
Boosting the Feasibility Pump

Natashia L. Boland1, Andrew C. Eberhard2, Faramroze G. Engineer1, Matteo
Fischetti3, Martin W.P. Savelsbergh1, and Angelos Tsoukalas2

1University of Newcastle, Australia
2Royal Melbourne Institute of Technology, Australia

3University of Padova, Italy

Abstract

The Feasibility Pump (FP) has proved to be an effective method
for finding feasible solutions to mixed integer programming problems.
FP iterates between a rounding procedure and a projection proce-
dure, which together provide a sequence of points alternating between
LP relaxation feasible but fractional solutions, and integer but LP re-
laxation infeasible solutions. The process attempts to minimise the
distance between consecutive iterates, producing an integer feasible
solution when closing the distance between them. We investigate the
benefits of enhancing the rounding procedure with a clever integer
line search that efficiently explores a large set of integer points. An
extensive computational study on benchmark instances demonstrates
the efficacy of the proposed approach.

1 Introduction

Finding feasible solutions to a Mixed Integer Program (MIP) can be ex-
tremely challenging, yet significant strides have been made over the last few
decades in doing so; see Bixby (2002) and Bixby and Rothberg (2007) for the
impact of these advances on the tractability of MIP problems. This is due, in
a large part, to the development of sophisticated heuristics for MIPs. These
heuristics can broadly be classified as pivot based methods such as Balas
and Martin (1980), Balas et al. (2004), and Eckstein and Nediak (2007),
local search and meta-heuristic based techniques such as Lokketangen and

1

Glover (1998), Fischetti and Lodi (2003), and Danna et al. (2005), and in-
terior point based heuristics such as Hillier (1969) and Faaland and Hillier
(1979). We refer the reader to Glover and Laguna (1997a,b) and Fischetti
and Salvagnin (2009) for more comprehensive surveys.

Despite the advances in heuristics for MIPs, the demand for techniques
for obtaining high-quality solutions to even harder, even larger instances, and
for obtaining these solutions faster persists. Recently, Fischetti et al. (2005)
introduced a projection-based heuristic for MIP called the Feasibility Pump
(FP). FP has proven to be quite successful in finding feasible solutions and
has become a standard component of state-of-the-art (commercial) solvers.
The basic FP procedure works on a pair of points x∗ and x̃, with x∗ feasible
for the LP relaxation of a MIP but not necessarily integer, and x̃ integer
but not necessarily feasible. FP iteratively updates x∗ and x̃ with the aim
of reducing the “distance” between them as much as possible to ultimately
produce an integer feasible solution. Given x̃, the process of finding an LP
feasible solution closest to x̃ is known as the projection problem. Finding the
closest integer point to x∗, is known as the transformation problem. If the L1

norm is used as a measure of distance (as is the case for most implementations
of FP), then the projection problem can be solved as an LP that is comparable
in size to the LP relaxation of the MIP, and the transformation problem can
be solved simply by rounding x∗.

The success of FP has sparked a great deal of interest within the inte-
ger programming community. Almost all efforts to improve FP, including
Bertacco et al. (2007), Achterberg and Berthold (2007), Hanafi et al. (2010),
and De Santis et al. (2010), however, have focused on improving the projec-
tion problem, i.e., finding LP feasible points x∗ that are better than those
found by the original FP in terms of the objective value and/or the number
of integer infeasibilities. The exception being Fischetti and Salvagnin (2009)
where propagation techniques are introduced within rounding. Overall, the
effort expanded to find an LP feasible solution that is close to x̃ versus the
effort to find an integer solution that is close to x∗ is lopsided though. Almost
all of the computational effort is spent in the projection problem in the hope
that a judiciously chosen point x∗ will ultimately lead to a good integer solu-
tion through rounding. While this is true to some extent, it seems imprudent
to rely solely on this process, especially when the projection procedures often
result in a sequence of points that cycle, i.e., when the rounded value of x∗

is also the closest integer point to the LP feasible region, and anti-cycling
mechanisms typically undo the work performed by the projection procedure

2

by moving to a point x∗ that is worse off in terms of objective and/or has
more integer infeasibilities. Since great lengths have been taken to achieve
an LP feasible point that is close to integer, it seems only appropriate to
expand more effort in searching for an integer feasible solution around this
point. Therefore, in this paper, we explore the benefits of replacing rounding
with a procedure that examines all rounded solutions along a line segment
passing through x∗.

The idea of exploring rounded points along a line segment in search of in-
teger feasible solutions to MIP, is not new. Hillier (1969) propose a technique
which examined rounded solutions along a line segment directed towards the
interior of the LP feasible region for a particular class of full-dimensional
MIPs where a point in the interior could be found relatively easily using
parametric analysis. The search procedure is embedded within a branch-
and-bound tree where the solution to the LP relaxation of a particular node
in the tree forms the starting point of the line segment, and a point in the in-
terior of the cone formed by the set of binding constraints is chosen to be the
end of the line segment. Later implementations of this procedure, including
that of Jeroslow and Smith (1975) and Faaland and Hillier (1979) rely on the
branch-and-bound procedure to reduce the number of integer infeasibilities.
More recently, Baena and Castro (2010) and Naoum-Sawaya and Elhedhli
(2011) propose the use of a similar search technique using analytic centers
to determine the line segment. While Baena and Castro use these ideas
within the FP, Naoum-Sawaya and Elhedhli do not, but instead use a cut-
ting plane approach where the analytic center is computed repeatedly, each
time adding a cut that separates the rounded point resulting from rounding
the analytic center. Both approaches use discretization to pick points along
the line segment to round.

Our primary contribution is the design and implementation of a highly
efficient and highly effective enhancement of the transformation step of FP
based on examining rounded solutions along a line segment. Its success
is based on four main ideas: (1) efficiently exploring all possible rounded
solutions along a line segment, (2) using effective, but easy to compute end
points of the line segment, (3) extending the line segment beyond the end
points and projecting it back onto the hypercube defined by the variable
bounds when extending it past these bounds, and (4) applying constraint
propagation at carefully chosen times during the execution. A computational
study covering a large and varied set of instances, more than 1,000, shows
that FP with this enhancement is able to produce a better solution than the

3

original FP for 65% of the instances, and, maybe even more important, is
able to produce a feasible solution for 12% of the instances for which the
original FP failed to do so.

In what follows, we give a brief description of the original FP procedure
in §2, we describe the integer line search procedure, the choice of start and
end points, extending and projecting the line search to explore more integer
points, and the integration of constraint propagation techniques in §3, we
report the results of the comprehensive computational study in §4, and we
present some final remarks and opportunities for future research in §5.

2 The Feasibility Pump

Consider the mixed integer program

min cx

s.t. Ax ≤ b

l ≤x ≤ u

xj integer ∀j ∈ I,

where A is an m × n matrix, l and u are vectors of size n corresponding to
the variable lower and upper bounds respectively, and I ⊆ {1, 2, . . . , n} is
the index set of the variables required to be integer. Let P = {x : Ax ≤
b, l ≤ x ≤ u} be the polyhedron defined by the constraints and the variable
bounds. The basic FP is outlined in Algorithm 1.

Input : MIP: min{cTx : x ∈ P, xj integer ∀j ∈ I}
Initialize: x∗ ← arg min{cTx : x ∈ P}
while not termination condition do0.1

if x∗ is integer feasible then return x∗0.2

x̃← dx∗c0.3

if cycle detected then Perturb(x̃)0.4

x∗ ← LinearProjP (x̃)0.5

end0.6

Algorithm 1: The basic FP procedure

Here, starting with x∗ corresponding to an optimal solution to the LP

4

relaxation, at each iteration, x̃ is obtained by rounding x∗ (denoted by dx∗c),
and a new LP feasible point is obtained through the procedure LinearProjP (x∗)
that finds a closest (with respect to the L1 norm) LP feasible point to x̃ by
solving

min{∆(x, x̃) =
∑
j∈I

|xj − x̃j| : x ∈ P}.

When all integer variables are binary, ∆(x, x̃) can easily be linearized and
LinearProjP (x∗) can be solved as an LP over P . In the case of general
integer variables, the linearization requires the introduction of additional
variables and constraints. Finally, in the case that a cycle is detected, per-
turbation or restart techniques are invoked to recover from cycling. We refer
to Bertacco et al. (2007) for further details.

More sophisticated projection schemes are proposed in the literature to
find LP feasible points that are less fractional and/or that have less degra-
dation in objective function value. For example, Achterberg and Berthold
(2007) propose including objective considerations within the projection pro-
cess resulting in what they call the Objective Feasibility Pump (OFP), and
De Santis et al. (2010) solve projection problems with a nonlinear concave
penalty term to encourage LP feasible points x∗ that have fewer variables
that are integer infeasible.

As mentioned in the introduction, our focus is on the transformation
process. If an infeasible integer solution x∗ is obtained after rounding, it
may be worth exploring opportunities to fix the infeasibility rather than
relying only on the projection process to find a new point that when rounded
leads to an integer feasible solution. The latter approach has an important
drawback: there can potentially be many integer feasible solutions close to
x∗ that remain unexplored. This is especially true if cycling occurs and a
random restart is forced (which means much of the effort expanded to find
LP feasible solutions that are reasonably close to integer is discarded). Our
approach, to be described next, aims to remedy these issues.

3 Integer Line Search for the Feasibility Pump

At the heart of our approach is a procedure that efficiently explores all
rounded solutions along a line segment. This integer line search procedure
is described next. However, the success of our approach also depends on the
choice of line segment, extending and projecting the line segment back onto

5

the hypercube defined by the variable bounds, and incorporating constraint
propagation in the search. These aspects will be discussed separately.

3.1 The Integer Line Search Procedure

Since there are only a finite number of points along a line segment where the
rounded values of integer variables are different from any other rounded point
along the line segment, finding all rounded points along the line segment
can be done efficiently. For ease of exposition, we start by assuming I =
{1, . . . , n}, i.e., the pure integer case. Let xs and xt be the start and end
point of the line segment. For each variable i ∈ I, we define

Λi(x
s, xt) =

{
0 < λ ≤ 1 : ∃integer k s.t. (1− λ)xs

i + λxt
i = k + 0.5

}
to be the set of all convex combinations of xs and xt where the rounded value
of variable i changes. Indeed, for ε > 0 small enough, we have d(1− λ)xs

i +
λxt

i + εc = d(1 − λ)xs
i + λxt

i − εc + 1 for all λ ∈ Λi(x
s, xt). We call these

points the breakpoints along the line segment for variable i. If xs and xt

are bounded between l and u, then there are at most a pseudo-polynomial
number of such breakpoints. We next provide an “efficient” characterization
of these breakpoints by first observing that Λi(x

s, xt) can be equivalently
stated as

Λi(x
s, xt) =

{
0 < λ ≤ 1 : ∃integer k s.t. λ =

k + 0.5− xs
i

xt
i − xs

i

}
,

and then making the following observation. If xs
i < xt

i, then the point closest
to xs along the line where the rounded value of variable i is different to that of
xs

i , corresponds to the breakpoint resulting from choosing k = dxs
ic. Indeed,

at this breakpoint, the value of variable i is dxs
ic+ 0.5. On the other hand, if

xs
i > xt

i, then the point closest to xs along the line where the rounded value
of variable i is different to that of xs

i , corresponds to the breakpoint resulting
from choosing k = dxs

ic− 1. Indeed, at this breakpoint, the value of variable
i is dxs

ic − 0.5. Thus, starting with this initial breakpoint denoted by λ̄i,
where

λ̄i =

{ dxs
i c+0.5−xs

i

xt
i−xs

i
, if xs

i < xt
i and

dxs
i c−0.5−xs

i

xt
i−xs

i
, if xs

i > xt
i,

6

the set of all remaining breakpoints can be characterized as follows:

Λi(x
s, xt) =

{
0 < λ ≤ 1 : λ = λ̄i +

k

xt
i − xs

i

, and k integer

}
.

In other words, given λ̄i, the remaining breakpoints for variable i can then be
obtained by incrementing (decrementing) the value of this initial breakpoint
by and integer multiple of 1/(xt

i − xs
i).

By examining all breakpoints for all variables i ∈ I, we can explore all
integer points that can possibly be obtained by rounding a point along the
line connecting xs and xt. We next show how this process can be done
efficiently, without having to round individual points associated with each
breakpoint.

Given Λi(x
s, xt) for all i ∈ I, we define

Ψ(xs, xt) =

(ik, λk, dk)k=1,...,K : (i) λk ∈ Λik(xs, xt),

(ii) dk =

{
1, if xs

ik
< xt

ik
,

−1, otherwise, and
(iii) λk ≤ λk+1

to be the set of all 3-tuples consisting of variable index, breakpoint, and
the indication of the change in variable along the line (i.e., increasing or
decreasing), ordered by their distance from xs. The line search procedure
that explores all rounded solutions along the line segment connecting xs and
xt is outlined in Algorithm 2.

Input : xs and xt

Initialize: x← dxsc;
compute breakpoints Ψ(xs, xt) = {(ik, λk, dk)k=1,...,K};

forall k = 1, . . . , K do1.1

xik ← xik + dk1.2

if x is an incumbent then1.3

record x;1.4

end1.5

end1.6

Algorithm 2: The integer line search procedure.

The above procedure essentially creates an ordering of some subset of the

7

integer variables, and a direction in which each of these variables changes,
i.e., an indication of whether the variable increases or decreases along the
line. Starting with the initial rounded solution dxsc, the line search procedure
changes the values of individual variables by a unit amount in the appropriate
direction and in the given sequence, checking the feasibility of the resulting
integer point after each change in value.

The efficiency of the prescribed approach stems from the fact that the
difference between rounded values corresponding to consecutive breakpoints
is only one variable, and only by a unit amount. Thus, all integer points along
the line can be explored by changing the value of the appropriate variables
by a unit amount one at a time in the given sequence. Since all breakpoints
along the line that could possibly lead to a feasible solution are considered,
Algorithm 2 clearly explores all integer points that can be obtained from
rounding some point along the line connecting xs and xt. Since we have
a pseudo-polynomial characterization of points in Λ(xs, xt)i for each i ∈ I,
Algorithm 2 is pseudo-polynomial in the size of |xt − xs|.

Although Hillier (1969) does not provide an explicit characterization of
breakpoints, he does allude to the fact that such an efficient procedure is
possible. That said, the computational results reported in Hillier (1969) and
Faaland and Hillier (1979), report greater success with exploring the line
segment with fixed increments together with a form of neighborhood search.

Finally, note that in the presence of continuous variables, we can solve
a LP to obtain the values of the continuous variables for fixed values of
the integer variables. Moreover, changing the value of the integer variables
simply translates to changing the right hand side of the LP that needs to
be solved. Hence, solving for the continuous variables can be done efficiently
within the line search procedure with warms starts. That said, in some cases,
the number of breakpoints along a line can be quite large, leading to a large
number of integer points and thus a large number of LPs that need to be
solved, which can become expensive even with warm starts.

3.2 The Choice of Start and End Points

If the integer line search procedure is to be a substitute for rounding in FP,
then we may assume that we have available to us a fractional point x∗ that
is a reasonable proxy for a good integer solution. This may be a fractional
solution to the LP relaxation of a node in the branch-and-bound tree or,
alternatively, a point obtained in FP by projecting an integer infeasible point

8

onto the LP relaxation. With x∗ as the starting point of the line search, the
procedure outlined in Algorithm 2 can be used to explore a sequence of integer
points that have a greater chance of being feasible. To obtain such a sequence,
the end point must be appropriately chosen to provide a compromise between
integrality, objective, and feasibility considerations. To this end, since x∗ is
typically a good qualifier for objective and integrality considerations, the end
point must be chosen so that the line segment provides a direction towards
feasibility.

Ideally, we would like to obtain a point in the interior of the convex hull
of integer solutions to construct the line segment. Since this is just as hard as
solving the original problem, we settle for an interior point of P . An obvious
choice for an interior point of P is the analytic center, which is obtained by
solving the following non-linear program:

min
∑
i∈Q1

−ln(bi − aix) +
∑
i∈Q2

(−ln(xi − li)− ln(ui − xi))

s.t.
aix ≤ bi for all i = 1, . . . ,m

li ≤ xi ≤ ui for all i = 1, . . . , n,

where Q1 ⊆ {1, . . . ,m} is the subset of linear constraints aix ≤ bi where
there exists an x ∈ P such that aix < bi, and Q2 ⊆ {1, . . . , n} is the subset
of variables where there exists an x ∈ P such that li < xi < ui. In addition to
solving the above non-linear program, finding Q1 and Q2 can itself be a time
consuming procedure. Fortunately, commercial solvers such as CPLEX R©,
have powerful path following interior point methods that converge to the
analytic center of the optimal face of a LP (we refer the reader to the dis-
cussion on the limiting properties of the central path in Halická (2002) and
references therein). Hence, by setting the objective coefficients of the origi-
nal LP relaxation to 0, we can (barring the impact of certain LP reductions
in solvers such as CPLEX R©) efficiently obtain a reasonable approximation
of the analytic center. This is the basic strategy used in Baena and Castro
(2010).

Unlike Baena and Castro (2010), Naoum-Sawaya and Elhedhli (2011)
propose using a weighted analytic center where greater weight is given to
constraints violated by the rounded point. They use a cutting plane approach
to update their fractional points rather than projection as in FP.

9

The idea of giving more weight to constraints that are violated by the
rounded point obtained from the analytic center seems sensible and can be
incorporated into the FP setting as well. If the rounded value of an FP
iterate x∗ violates a particular constraint i, i.e., if∑

j∈I

dx∗jcai
j +

∑
j∈{1,...,n}\I

x∗ja
i
j > bi,

then a cut of the form ∑
j∈I

xja
i
j ≤ bi −

∑
j∈{1,...,n}\I

x∗ja
i
j,

is added to the linear relaxation. Note that the cut is stated only in terms
of the integer variables. Naoum-Sawaya and Elhedhli propose this to avoid
situations where the analytic center computed after adding the cut is different
only in the continuous variables leaving the fractional components of the
integer variables relatively unchanged, and thus, the rounded values also
unchanged. The integer line search procedure can then be carried out with
x∗ as the starting point, and the new analytic center computed with all
previously added cuts as the end point of the line segment. Unfortunately,
this requires the analytic center to be computed each time a new fractional
point x∗ is obtained, which is (possibly too) expensive.

As observed earlier, the choice of the start and end points of the line
segment is made to form a compromise between objective, feasibility, and
integrality considerations. With the starting point xs chosen to be the current
FP iterate x∗, a good qualifier for objective and integrality considerations,
the end point should be chosen to lead towards feasibility. The resulting
line search creates an ordering of some subset of the integer variables that
reflects the importance of the individual variables with respect to recovering
feasibility from the rounded point at the start of the line segment. With this
in mind, it seems unnecessary to use sophisticated interior point methods
to find an end point to achieve this. The end point does not need to be
feasible, it only needs to provide a direction towards feasibility. Therefore,
we consider a simple scheme, which can be efficiently implemented, where
a direction towards feasibility is computed using a conic combination of the
constraints violated by dxsc. Each violated constraint is simply weighted
by the extent of the violation. More precisely, given the set of constraints

10

Q(xs) ⊆ {1, . . . ,m} violated by dxsc, i.e.,

Q(xs) = {i ∈ {1, . . . ,m} : aidxsc > bi},

the direction d̄ is computed as follows:

d̄ =
∑

i∈Q(xs)

(
bi − aidxsc
‖ai‖2

)
ai.

Note that (bi − aidxsc)/‖ai‖2 is the (signed) distance from dxsc to the hy-
perplane {x : aix = bi}. However, dxsc + d̄ is not guaranteed to be feasible
with respect to constraints Q(xs), let alone be feasible with respect to all
constraints as guaranteed by interior points. Despite this, the computational
results demonstrate that this simple approach is almost as effective as the
more elaborate interior point schemes in finding a good direction with the
added advantage of requiring considerably less computational effort. Note
that if ‖ai‖2

2 is used instead of ‖ai‖2, then d can be interpreted as a steepest
descent direction using a quadratic penalty for infeasibility. Computational
experiments with this direction did not result in performance improvements.

3.3 Extending the Line Search

The end points described previously provide a direction from dxsc towards LP
feasibility. For the line search procedure described in Algorithm 2, this trans-
lates to providing a sequence of breakpoints and associated variables whose
importance with respect to recovering feasibility from the initial rounded
solution is given by the ranking of the breakpoints in the sequence.

If the primary value of the two end points xs and xt is providing a direc-
tion, then there is no need to restrict the search for breakpoints to the line
segment defined by xs and xt. The line segment extended past xt and/or
before xs can potentially give additional breakpoints. To see this, consider
the example given in Figure 1 of a binary program with three variables where
xs = (0.1, 0.1, 0.1) and xt = (0.2, 0.3, 0.4). In this case, all the rounded points
along the line segment produce the same integer solution, i.e., (0, 0, 0). In-
deed, there are no breakpoints along this line. However, consider the point
x̄t = (0.3, 0.5, 0.7) obtained by starting at xs and moving in the direction of
xt past xt. The line segment connecting xs and x̄t clearly has two breakpoints
and explores integer solutions (0, 0, 1) and (0, 1, 1) that cannot be obtained

11

by rounding points along the line segment between xs and xt only. Note that
x̄t = xs + α(xt − xs) when α = 2. The line segment can be extended beyond
xt for any value of α ≥ 1. Similarly, one can also extend the line search
beyond xs by choosing α ≤ 0.

Note too that for α > 3, the variable bounds of at least one of the variables
are violated and hence, an integer feasible solution is not obtainable for α > 3
when extending the line in a conventional way. However, by projecting the
line back onto the hypercube defined by the variable bounds (in this case the
unit hypercube), it is possible to find a third integer point (1, 1, 1) for α ≥ 4
(see Figure 1).

The above example demonstrates the benefits of extending the line seg-
ment on either side of xs and xt and projecting it back on the hypercube
defined by the variable bounds. Fortunately, the breakpoints associated with
such a projection can also be obtained efficiently. Given start and end point
xs and xt respectively, possibly obtained by extending the line segment pro-
vided by some initial choice of start and end points, we filter those break-
points that satisfy the variable bounds for the individual variables, i.e, we
only consider a breakpoint λ ∈ Λi(x

s
i , x

t
i) for variable i if

li ≤ (1− λ)xs
i + λxt

i ≤ ui.

This is done efficiently as follows. As before, we define λ̄i to be the closest
breakpoint to xs

i in the direction of the line search however, this time, we
also incorporate variable bound information as follows:

λ̄i =

{ dmax{xs
i ,li}c+0.5−xs

i

xt
i−xs

i
, if xs

i < xt
i

dmin{xs
i ,ui}c−0.5−xs

i

xt
i−xs

i
, if xs

i > xt
i.

Note that our choice of λ̄i ensures that the rounded value of the point along
the line associated with λ̄i is feasible for li if xs

i < xt
i, and feasible for ui if

xs
i > xt

i. Thus, starting with λ̄i, the breakpoints for variable i have to be
chosen so that the associated rounded value does not exceed ui if xs

i < xt
i,

and does not go below li if xs
i > xt

i. In terms of the initial breakpoint λ̄i, the
set Λ̄i(x

s, xt) of breakpoints for variable i that are feasible with respect to
the variable bounds can then be given by

Λ̄i(x
s, xt) =

{
0 < λ ≤ 1 : λ = λ̄+

k

xt
i − xs

i

, k integer, and k− ≤ k ≤ k+

}

12

Α = -1

Α = 0 HxsL

Α = 1 HxtL

Α = 2

Α = 3

Α = 4

Α < 4�3

4�3 <= Α < 2

2 <= Α < 4

Α >= 4

Figure 1: Roundings resulting from extending the line beyond xs and xt

13

where

k− =

{
dli − (dmin{xs

i , ui}c+ 1)e, if xs
i > xt

i and
0, otherwise

and

k+ =

{
bui − (dmax{xs

i , li}c+ 1)c, if xs
i < xt

i and
0, otherwise.

Note that when using Λ̄i(x
s, xt) instead of Λi(x

s, xt) for all i ∈ I to com-
pute Ψ(xs, xt), the resulting line search corresponds to rounding all points
along a line segment projected back onto the hypercube defined by the vari-
able bounds for parts of the line segment that extend beyond the bound-
aries of the hypercube. Indeed, a breakpoint for a variable is considered
in Λ̄i(x

s, xt) only if it is feasible for the variable bounds of variable i. The
breakpoints in Λ̄i may be infeasible for the variable bounds of some other
variable, i.e., for some λ ∈ Λ̄i(x

s, xt), (1 − λ)xs
j + λxt

j may not satisfy the
variable bounds of some other variable j 6= i. However, Algorithm 2 only
increments/decrements the value of an integer variable i if the corresponding
breakpoint is in Λ̄i(x

s, xt) and thus, all the integer points explored by the
algorithm will always satisfy the variable bound constraints. In this case,
the number of breakpoints in Ψ(xs, xt) (and thus the number of iterations of
Algorithm 2) is pseudopolynomial in |u− l|.

3.4 Propagation within the Line Search

Constraint propagation is a general concept that refers to using inference
techniques to eliminate from contention certain values for a variable (Schulte
and Stuckey 2004). This can be done as a preprocessing phase to tighten
the problem formulation (Savelsbergh 1994), and/or done progressively dur-
ing the process of solving a problem e.g., during branch-and-bound and/or
constraint programming (Achterberg 2007).

In FP, propagation techniques can be used to improve rounding. When
a particular variable is rounded and fixed at that value, the impact of this
fixing is propagated to reduce the domain of other variables before continuing
to round the remaining variables. If Di is the current domain for variable
i ∈ I, then the rounding procedure is modified to find the closest integer
point to xi within Di rather using naive rounding to simply find the closest

14

integer point to xi. Here we use

dxicD = arg min
z∈Di∩Z

|z − xi|.

to denote the closest integer to xi in Di. The propagation algorithm itself
is described in detail in Fischetti and Salvagnin (2009) and is based upon
the constraint propagation systems of Rossi et al. (2006), Schulte (2000),
and Schulte and Stuckey (2004). Algorithm 3 summarizes the propagation
scheme (propRound()) used in Fischetti and Salvagnin (2009).

Input : x
Initialize: Di ← [li, ui] for all i = 1, . . . , n;

/* rank integer variables */3.1

{i1, i2, . . . , i|I|} ← rank(x)3.2

/* round integer variables in given order */3.3

forall k = 1, . . . , |I| do3.4

xik ← dxikcD3.5

D ← propagate(xik)3.6

end3.7

if x is an incumbent then3.8

record x;3.9

end3.10

Algorithm 3: propRound(x)

Here, rank() creates an ordering that determines the sequence in which
the integer variables are rounded and propagated. This ordering is based on
the fractionality of the integer variables in x. We refer the reader to Fischetti
and Salvagnin (2009) for details. Note that each time a variable is rounded,
the rounded value is propagated using propagate() to tighten the domain
of other variables before continuing on to round the next integer variable.
At the end, the resulting point is checked for feasibility and recorded if it is
an incumbent solution. Note that in the presence of continuous variables, an
LP is solved to obtain the values of these variables between Steps 3.7 and
3.8.

The propagation technique described above proved beneficial to FP, find-
ing better integer solutions compared to using naive rounding, and often

15

finding feasible solutions when naive rounding fails. We next show how prop-
agation can also be incorporated to enhance the integer line search procedure.

A naive way of incorporating propagation within the line search would
be to use propRound() to round each breakpoint encountered during the
line search. However, this would destroy the efficiency of the line search
that is based on changing only one integer value at a time. Instead, we
use propRound(xs) to determine the initial rounded point, and then proceed
as before, changing the integer values of variable one at a time within the
current domain of the variable, and propagate the impact of fixing a variable
only when there are no further changes to be made for that variable during
the line search. Algorithm 4 summarizes this procedure. Note that in the
presence of continuous variables, an LP is solved to obtain the value of these
variables between Steps 4.2 and 4.3.

Input : xs and xt

Initialize: x← propRound(xs);
compute breakpoints Ψ(xs, xt) = {(ik, λk, dk)k=1,...,K};

forall k = 1, . . . , K do4.1

xik ← dxik + dkcD4.2

if x is an incumbent then4.3

record x;4.4

end4.5

if no more changes for ik then4.6

D ← propagate(xik);4.7

end4.8

end4.9

Algorithm 4: The integer line search procedure with propagation.

Algorithm 4 not only maintains the advantage of exploring many integer
points and doing this by only changing one variable at a time, but addi-
tionally, the number of calls to propagate() is at most twice the number of
integer variables, i.e., at most once for each integer variable when finding the
initial rounded solution, and at most once for each integer variable during
the line search it self.

An important side benefit of propagation is that fewer integer variables
are changed in value, as we only round to an integer point within the allowable
domain that is constantly shrinking, and thus fewer LP solves are required to
find the values of the continuous variables. As solving LPs, even when using

16

warm starts, is the most computationally intensive part of the line search,
incorporating propagation often leads to a reduction in computing time.

4 A Computational Study

In this section, we present the results of a comprehensive computational study
that investigates our proposed enhancements to FP. The primary goal of the
study is to assess the benefits, if any, of replacing the simple rounding step
of the original FP with our more effective exploration of rounded solutions
along a line segment. The secondary goal of the study is to decipher the
merits of some of the ideas underpinning the integer line search, e.g., the
choice of end points, the extension of the line search, projecting the line
back onto the hypercube defined by the variable bounds, and incorporating
propagation within the line search.

All experiments were conducted on 3.16 GHz Intel R© Xeon R© processors
with 64 GB of RAM (with a limit of 2GB per process), and CPLEX R© is used
for solving the various LP relaxations and projection problems, and for ap-
proximating the analytic center using its path following “Barrier” algorithm.

An extensive test-bed of 1304 instances from MIPLIB20031, MIPLIB20102,
COR@L3, and OR-LIB4 formed the basis for our experiments. We eliminate
31 instances from the test set when reporting results: 10 instances because
the LP relaxation could not be solved within 30 minutes, 2 instances because
they had an infeasible LP, and 19 instances because they exhausted available
memory in one of our experiments.

In our computational study, we evaluate and compare the performance
of the following variants of FP: the original FP, denoted by FP , the orig-
inal FP with constraint propagation (Fischetti and Salvagnin (2009)), de-
note by FP+, and the original FP with our integer line search, denoted by
FP+

ls(e,[s,t],p), where e indicates the end point used, either c for conic, a for

analytic center, or ā for weighted analytic center, [s, t] indicates the search
interval (i.e., choice of α for extending the line search), either [0,1] or [-1,2],
p indicates whether the line is projected back onto the hypercube defined
by the variable bounds or not, either y or n, and superscript + denotes that

1http://miplib.zib.de/miplib2003/
2http://miplib.zib.de/miplib2010/
3http://coral.ie.lehigh.edu/~mip-instances/instances/
4http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mipinfo.html

17

constraint propagation is employed during the search (both during FP and
in the line search). The evaluation and comparison is based on executing FP
once starting from a solution to the LP relaxation of an instance.

The variants of FP with integer line search are incorporated in the C++
implementation of FP that was kindly provided by Fischetti and Salvagnin.
This implementation of FP also gives us access to FP+, as constraint prop-
agation can be activated simply by setting the appropriate option. The vari-
ants of the integer line search are incorporated in such a way that whenever
a rounding step is executed in FP with an LP feasible but fractional point
x∗, the integer line search is also executed with x∗ as the start point of the
line segment. However, what happens during the integer line search is only
recorded for analysis purposes. After the integer line search has been exe-
cuted, FP proceeds as if the execution of the integer line search did not take
place. This allows for a fair comparison between the different line searches as
the FP trajectory is not altered. In all experiments, a 30 minute time limit
is imposed on the total time taken by FP, including the time taken by the
integer line searches.

As mentioned above, the primary goal of the study is to assess the ben-
efits, if any, of replacing the simple rounding step of the original FP with
a more involved exploration of rounded solutions along a line segment. We
start by reporting on the performance of FP+, and FP+

ls(c,[−1,2],y) compared
to FP . We shall later assess the impact of the various algorithmic choices
within the line search discussed in §3.3.

Figure 2 shows a performance profile of the percentage improvement in
solution quality produced by FP+ and FP+

ls(c,[−1,2],y) relative FP . (The per-

formance profile for FP+ is created as follows. For a given instance, let
v(FP+) and v(FP) denote the value of the feasible solution produced by
FP+ and FP , respectively. For instances where FP+ produced a better
solution than FP , the relative percentage improvement in solution quality is

given by 100× v(FP)−v(FP+)
|v(FP)| . The performance profile shows, for a given level

l of relative percentage improvement in solution quality, the percentage of
instances in the test set with a relative percentage improvement in solution
quality of at least l. For example, for FP+ about 26% of the instances in the
test set have a relative percentage improvement in solution quality of at least
10%. The part of the performance profile beyond 100% is used to indicate
the percentage of instances where FP+ found a feasible solution, but FP did
not. The performance profile for FP+

ls(c,[−1,2],y) is constructed analogously.)

18

Figure 2: Performance profile showing improvement in solution quality rela-
tive to FP

19

Figure 2 clearly demonstrates that significant gains result from incorporating
the integer line search. We first observe that FP+ finds a solution of higher
quality than FP for about 40% of the instances, and FP+ finds feasible
solutions for about 9% of the instances where FP failed to find a feasible
solution. Moreover, FP+

ls(c,[−1,2],y) finds a solution of higher quality than FP

for about 66% of the instances, and FP+
ls(c,[−1,2],y) finds feasible solutions for

about 12% of the instances where FP failed to find a feasible solution. This
not only represents a significant improvement over FP , but also a noticeable
improvement over FP+. Of course, since the FP iterates in FP are differ-
ent to the iterates in FP+ (and thus FP+

ls(c,[−1,2],y) since the statistics for

FP+
ls(c,[−1,2],y) were collected during the execution of FP+), it is not guaran-

teed that FP+ and FP+
ls(c,[−1,2],y) produce solutions that are no worse than

that of FP .
Figure 3 shows a performance profile of the percentage deterioration in

solution quality produced by FP+, and FP+
ls(c,[−1,2],y) relative to FP . From

Figure 3 we observe that FP+ produces a solution of worse quality than FP
in about 13% of instances whereas FP+

ls(c,[−1,2],y) produces a solution of worse

quality in 9% of instances.
Even though we have purposely and carefully designed the integer line

search to be as efficient as possible, it does require additional computations.
Figure 4 shows a performance profile of the cumulative time taken to solve
instances for each of FP , FP+, and FP+

ls(c,[−1,2],y). Here, the total time
over all instances is reported in parenthesis within the figure’s legend. Not
surprisingly, the variant of FP that incorporates the integer line search is
less efficient then the others, but the loss in efficiency is relatively small
and well worth it given the gains in solution quality. FP+

ls(c,[−1,2],y) is on

average about 1.22 times slower than FP+. We note here too that the
integer line search without propagation, i.e., FPls(c,[−1,2],y), required 85,037
seconds over all instances compared to 57,055 seconds for the integer line
search with propagation, i.e., FP+

ls(c,[−1,2],y). This somewhat surprising and
maybe counterintuitive observation is explained by the fact that propagation
leads to fewer changes in values for the integer variables, resulting in fewer
LP solves for the continuous variables.

Next, we focus on analyzing some of our algorithmic choices. Because
the start point of the line segment is the current FP iterate x∗ and therefore
should be a good qualifier for objective and integrality considerations, the
end point is chosen to lead towards feasibility. For efficiency reasons, we have

20

Figure 3: Performance profile showing deterioration in solution quality rela-
tive to FP

21

Figure 4: Performance profile showing the cumulative time taken to solve
instances

22

chosen to use a simple scheme using a conic combination of the constraints
violated by dx∗c. We investigate the merit of this choice by comparing it to
using the analytic center and the weighted analytic center. Figure 5 shows a
performance profile of the percentage improvement in solution quality pro-
duced by FP+

ls(c,[−1,2],y), FP
+
ls(a,[−1,2],y), and FP+

ls(ā,[−1,2],y) over FP+. We see
that using a weighted analytic center produces the best results. Doing so
produces a solution of higher quality for 46% of the instances, whereas using
the conic combination results in a solution of higher quality in 42% of the
instances. There is hardly any difference when it comes to finding feasible
solution where FP+ failed to do so; regardless of the end point used, for
about 3% of the instances where FP+ fails to find a feasible solution, the
line search variants are successful.

The superiority in solution quality of FP+
ls(ā,[−1,2],y) over FP+

ls(c,[−1,2],y)

(however marginal) is not necessarily the result of the choice of end point and
thus of the search direction. Indeed, Figure 6, which shows a performance
profile of the average number of breakpoints for each integer line search, indi-
cates clearly that FP+

ls(a,[−1,2],y) and FP+
ls(ā,[−1,2],y) explore significantly more

breakpoints, and thus integer points, than FP+
ls(c,[−1,2],y). To understand the

impact of the number of breakpoints on the observed differences in per-
formance, we reran the experiment, but limited the number of breakpoints
explored by FP+

ls(a,[−1,2],y) and FP+
ls(ā,[−1,2],y) to the number of breakpoints ex-

plored by FP+
ls(c,[−1,2],y). In Figure 7, we show results of this experiment. We

see that the performance of the three integer line searches is comparable and
that it might even be argued that the performance of FP+

ls(c,[−1,2],y) is slightly
better. Thus, the performance difference observed earlier is not caused by
the choice of end points, but by the difference in number of rounded solutions
explored.

This raises the question as to whether the search direction is important at
all. Therefore, we also conducted an integer line search where the direction
is chosen randomly as follows. Given x∗, a direction for the ith variable is
chosen randomly between x∗i − li and ui − x∗i . Again, the number of break-
points explored is limited by the number explored by FP+

ls(c,[−1,2],y). This

“random” variant of the line search, denoted by FP+
ls(r,[−1,2],y), is compared

to FP+
ls(c,[−1,2],y) in the performance profile shown in Figure 8. We observe

that the random direction, where the only consideration towards feasibility
is made with respect to the variable bounds, finds a better solution than
FP+ for 36% of the instances. Hence, a large proportion of the gains of the

23

integer line searches over FP+ can be attributed simply to exploring a large
number of integer points around x∗, which was the original motivation for
our research. That said, the results also demonstrate that there is clearly
an advantage to exploring integer points along a line moving towards LP
feasibility as F+

ls(c,[−1,2],y) finds a solution of higher quality than FP+
ls(r,[−1,2],y)

for 8% more of the instances.
We have shown that a direction computed simply as a conic combination

of violated constraints produces equally good solutions (and often outper-
forms) directions computed using more elaborate analytic centers. However,
the main benefit is that FP+

ls(a,[−1,2],y) and FP+
ls(ā,[−1,2],y) are on average 2.5

times slower than FP+ whereas FP+
ls(c,[−1,2],y) is only 1.22 times slower than

FP+. The low computational burden of FP+
ls(c,[−1,2],y) is the result of the

fact that the conic direction can be computed efficiently and that consider-
ably fewer breakpoints are explored as analytic centers typically have a much
larger number of non-zero values compared to the number of variables that
contribute to the constrains violated by the starting rounded solution. This
is turn results in considerably fewer LP solves for finding the values of the
continuous variables.

In §3.3, we have shown, by means of an example, that extending the
search beyond the end points of the line segment and projecting the line
back onto the hypercube defined by the variable bounds can result in finding
additional integer points. In the next experiment, we assess the impact of
each of these features by comparing FP+, FP+

ls(c,[0,1],y), FP
+
ls(c,[−1,2],n), and

FP+
ls(c,[−1,2],y). The performance profiles are shown in Figure 9. We see that

projecting the line back onto the hypercube defined by the variable bounds
has the most noticeable impact on improving solution quality while extending
the line search beyond the start and end points has less of an impact. It is
worth noting that the impact of extending and projecting the line search is
much more pronounced when propagation is turned off. In fact, extending
and projecting the line search provides, in some sense, a form of propagation
as it prevents changes in values for integer variables outside their bounds.

5 Final Remarks

We have shown that replacing the rounding step of the feasibility pump with
an integer line search can significantly enhance its performance at modest

24

computational cost. The success is the result of a combination of innovative
ideas and clever engineering. Our work represents a small incremental step
forward in our quest to solve larger and more difficult integer programs better
and faster. There are still more ideas that can be explored to improved the
efficiency of our proposed approach. For example, for instances with a large
number of breakpoints and continuous variables, the computational burden
of having to solve a LP to obtain the value of the continuous variables,
even when exploiting warm starts, is substantial. In such situations, it may
be worth solving for the continuous variables only for a limited number of
breakpoints suitably chosen in the range of possible breakpoints. Another
idea is to search in several directions or in a “tree-like” manner to potentially
explore even more rounded solutions near the start point of the search. We
have left these ideas for future research as they are mostly “variations on
a theme” and key ideas are already present, computationally tested, and
discussed in the current paper.

Acknowledgements

We thank Domenico Salvagnin for providing the source code of his implementation
of the feasibility pump with constraint propagation and for answering all of our
questions promptly, elaborately, and clearly.

References

Achterberg, T. 2007. Constraint integer programming. Ph.D. thesis, TU Berlin.
Achterberg, T., T. Berthold. 2007. Improving the feasibility pump. Discrete

Optimization 4(1) 77–86.
Baena, D., J. Castro. 2010. Using the analytic center in the feasibility pump.

Optimization Online URL www.optimization-online.org/DB_HTML/2010/
11/2793.html. Last accessed 24/05/11.

Balas, E., C.H. Martin. 1980. Pivot and Complement-A Heuristic for 0-1 Pro-
gramming. Management Science 26(1) 86–96.

Balas, E., S. Schmieta, C Wallace. 2004. Pivot and shift-a mixed integer program-
ming heuristic. Discrete Optimization 1(1) 3–12.

Bertacco, L., M. Fischetti, A. Lodi. 2007. A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization 4(1) 63–76.

25

Bixby, R.E. 2002. Solving Real-World Linear Programs: A Decade and More of
Progress. Operations Research 50(1) 3–15.

Bixby, R.E., E. Rothberg. 2007. Progress in computational mixed integer pro-
gramming - A look back from the other side of the tipping point. Annals of
Operations Research 149 37–41.

Danna, E., E. Rothberg, C. Le Pape. 2005. Exploring relaxation induced neigh-
borhoods to improve MIP solutions. Mathematical Programming 102 71–90.

De Santis, M., S. Lucidi, F. Rinaldi. 2010. New concave penalty func-
tions for improving the feasibility pump. Optimization Online URL www.
optimization-online.org/DB_HTML/2010/07/2667.html. Last accessed
24/05/11.

Eckstein, J., M. Nediak. 2007. Pivot, Cut, and Dive: a heuristic for 0-1 mixed
integer programming. Journal of Heuristics 13 471–503.

Faaland, B.H., F.S. Hillier. 1979. Interior Path Methods for Heuristic Integer
Programming Procedures. Operations Research 27(6) 1069–1087.

Fischetti, M., F. Glover, A. Lodi. 2005. The feasibility pump. Mathematical
Programming 104 91–104.

Fischetti, M., A. Lodi. 2003. Local branching. Mathematical Programming 98
23–47.

Fischetti, M., D. Salvagnin. 2009. Feasibility pump 2.0. Mathematical Program-
ming Computation 1 201–222.

Glover, F., M. Laguna. 1997a. General purpose heuristics for integer program-
mingPart I. Journal of Heuristics 2 343–358.

Glover, F., M. Laguna. 1997b. General purpose heuristics for integer program-
mingPart II. Journal of Heuristics 3 161–179.

Halická, M. 2002. Analyticity of the central path at the boundary point in semidef-
inite programming. European Journal of Operational Research 143(2) 311 –
324.

Hanafi, S., J. Lazic, N. Mladenovic. 2010. Variable Neighbourhood Pump Heuristic
for 0-1 Mixed Integer Programming Feasibility. Electronic Notes in Discrete
Mathematics 36 759–766.

Hillier, F.S. 1969. Efficient Heuristic Procedures for Integer Linear Programming
with an Interior. Operations Research 17(4) 600–637.

Jeroslow, R.G., T.H.C. Smith. 1975. Experimental results on Hillier’s linear search.
Mathematical Programming 9 371–376.

Lokketangen, A., F Glover. 1998. Solving zero-one mixed integer programming
problems using tabu search. European Journal of Operational Research
106(2-3) 624–658.

26

Naoum-Sawaya, J., S. Elhedhli. 2011. An interior point cutting plane heuristic
for mixed integer programming. Computers and Operations Research 38(9)
1335–1341.

Rossi, F., P. van Beek, T. Walsh. 2006. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., New York, NY,
USA.

Savelsbergh, M. W. P. 1994. Preprocessing and probing techniques for mixed
integer programming problems. Informs Journal on Computing 6(4) 445–
454.

Schulte, C. 2000. Programming constraint services. Ph.D. thesis, Universität
des Saarlandes, Naturwissenschaftlich-Technischen Fakultät I, Saarbrücken,
Germany.

Schulte, C., P.J. Stuckey. 2004. Speeding up constraint propagation. M. Wallace,
ed., Principles and Practice of Constraint Programming - CP 2004, 10th
International Conference. Lecture Notes in Computer Science, Springer, 619–
633.

27

Figure 5: Performance profile showing improvement in solution quality rela-
tive to FP+

28

Figure 6: Performance profile showing average number of breakpoints ex-
plored during the line search

29

Figure 7: Performance profile showing improvement in solution quality rel-
ative to FP+ when limiting the number of breakpoints to that explored by
FP+

ls(c,[−1,2],y)

30

Figure 8: Performance profile showing improvement in solution quality rel-
ative to FP+ when limiting the number of breakpoints to that explored by
FP+

ls(c,[−1,2],y)

31

Figure 9: Performance profile showing improvement in solution quality rela-
tive to FP+

32

