb along the path from the root to node k, we then
obtain a new weight function wTx that has xk as its unique minimum with respect to P ,
hence xk is also a vertex of P .

In view of the above property, we can model our compactness problem as follows. For
each j ∈ I, we introduce a binary variable such that yj = 1 if xj is in the minimum backdoor
set, = 0 otherwise. For any vertex x∗ of P , let frac(x∗) := {j ∈ I : x∗j is fractional} denote
its fractional support w.r.t. I. The problem of computing MIP compactness then calls for
a minimum-cardinality set of variables that cover all the fractionalities of all the vertices of
P having a cost strictly less than v(P ), and can be rephrased as the following set covering
problem.

min
∑
j∈I

γjyj (5)∑
j∈frac(xk)

yj ≥ 1, ∀ vertex xk of P : cTxk < v(P ) (6)

yj ∈ {0, 1} ∀j ∈ I, (7)

where we set γj = 1 for all j ∈ I, though a different cost definition can be used to obtain
approximate backdoors; see below. Whenever (6) holds for a certain pair y and xk, we say
that “y covers the fractionality of xk”.

The set covering problem above can be tackled through a run-time constraint generation
scheme. To this end, for a given set F of points xk, let SCP (F ) denote the set covering
model (5)–(7) where (6) is imposed for xk ∈ F only. A possible Benders-like solution
scheme is then sketched in Figure 1. In this algorithm, we iteratively solve a relaxation
of the set covering model where constraints (6) are imposed for a subset F of vertices xk,

1. compute v(P ) and initialize F := ∅;
2. Let y∗ be an optimal sol. of SCP (F ), and define S := {j ∈ I : y∗j = 1};
3. Compute L(S) by an enumerative scheme, and let x̃ be an optimal solution;
4. if cT x̃ < v(P ) then add x̃ to F , and repeat from 2.

Figure 1: Conceptual algorithm for solving model (5)–(7).
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while the integrality condition (7) is preserved. For a given optimal set covering solution
y∗, our order of business is to prove that the complete branching tree associated with y∗ is
in fact a certificate tree. This in turn amounts to solving a relaxed MIP obtained from the
original one by relaxing the integrality requirement for all xj with y∗j = 0. If a fractional
optimal solutions x̃ of this relaxed MIP is found and cT x̃ < v(P ), the associated constraint
(6) is added to the set covering model, and the method is iterated.

As already observed, the method requires the knowledge of v(P ). A modified version
can also be designed, that does not compute v(P ) at step 1 and adds x̃ to F at step 4
after having verified it is not integer. In this way, however, one can only guarantee that
each x̃ inserted in F satisfies cT x̃ = L(S) ≤ v(P ), meaning that the method can actually
over-estimate the backdoor size in the degenerate case where x̃ is fractional but cT x̃ = v(P ).

3 Backdoor branching

As already mentioned, our backdoor branching is a multi-restart strategy inspired by the
set covering model outlined in the previous section. Its goal is to heuristically use the
information associated with the set covering model (5)-(7) to produce a solution scheme
for the original MIP that can outperform the standard one, at least on certain classes of
hard instances.

Our underlying hypothesis here is that even hard MIPs could be solved by a com-
pact tree (in terms of number of branching variables involved), if an appropriate set of
branching variables is chosen. So, we afford spending a certain amount of computing time
just to heuristically determine a small set of branching variables leading to a (possibly
approximate) certificate tree.

Our proposal can be cast into the following master-slave scheme.
The set covering problem (5)-(7) written for a certain set of vertices xk acts as our

master problem: it is solved (possibly heuristically) to get a candidate branching set y∗.
In our computational tests (as reported the next section) we did not impose a time limit
for its solution, as its optimal solution always required a very short computing time.

If
∑

j∈I y
∗
j is reasonably small, then the branching set is compact and we try to use it.

To be specific, we solve our MIP as a slave problem to possibly generate new xk’s needed
to extend (6). To this end, instead of relaxing the integrality conditions on the xj’s with
y∗j = 0 we prefer to use a black-box MIP solver on the original problem (P ) by giving
all variables xj with y∗j = 1 a high priority for branching. This is obtained by just using
y∗ as a branching priority vector (=1 for the variables to branch first, =0 for the other
variables to be branched only as a last resort), so as to let the MIP-solver choose among
these variables according to its favorite strategy, e.g., strong branching or alike.

All fractional solutions xk encountered during the solution of the slave problem are
stored and added to the list in (6) to be possibly used at the next iteration. In order to
favor the collection of low-cost solutions xk, a best-bound-first tree exploration strategy is
used.

When a prefixed number of new solutions xk whose fractionality is not covered by y∗
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has been collected (say, Kmax = 10) we have the evidence that the current y∗ is not an
accurate estimate of a good branching set, and we return to the master to get another y∗,
i.e., a new tentative branching set.

The master-slave cycle above is iterated until either (i) too many slaves have been solved
(say R, where R = 10 in our implementation), or (ii) the current master solution y∗ has
too many 1’s (more than, say, Γ, where Γ = 5 in our implementation), meaning that the
MIP likely does not admit a compact branching set. In the latter case, instead of giving
up we relax the requirement of having an exact backdoor, and reduce the threshold value
of the vertices xk to be taken into account in (6). In particular, denoting by θc and v(LP )
the current threshold value and the value of the LP relaxation, respectively, we reduce the
threshold by setting

θc = θc − (θc − v(LP ))/10. (8)

At the first iteration, θc is initialized to the value of the best integer solution known.
After the solution of the last slave problem, we make the final choice of the branching

priorities by solving our last set covering model (5)-(7) over the current set of fractional
solutions xk whose cost is smaller than the current θc, and just re-run the MIP solver from
scratch (in its default setting) by using the optimal set covering solution y∗ as priority
vector—this phase being called “the final run”.

As the solution of the original MIP (acting as a slave in our scheme) is restarted several
times, our method can be interpreted as a multi-restart strategy under the control of a set
covering model (the master) that guides the branching process.

Due to its heuristic nature, the backdoor definition above can be quite risky in practice
because it may favor variables that happen to cover well the collected fractionalities, but
have a minor impact for branching. An extreme case arises when the backdoor includes
variables whose integrality requirement is in fact redundant. To mitigate this drawback,
we try to exploit the information available for free after each slave solution. To this
end, we count how many times each variable has been selected for branching in any of
the slaves, and also store the pseudocost vector (see, e.g., [6] and [1]) when the slave is
interrupted. Each time a set covering is solved, we treat the never-branched variables as if
they were continuous, and modify the set covering objective function to favor the choice of
the variables that are likely to have a large impact for branching. To be specific, the cost
of each variable yj (j ∈ I) in model (5)–(7) is redefined as

γj = M − pj (9)

where M is a sufficiently large positive number, and pj measures the importance of variable
j for branching (the larger the more important). In our proof-of-concept implementation,
we set M = 1000, whereas coefficient pj is computed as

pj = b100 ·
Ψ−j + Ψ+

j

Ψmax

c (10)

where Ψ−j and Ψ+
j denote the average (across all slaves solved so far) pseudocost of variable

j in the downwards and upwards branching, respectively, and Ψmax = max{Ψ−j + Ψ+
j : j ∈
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I}. According to our computational experience, pseudocosts proved useful to deal with
degenerate cases with a lot of ties, for which the set covering model without pseudocosts
would have chosen branching variables essentially at random. Different definitions of the
pj’s are also possible, that take into account how many times a variable has been selected
for branching.

The overall algorithm is sketched in Figure 2, where S, F and θ denote the current (ten-
tative) backdoor, set of fractional solutions to be used in (6), and threshold, respectively.

4 Computational results

In this section we compare our backdoor branching scheme with the state-of-art MIP solver
IBM ILOG Cplex 12.2. All experiments were performed on an Intel(R) i5 CPU 750 running
at 2.67 GHz, in single-thread mode, with time and memory limits equal to 10,000 CPU
seconds and 8GB RAM, respectively, for each run.

Testbed and settings
Our testbed was constructed to contain “not too easy nor hopeless” instances, selected
according to the following procedure intended to reduce biasing in favor of one of two
codes under comparison.

We first considered all instances in the MIPLIB 2003 [3], COR@L [8] and MIPLIB 2010
[13] libraries and solved them by IBM ILOG Cplex 12.2 (in its single-thread default setting,
with no upper cutoff). Then, we disregarded the instances that could not be solved in the
time limit, along with the “too easy” ones that could be solved within just 1,000 nodes or

1. S := ∅; F := ∅; θ := upper bound on v(P );

Sampling Phase
2. repeat
3. solve (P) with branching priorities defined by S,

until Kmax new fractional solutions are encountered;
4. if (P) has been solved to optimality then stop;
5. add the new fractional solutions to F ;
6. get the current pseudocost values Ψ− and Ψ+, and define the cost

of each set-covering variable according to (9) and (10);
7. solve SCP (F ), and let S be its optimal set;
8. if |S| > Γ then reduce θ according to (8);
9. until R iterations have been performed;

Long Run
10. Solve (P) with branching priorities defined by S.

Figure 2: Pseudocode of the Backdoor Branching algorithm.
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100 CPU seconds.
Following [11], to have a fair comparison of alternative branching rules with no side

effects related to primal heuristics, in the subsequent runs we provided the optimal solution
value as the upper cutoff to both solvers and disabled all heuristics, which became useless
in this context.

Again to reduce side effects, in all runs we deactivated cut generation for both codes—
resulting into a significant slowdown or even a time-limit condition for some instances.
In addition, we also had to deactivate (again for both codes) variable aggregation in the
preprocessing phase because of its interference with the branching priority mechanism.

Within these settings, some instances in our testbed became too easy, since they were
solved to optimality at the root node; thus, we discarded these problems. Finally, we
disregarded all instances that were not solved to proven optimality by neither IBM ILOG

Cplex 12.2 (in our settings) nor backdoor branching. At the very end, the procedure ended
up with a testbed of 70 instances.

Results
Table 1 provides the outcome of our experiments on the instances in our testbed. For each
instance we give the results of the following algorithms:

• CPX default, i.e., IBM ILOG Cplex 12.2 (single thread) in its default setting with no
upper cutoff;

• Cplex, i.e., IBM ILOG Cplex 12.2 (single thread) with our settings about upper cutoff,
cut generation, heuristics, and variable aggregation;

• Backdoor, i.e., our backdoor branching algorithm (single thread, same setting as
Cplex).

For each algorithm we give the computing time and number of branching nodes; t.l.
indicates that the instance was not solved to proven optimality within the 10,000-second
time limit.

Computing times and number of nodes reported for our backdoor method sum up the
corresponding figures for all (sampling and final) runs; the root node computing time is
instead counted only once in that all these runs start exactly from the same root-node
information. In addition, we report the size |B| of the “approximate backdoor” used for
the last run of the MIP solver, as well as the computing time (column Tlast) spent by
backdoor branching in its final run.

The last lines of the table report the average values (arithmetic and geometric means) of
computing time and number of nodes, along with the number of instances solved to proven
optimality. Instances that reached the time limit are counted by taking the computing
time and number of nodes at the time limit.

According to Table 1, CPX default solves more instances than both Cplex and Backdoor

and requires fewer branching nodes and computing time (in arithmetic mean). This out-
come was largely expected due to the use of variable aggregation and cuts that were in-
hibited in the other two methods. Backdoor compares favorably with respect to its direct
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competitor, Cplex, as it solves three more instances and has a computing time and num-
ber of branching nodes reduced of about 15% and 25%, respectively (again, in arithmetic
mean).

Surprisingly enough, Backdoor turns out to be even faster than CPX default and just
comparable with Cplex when geometric (as opposed to arithmetic) means are considered.
This behavior can however be explained by the different number of timelimits incurred by
the three methods, that tends to penalize the more clever methods that are able to solve
more instances within the given limit. To counteract this distorted behavior of geometric
means, it was recently proposed in [10] to penalize the unsolved instances by multiplying by
10 their computing time. If this approach is taken, the geometric means for computing time
become 1108, 985, and 813 seconds for CPX default, Cplex, and Backdoor, respectively.

Table 1: Detailed results for IBM ILOG Cplex 12.2 and backdoor
branching on a set of hard instances. t.l. indicates that the 10,000-
sec. time limit has been reached.

CPX default Cplex Backdoor

Time #nodes Time #nodes Time #nodes |B| Tlast

aflow40b 820.54 116,277 7,191.21 4,253,462 5,252.32 3,185,782 3 5,248.71
app1 2 2,082.97 138,739 163.90 6,064 599.94 12,224 2 521.20
bienst2 135.39 105,238 103.70 85,199 180.44 143,731 4 179.65
csched-010 4,289.02 402,709 2,740.09 2,174,057 3,179.48 2,469,581 5 3,178.10
eilD76.2 6,089.58 20,810 2,069.35 135,801 2,005.36 119,656 3 1,927.05
fast0507 1,746.24 12,746 139.64 3,329 271.55 3,848 2 152.59
glass.lp.sc 1,457.10 54,254 1,495.68 46,123 1,393.02 40,397 2 1,341.66
glass4 1,058.56 940,410 5.11 25,654 23.54 143,656 4 23.36
gmu35 40 1,925.08 1,212,700 t.l. 60,707,426 89.29 439,918 5 89.00
markshare 5 0 7,425.75 131,757,859 5,164.27 141,061,124 4,458.08 122,768,127 6 4,457.83
mas74 484.34 2,929,728 218.79 2,993,274 285.56 3,922,440 5 285.45
mcsched 363.65 62,200 682.38 72,102 882.97 162,209 2 862.53
mine 90 10 5,477.70 60,280 721.93 217,682 1,243.69 436,330 2 1,219.02
miplib1 1,084.28 8,447 1,498.72 16,086 1,920.00 16,218 3 1,569.73
neos-1053234 127.98 15,074 24.64 7,405 60.13 17,159 3 56.25
neos-1126860 3,127.37 16,677 3,450.15 18,519 2,962.07 15,993 5 2,821.20
neos-1215891 194.14 7,629 2,068.09 442,404 907.59 178,128 3 895.74
neos-1324574 2,635.90 21,777 5,887.34 52,413 t.l. 132,731 3 t.l.
neos-1330346 4,797.75 120,265 t.l. 516,148 9,984.18 532,478 2 9,963.31
neos-1337307 2,227.09 20,021 8,341.73 475,838 t.l. 400,775 5 t.l.
neos-1427181 2,395.74 751,589 t.l. 4,472,330 2,612.93 934,040 6 2,605.26
neos-1439395 18.16 6,228 21.40 16,866 140.32 109,735 10 138.08
neos-1440460 1,571.19 877,619 2,299.76 1,657,377 935.44 764,126 6 935.01
neos-1451294 2,244.29 10,951 9,630.03 71,278 t.l. 85,140 3 t.l.
neos-1595230 1,946.95 159,514 347.10 79,340 263.08 66,921 3 259.40
neos-1616732 4,827.34 1,617,471 6,735.23 2,747,954 5,197.28 1,996,385 2 5,187.79
neos-548047 6,763.29 113,081 t.l. 108,367 6,571.39 130,069 2 6,521.23
neos-603073 186.50 20,940 2.29 5,318 2.96 6,094 3 2.54
neos-785912 380.49 26,238 t.l. 588,153 3,634.81 242,110 4 3,621.32
neos-859770 1,134.46 47,765 2,608.10 147,225 1,524.75 67,867 6 1,513.40
neos-863472 685.15 279,040 20.59 57,617 39.66 114,276 2 39.45
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neos-886822 131.93 22,669 82.67 15,360 75.09 15,383 2 65.04
neos-905856 439.43 27,684 894.77 57,865 1,124.87 66,622 3 1,117.66
neos-916792 1,557.94 234,010 586.49 121,654 631.00 139,152 2 622.63
neos13 187.32 14,906 21.20 940 50.49 1,468 2 29.60
neos18 84.84 26,290 235.04 143,654 194.48 122,214 3 189.98
neos5 57.82 362,243 131.34 1,199,529 54.35 447,350 3 53.85
neos788725 4,026.49 1,019,915 218.53 767,350 200.90 755,774 3 199.43
neos818918 2,317.66 254,046 32.10 7,003 154.59 38,194 3 148.65
neos823206 5,073.19 119,609 350.38 205,241 241.86 167,653 3 236.93
noswot 725.30 3,771,681 253.77 2,353,215 127.23 1,154,341 8 127.09
ns1324654 2,560.29 21,777 5,921.72 52,413 t.l. 129,720 3 t.l.
ns1702808 1,477.67 665,309 292.84 251,583 432.82 377,091 5 431.95
ns1766074 500.52 1,067,844 145.98 1,212,703 152.49 1,275,784 5 151.84
ns1830653 666.45 18,269 448.50 42,542 330.59 24,859 4 305.52
ns25-pr3 1,374.60 92,418 1,443.58 219,964 1,427.41 207,664 4 1,421.89
ns25-pr9 256.00 21,137 130.91 23,230 86.35 15,752 3 83.46
ns60-pr3 3,779.10 102,147 t.l. 1,106,164 9,441.38 1,066,696 2 9,433.23
ns60-pr9 661.17 29,275 266.90 38,056 293.26 38,491 2 286.34
opm2.z8.s1 frm00 3,973.91 8,558 2,429.07 10,578 4,473.18 11,564 2 3,540.56
p2m2p1m1p0n100 1,432.92 64,471,749 1,386.26 64,618,970 1,388.07 64,620,437 30 1,387.69
pdh-DBM 41.91 17,566 16.63 56,602 17.77 57,454 2 17.14
pigeon-09 132.69 573,577 65.34 467,325 86.77 621,353 3 86.56
pigeon-10 1,492.41 5,909,259 720.60 4,594,047 739.80 4,676,256 3 739.23
pima.lp.sc 2,758.77 52,452 1,089.11 21,310 532.01 9,680 2 466.52
prob.15.80.100.4.sc 8,302.89 177,646 8,099.56 195,991 8,689.43 187,229 2 8,581.19
prob.20.90.100.0.sc 2,655.14 27,027 2,453.65 23,035 2,382.57 20,743 2 2,151.52
prob.25.80.100.1.sc 3,322.35 23,186 1,240.13 8,050 1,813.49 10,279 2 1,477.92
prob.25.90.100.2.sc 3,028.89 49,164 2,330.25 45,809 3,349.22 45,746 2 3,199.34
prob.5.100.100.0.sc 8,297.75 461,830 2,632.43 185,749 1,993.06 162,617 2 1,961.79
prob.5.100.100.3.sc 4,855.73 325,811 4,213.81 270,359 1,996.72 139,086 2 1,957.00
prod2 144.52 84,898 8.29 21,023 8.98 20,881 5 8.40
pw-myciel4 1,579.25 281,385 191.42 26,842 363.68 60,610 7 357.38
ran16x16 136.84 72,326 1,978.80 14,953,792 2,277.81 16,702,697 4 2,277.63
rocII 4 11 1,336.53 380,593 386.82 158,374 290.50 124,170 5 284.61
rococoC10-001000 601.25 17,587 2,507.89 1,631,422 3,112.39 1,608,535 2 3,108.86
SING290 3,724.97 8,260 t.l. 416,442 5,491.15 123,885 3 5,384.72
sp98ic 1,074.47 44,630 956.75 528,380 1,017.49 536,194 3 1,004.20
tic-tac-toe.lp.sc 2,553.22 47,159 2,759.44 56,423 3,639.74 71,357 2 3,547.06
wpbc.lp.sc 5,043.34 45,406 4,077.87 37,076 3,893.01 45,658 2 3,685.25

arithmetic mean 2,172.45 3,184,080 2,637.60 4,562,971 2,274.25 3,365,088 2,224.94
geometric mean 1,108.64 106,238 711.33 162,999 712.78 158,443 679.27
number of opt. 70 63 66

We want to stress here that a tighter integration of our restart philosophy into IBM

ILOG Cplex routines is likely to lead to even higher savings, as the column Tlast suggests.
Also, a tighter integration would allow one to access branching decisions directly, without
the need to resort to our very rigid scheme based on static branching priorities.
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An interesting outcome of our experiments is that even approximate backdoors of very
small size may be quite useful in shaping the enumeration tree in a more effective way—
evidently, the first branching variables are so crucial that one can afford spending a non-
negligible computing time to better choose them.

We also performed additional experiments on a variant of our backdoor branching where
the MIPs solved during the sampling phase use strong branching for a more careful choice
of the branching variables, thus making the slave information more reliable and useful for
the backdoor choice. This policy turned out to be rather effective in reducing the time
spent in the final run, though this did not compensate for the sampling time increase due
to strong branching, at least in our current implementation.

5 Conclusions and future directions of work

We have proposed a new branching strategy whose main ingredients are (i) a preliminary
sampling phase intended to detect low-cost fractional solutions that act as obstacles for
lower bound improvement, and (ii) the definition of a small set of crucial branching variables
through the solution of an additional set covering model.

The actual implementation of the above scheme is of course instrumental for its practical
success. In this paper we have investigated a simple (proof-of-concept) implementation and
have shown the potential of the approach.

Future work should investigate the actual performance of the method when fully inte-
grated within state-of-the-art solvers, a task that however would require a complete access
to source codes.
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