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Abstract

Mixed-Integer Programs (MIP’s) involving logical implications mod-
elled through big-M coefficients, are notoriously among the hardest to
solve. In this paper we propose and analyze computationally an au-
tomatic problem reformulation of quite general applicability, aimed at
removing the model dependency on the big-M coefficients. Our solu-
tion scheme defines a master Integer Linear Problem (ILP) with no
continuous variables, which contains combinatorial information on the
feasible integer variable combinations that can be “distilled” from the
original MIP model. The master solutions are sent to a slave Linear
Program (LP), which validates them and possibly returns combinato-
rial inequalities to be added to the current master ILP. The inequal-
ities are associated to minimal (or irreducible) infeasible subsystems
of a certain linear system, and can be separated efficiently in case the
master solution is integer. The overall solution mechanism resembles
closely the Benders’ one, but the cuts we produce are purely com-
binatorial and do not depend on the big-M values used in the MIP
formulation. This produces an LP relaxation of the master problem
which can be considerably tighter than the one associated with origi-
nal MIP formulation. Computational results on two specific classes of
hard-to-solve MIP’s indicate the new method produces a reformulation
which can be solved some orders of magnitude faster than the original
MIP model.

Key words: Mixed-Integer Programs, Benders’ Decomposition, Branch
and Cut, Computational Analysis.
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1 Introduction

We first introduce the basic idea underlying combinatorial Benders’ cuts—
more elaborated versions will be discussed in the sequel.

Suppose one has a basic 0-1 ILP of the form

min{cT x : Fx ≤ g, x ∈ {0, 1}n } (1)

amended by a set of “conditional” linear constraints involving additional
continuous variables y, of the form

xj(i) = 1 ⇒ aT
i y ≥ bi, for all i ∈ I (2)

plus a (possibly empty) set of “unconditional” constraints on the continuous
variables y, namely

Dy ≥ e (3)

Note that the continuous variables y do not appear in the objective
function—they are only introduced to force some feasibility properties of
the x’s.

A familiar example of a problem of this type is the classical Asymmetric
Travelling Salesman Problem with time windows. Here the binary variables
xij are the usual arc variables, and the continuous variables yi give the
arrival time at city i. Implications (2) are of the form

xij = 1 ⇒ yj ≥ yi + travel time(i, j) (4)

whereas (3) bound the arrival time at each city i

early arrival time(i) ≤ yi ≤ late arrival time(i). (5)

Another example is the map labelling problem [29], where the binary vari-
ables are associated to the relative position of two labels to be placed on
a map, the continuous variables give their placement coordinates, and the
conditional constraints impose non-overlapping conditions of the type“if la-
bel i is placed on the right of label j, then the placement coordinates of
i and j must obey a certain linear inequality giving a suitable separation
condition”.

The usual way implications (2) are modelled within the MIP framework
is to use the (in)famous big-M method, where large positive coefficients Mi

are introduced to activate/deactivate the conditional constraints as in:

aT
i y ≥ bi −Mi(1− xj(i)) for all i ∈ I (6)

This yields a (often large) mixed-integer model involving both x and
y variables—whereas, in principle, y variables are just artificial variables.
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Even more importantly, due to the presence of the big-M coefficients, the
LP relaxation of the MIP model is typically very poor. As a matter of
fact, the x solutions of the LP relaxation are only marginally affected by
the addition of the y variables and of the associated constraints. In a sense,
the MIP solver is “carrying on its shoulders” the burden of all additional
constraints and variables in (2)-(3) at all branch-decision nodes, while they
becomes relevant only when the corresponding xj(i) attains value 1 (typically,
because of branching).

Of course, we can get rid of the y variables by using Benders’ decom-
position [5], but the resulting cuts are weak and still depend on the big-M
values. As a matter of fact, the classical Benders’ approach can be viewed
as a tool to speed-up the solution of the LP relaxation, but not to improve
its quality.

The idea behind “combinatorial” Benders’ cuts is to work on the space
of the x-variables only, as in the classical Benders’s approach. However, we
model the additional constraints (2)-(3) through the following Combinatorial
Benders’ (CB) cuts:

∑

i∈C

xj(i) ≤ |C| − 1 (7)

where C ⊆ I induces a Minimal (or Irreducible) Infeasible Subsystem (MIS,
or IIS, for short) of (2)-(3), i.e., any inclusion-minimal set of row-indices of
system (2) such that the linear subsystem

SLAV E(C) :=

{
aT

i y ≥ bi, for all i ∈ C

Dy ≥ e

has no feasible (continuous) solution y.
A CB cut is violated by a given x∗ ∈ [0, 1]n if and only if

∑
i∈C(1−x∗j(i)) <

1. Hence the corresponding separation problem essentially consists of the
following steps: (i) weigh each conditional constraint aT

i y ≤ bi in (2) by
1− x∗j(i); (ii) weigh each unconditional constraint in (3) by 0; and (iii) look
for a minimum-weight MIS of the resulting weighted system—a NP-hard
problem [1, 17].

A simple polynomial-time heuristic for CB-cut separation is as follows.
Given the (fractional or integer) point x∗ to be separated, start with C :=
{i ∈ I : x∗j(i) = 1}, verify the infeasibility of the corresponding linear subsys-
tem SLAV E(C) by classical LP tools, and then make C inclusion-minimal
in a greedy way. Though extremely simple, this efficient separation turns
out to be exact when x∗ is integer.

The discussion above suggests the following exact Branch & Cut solution
scheme. We work explicitly with the integer variables x only. At each
branching node, the LP relaxation of a master problem (namely, problem
(1) amended by the CB cuts generated so far) is solved, and the heuristic
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CB separation is called so as to generate new violated CB cuts (and to assert
the feasibility of x∗, if integer).

The new approach automatically produces a sequence of CB cuts, which
try to express in a purely-combinatorial way the feasibility requirement in
the x space—the CB cut generator acting as an automatic device to distill
more and more combinatorial information from the input model. As a con-
sequence of the interaction among the generated CB cuts, other classes of
combinatorial cuts are likely to be violated, hence allowing other cut sep-
arators to obtain a further improvement. We found that the {0, 1

2}–cuts
addressed in [9, 2] fit particularly well in this framework, and contribute
substantially to the overall efficacy of the approach.

It is worth noting that, using the new technique, the role of the big-M
terms in the MIP model vanishes–only implications (2) are relevant, no
matter the way they are modelled. Actually, the approach suggests an
extension of the MIP modelling language where logical implications of the
type (2) can be stated explicitly in the model, as in Hooker and Osorio [21].

In this paper we aim at investigating whether the above method can be
useful to approach certain types of MIP’s which are notoriously very hard
to solve. As shown in the computational section, this is indeed the case:
even in its simpler implementation, on some classes of instances the new
approach allows for a speed-up of some orders of magnitude with respect to
ILOG-Cplex 8.1, one of the best MIP solvers on the market.

Our technique is based on Hooker’s idea of deriving Benders’ cuts from
minimal sets of inconsistencies, as proposed in [19]. In this respect, our main
contributions have been (a) to present a separation heuristic that finds a min-
imal Benders’ cuts for the special case of conditional constraints with linear
implications, and (b) to test these cuts computationally on some hard MIP
problems. This is an important special case because conditional constraints
of this form are a very useful modeling device.

The paper is organized as follows. In Section 2 we present the new
approach in a more general context, whereas previous literature on the sub-
ject is reviewed in Section 3. As already stated, our CB cut separator
requires a fast determination of MIS’s; this important topic is addressed in
Section 4, where an approach particularly suited to our application is de-
scribed. Computational results are presented in Section 5, with the aim of
verifying whether a simple implementation of the new method can already
produce improved performance with respect to the application of a sophisti-
cated MIP solver such as ILOG-Cplex 8.1 (at least, on some problem classes
which fit particularly well in our scheme). Finally, some conclusions are
drawn in Section 6.

The present paper is based on the master thesis of the first author [12],
which was awarded the 2003 Camerini-Carraresi prize by the Italian Oper-
ation Research association (AIRO). Moreover, the paper was presented at
the IPCO X meeting held in New York, June 2004.
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2 Combinatorial Benders’ cuts

Let P be a MIP problem with the following structure:

P : z∗ := min cT x + dT y (8)
s.t. Fx ≤ g (9)

Mx + Ay ≥ b (10)
Dy ≥ e (11)

xj ∈ {0, 1} for j ∈ B (12)
xj integer for j ∈ G (13)

where x is a vector of integer variables, y is a vector of continuous variables,
G and B are the (possibly empty) index sets of the general-integer and
binary variables, respectively, and M is a matrix with exactly one nonzero
element for every row i, namely the one indexed by column j(i) ∈ B. In
other words, we assume the linking between the integer variables x and the
continuous variables y is only due to a set of constraints of the type

mi,j(i)xj(i) + aT
i y ≥ bi for all i ∈ I (14)

where variables xj(i) are binary for all i ∈ I.
We consider the case d = 0 first, i.e., we assume the MIP objective

function does not depend on the continuous variables, and leave case d 6= 0
for a later analysis. In this situation, we can split problem P into two
sub-problems:

• MASTER:

z∗ = min cT x (15)
s.t. Fx ≤ g (16)

xj ∈ {0, 1} for j ∈ B (17)
xj integer for j ∈ G (18)

• SLAVE(x̃), a linear system parametrized by x̃:

Ay ≥ b−Mx̃ (19)
Dy ≥ e (20)

Let us solve the master problem at integrality. If this problem turns out
to be infeasible, then P also is. Otherwise, let x∗ be an optimal solution (we
exclude the unbounded case here, under the mild assumption that, e.g., the
general-integer variables are bounded).
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If the linear system SLAV E(x∗) has a solution, say y∗, then clearly
(x∗, y∗) is an optimal solution of P . If the slave is infeasible, instead, x∗ itself
is infeasible for problem P . We therefore look for a MIS of SLAV E(x∗),
involving the rows of A indexed by C (say), and observe that at least one
binary variable xj(i) has to be changed in order to break the infeasibility.
This condition can be translated by the following linear inequality in the x
space, that we call Combinatorial Benders’ (CB) cut:

∑

i∈C:x∗
j(i)

=0

xj +
∑

i∈C:x∗
j(i)

=1

(1− xj) ≥ 1. (21)

One or more CB cuts of this type are generated in correspondence of a given
infeasible x∗, and added to the master problem. Iterating the procedure
produces an exact solution method in the spirit of Benders’ decomposition.

Of course, it is advisable to exploit the CB cuts within a modern Branch
& Cut scheme which hopefully produces violated cuts at each node of the
branching tree—and not just in correspondence of an integer optimal solu-
tion of the master. Note that the correctness of the Branch & Cut method
only requires the generation of a violated CB cut (if any) before each updat-
ing of the incumbent solution of the master, i.e., any heuristic CB separator
that guarantees to be exact for an integer x∗ already suffices to get a valid
solution method.

We now address the case c = 0 and d 6= 0, arising when the objective
function only depends on the continuous variables y. In this situation, we
cannot accommodate the objective function into the master problem. In-
stead, we can add the bound inequality dT y ≤ UB − ε to the slave system,
where UB is the value of the incumbent solution, and ε is a sufficiently small
positive value. In this way, the CB cuts will translate both the feasibility
and the optimality requirements. More specifically, at the iterations where
SLAV E(x∗) (amended by the bound inequality) is infeasible, we can gen-
erate one or more violated CB cuts, as required. At the iterations where
this system is feasible, instead, we can find an optimal solution y∗ of the LP
problem min{dT y : Ay ≥ b−Mx∗, Dy ≥ e} and update the best incumbent
solution by (x∗, y∗). The overall method will stop when the current master
(that now looks for a feasible x improving the incumbent) becomes infea-
sible. Finally, we observe that the case c 6= 0 and d 6= 0 cannot be dealt
with effectively by our method. A possible approach is to make an external
binary search of the (unknown) value of dT y∗ in an optimal solution (x∗, y∗)
of P , and exploit this information by introducing bound constraints of the
type dT y = dT y∗ into the slave. However, this naive approach would imply
the solution of a (possibly long) series of MIP’s, hence its practical effec-
tiveness should be investigated computationally—this topic is left to future
research.

At first glance, the required assumptions—in particular, (14)—restrict
the range of applicability of our method considerably. However, there are
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several important (and difficult) MIP’s which fit naturally in our scheme.
Some of them will be addressed in the computational section. In addition,
there is a simple reformulation method that can extend its applicability
significantly. The idea is to introduce a (continuous) copy xc

j of each binary
variable xj , j ∈ B, and to link the two copies through the constraints:

xj = xc
j for j ∈ B (22)

By construction, the above constraints can play the role of (14), thus linking
the master problem to the slave.

In particular, one can always reformulate a generic MIP with no general-
integer variables (i.e., involving only binary and continuous variables) as
follows. Introduce the continuous copy xc of the entire vector x. The initial
master takes the binary variable vector x, plus the constraints Fx ≤ g along
with the obvious constraints x ∈ {0, 1}n; the master objective function is
zero (or cT x if d = 0). The slave keeps the continuous variable vectors xc and
y, the constraints Mxc + Ay ≥ b, Dy ≥ e along with the linking equations
x = xc, plus the objective function bound cT xc + dT y ≤ UB − ε, where UB
is the value of the incumbent solution.

Actually, one can even decide to remove Fx ≤ g from the master, and
to introduce Fxc ≤ g into the slave (the master objective function being
zero). With this choice, at each iteration the master only contains the
distilled combinatorial information (notably, CB cuts) that exclude certain
configurations of the binary variables—because they are infeasible or cannot
lead to an improved solution. The master then iteratively detects new binary
solutions x∗ which fulfill the master constraints generated so far, and invokes
the slave for validation. The slave verifies the feasibility of the proposed x∗

(with respect to the LP relaxation of the original MIP, amended by the
upper bound constraint), possibly updates the incumbent, and then returns
one or more CB cuts related to some forbidden minimal configurations of
the binary variables.

3 Related work

CB cuts have their roots in the seminal work of Hooker [19] on logic-based
methods for optimization, where the problem under investigation has the
very general form

minf(x) (23)
s.t. pi(x), i ∈ I1 (24)

gi(y), i ∈ I2 (25)
qi(x) ⇒ hi(y), i ∈ I3 (26)

If C is a minimal conflict set, in the sense that C is an inclusion-minimal
subset of I3 such that {hi(y) : i ∈ C} ∩ {gi(y) : i ∈ I2} is infeasible, then
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one can write the Benders’ cut condition
∨

i∈C

¬qi(x) (27)

In this context, our approach deals with the special case where conditions
pi(x) are linear inequalities in the integer variables xj , the gi(y) and hi(y)
are linear inequalities, and the qi(x) have the form xj(i) = 1. Indeed, in this
case condition (27) can be rephrased as the CB cut

∑
i∈C(1− xj(i)) ≥ 1.

Apparently, the first practical use of this kind of Benders’ cuts was to
solve circuit verification problems [23]. In this application the subproblem
constraints hi(y) are again linear inequalities (actually, systems of linear
inequalities), but they have a special structure that permits the rapid iden-
tification of minimal conflict sets. Hooker studied logic-based Benders’ cuts
in [19] and proposed applying them to multiple machine scheduling, in which
constraints hi(y) are scheduling constraints rather than linear inequalities.
Jain and Grossmann [26] implemented this idea and obtained very good
results—even without insisting on finding minimal conflict sets. Similar re-
sults were obtained for a broader class of problems in [20], but these results
required a more sophisticated form of Benders’ cut than (27). Cambazard
et al. [8] returned to the idea of min-conflict Benders’ cuts to solve real-time
scheduling problems on multiple machines. They relied on a min-conflict al-
gorithm of Junker [27], which improves on an earlier algorithm of De Siqueira
and Puget [13].

Kim and Hooker [28] considered fixed-charge network flow problems,
and proposed a scheme that is very similar to the approach proposed in this
paper. The main difference is that Kim and Hooker find minimal infeasible
configurations of the binary variables (the so-called nogoods) specifically in
a min-cost network flow relaxation, while this paper finds them in a more
general context. The same comment applies to the map labelling problem
studied by Mützel and Klau [29]; see Section 5 for details.

Rather than alternating between solving a master problem and subprob-
lem, as in the classical Benders’ method, our approach solves a single master
problem and generate Benders’ cuts on the fly. This approach was proposed
in [19] and later named “branch and check” by Thorsteinsson [32], who
successfully applied it to the Jain and Grossmann problems. Meanwhile,
Hooker and Ottosson [22] used logic Benders’ cuts to solve SAT problems
and 0-1 programming problems.

Our solution method also has interesting connections with Chvátal’s res-
olution search. Roughly speaking, resolution search can be viewed as an at-
tempt to get rid of the rigid tree paradigm used within enumeration schemes.
Convergence of generic enumerative methods for combinatorial optimization
problems requires to record information about the subsets of the solution
space that have been already explored—so as to avoid considering twice a
same subset, and to abort the search when no unexplored subset exists. For
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each subset, an oracle (borrowing Chvátal terminology) is invoked to answer
the basic question: Is there any hope that this subset contains a solution
improving the incumbent? If (possibly after having updated the incumbent)
the answer is “no”, the subset is discarded. If the answer is “yes”, the set
is subdivided further. For MIP problems, the subsets are typically defined
by a branching strategy, i.e., by fixing the value of certain subsets of the
integer variables. Resolution search can be viewed as a way to control the
solution process. Here, the standard branching tree is replaced by a pool of
logical conditions that summarize the previous computation. At each iter-
ations, a partial assignment of the binary variables is found, which fulfills
the logical conditions in the current pool. If no such assignment exists, then
the enumeration is over and the incumbent is a provable optimal solution.
Otherwise, the oracle is invoked in two distinct greedy phases. In the wax-
ing phase, the current partial assignment is iteratively extended up to a
point where the oracle returns a “no” answer (with the incumbent possibly
updated). In the subsequent waning phase, the current partial assignment
is iteratively reduced as long as the oracle answer remains “no”. At the
end of the waning phase, the current partial assignment corresponds to an
obstacle, i.e., to a minimal set of variables that have to be changed in order
to get a “yes” answer from the oracle. The logical condition “change the
value at least one of the variables in the obstacle” is then added to the pool
of logical conditions, so as to avoid to face the same obstacle in the later
exploration, and the process is iterated. The analogy with our approach is
now evident: our master problem plays the role of a 0-1 ILP model for the
logical conditions in the pool, whereas the slave is our implementation of
the oracle function to detect one or more obstacles efficiently.

There is however an important difference between our method and reso-
lution search. Indeed, in resolution search the nogoods are structured so that
one can find a feasible solution for the accumulated nogoods in polynomial
time. In Chvátal method, in particular, the nogoods have a proper path-
like structure; other variations on this theme include dynamic backtracking,
dependency-directed backtracking, partial-order dynamic backtracking, and
generalized partial-order dynamic backtracking [7, 14, 15, 16, 19]. This
nice feature is not preserved in our method, where the master problem is a
(somehow general) NP-hard ILP.

CB cuts can be generated within a standard Branch & Cut solution
framework not based explicitly on the master/slave decomposition we pro-
pose. For the sake of notation, let us consider a pure 0-1 ILP of the form
min{cT x : Ax ≥ b, x ∈ {0, 1}n}. Take a generic branching node NODEh

which is fathomed by the classical lower bound criterion, possibly after the
updating of the incumbent solution. The node corresponds (say) to the fix-
ing xj = x∗j for some j ∈ Jh, where x∗j ∈ {0, 1} is the known branching value
for variable xj at NODEh. The fathoming condition then implies that the
slave linear system made by the “linking equations” xj = x∗j for j ∈ Jh and
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by the inequalities Ax ≥ b, x ∈ [0, 1]n, cT x ≤ UB − ε, is infeasible. Finding
a MIS of this system then yields an inclusion-minimal C ⊆ Jh whose asso-
ciate CB cut (21) can be added to the current formulation. (Of course, in
this context the new cut is only useful if C is a proper subset of Jh, so as
to exclude a solution subset strictly larger than the one associated with the
current node NODEh.) Our approach can therefore be viewed as a simple
(yet hopefully effective) method for “branching resequencing” in the spirit
of the Dynamic Branch and Bound of Glover and Tangedhal [18].

4 Fast MIS search

In this section we describe an efficient algorithm to find a MIS of an infeasible
linear system, that fits particularly well within our solution approach. The
method is in the spirit of the one discussed by Parker and Ryan in [30]

MIS search can be formulated as follows: given an infeasible system of
inequalities, say Ãy ≥ b̃, find an inclusion-minimal set of its rows yielding
an infeasible system.

We therefore construct the LP

min 0T y (28)
s.t. Ãy ≥ b̃ (29)

and its dual

max uT b̃ (30)
s.t. uT Ã = 0T (31)

u ≥ 0 (32)

It is known that if the primal problem is infeasible, then the correspond-
ing dual can be either unbounded or infeasible. Now, dual infeasibility is
excluded by the fact that u = 0 is always dual feasible, hence primal infea-
sibility corresponds to dual unboundedness, i.e., to the existence of a dual
solution u∗ such that u∗T b̃ > 0 (hence ku∗ for a sufficiently large k > 0 is a
feasible dual solution with arbitrarily large objective value). Therefore we
can replace the dual objective function by the following constraint:

uT b̃ = 1 (33)

This modified dual problem is meant at finding a linear combination of the
rows of Ãy ≥ b̃ leading to a valid inequality u∗T Ãy ≥ u∗T b with all-zero
left-hand side coefficients and strictly positive right-hand side, thus proving
the infeasibility of Ãy ≥ b̃—the existence of u∗ is guaranteed, for infeasible
systems, by the Farkas’ lemma.

It is known [17] that each vertex of the dual polyhedron defined by (31)–
(33) has a support defining an MIS (whereas minimality is not guaranteed for
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an arbitrary point u of the same polyhedron). In our applications, we look
for a solution u∗ having a small support in the set of the linking constraints
(19), whereas we do not actually care on the minimality with respect to (20).
This suggests the use of the heuristic dual objective function

∑
i wiui, where

weights wi’s are used to drive the LP solver to select a solution u∗ with the
desired characteristics. Moreover, by iteratively setting to zero some of the
u variables we can easily detect alternative MIS’s, which is very important
in order to generate several violated CB cuts at each call of the separation
heuristic.

According to our computational experience, the described algorithm is
very effective and outperforms (for our applications) an analogous MIS al-
gorithm based on the ILOG-Cplex function IloCplex::getIIS().

5 Computational Results

To evaluate its effectiveness, we implemented our method in C++ and em-
bedded it within the ILOG-Cplex Concert Technology 1.2 framework, based
on ILOG-Cplex 8.1 [24, 25].

In our implementation, we read an input MIP in the form (8)-(13), and
verify that (a) the linking constraints are of the form (14) with binary xj(i),
and (b) the objective function only depends on the integer variables. We
then construct (automatically) the master/slave decomposition, and invoke
the ILOG-Cplex solver on the master. During the ILOG-Cplex Branch &
Cut execution, we call our separation procedures for CB and {0, 1

2}-cuts.
In the CB separation, the integer components of the current master LP
solutions x∗ are sent to the slave, in the attempt to generate one or more
CB cuts through the MIS search described in Section 3. As to {0, 1

2}-cuts,
we use the separation code of Andreello, Caprara, and Fischetti [2]. This
separation proved quite effective, and allowed for a reduction of up to 50%
of the computing time of our method for some instances of the test–bed.
(Observe that effective {0, 1

2}-cuts cannot be derived from the original MIP
formulation of the instances in our test–bed, due to the presence of the
continuous variables.)

In order not to overload the LP formulation, we avoided calling our CB
and {0, 1

2}-cut separators at each node of the branching tree, but applied
them (a) before each updating of the incumbent solution; (b) at each node
with a tree depth not greater than 10; and (c) after each backtracking step
(see [2] for a discussion on similar strategies).

Due to the heuristic nature of our separation procedures for CB and
{0, 1

2}-cuts, and since the number of generated cuts tends to increase steeply,
all cuts are stored in a constraint pool, which is purged from time to time.

It should be observed that ILOG-Cplex 8.1 does not implement an inter-
nal cut pool: once a (globally valid) cut has been generated at run time, it
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is added statically to the LP formulation and never removed. An important
exception (that we exploit in our code) arises for locally-valid cuts, which
are automatically removed from the formulation the first time they are no
longer guaranteed to be valid (because of a backtracking step); removed cuts
are not saved.

The lack of a native pool within ILOG-Cplex 8.1 is not really an issue in
itself, in that one can easily implement an external data structure to store the
CB and {0, 1

2}-cuts. A possible issue is however the impossibility of removing
a (globally valid) cut from the current LP. This makes it impossible to purge
the current LP by removing some of its constraints, with the risk it becomes
soon too large. A possible work-around is to define the CB and {0, 1

2}-cuts
as local (as opposed to global) cuts, so they are automatically removed from
time to time from the LP. Though this approach does not allow us to have
a complete control on the cut removal mechanism (nor on the the size of
the LP), it works reasonably well in practice—although it implies a certain
memory overhead.

5.1 The test-bed

Realistically, one cannot expect our approach works well in all applications.
Indeed, CB cuts can sometimes be of very weak polyhedral quality, hence
they do not capture in an adequate way the complexity of the problem at
hand. In particular, this is the case for the Asymmetric Travelling Salesman
Problem with time windows (the problem we used as an introductory exam-
ple), where CB cuts can only state the single infeasibility of certain paths
and are dominated by much stronger classes of problem-specific inequalities,
including the tournament inequalities studied in [3, 4]. However, our method
proved to have some merits in handling difficult MIP problems where CB
cuts play a role in describing in a strong polyhedral way the underlying
combinatorial structure. Examples of this kind of problems are described
next.

Map Labelling. This problem consists in placing as many rectangular
labels as possible (without overlap) in a given map. If placed, a label has a
limited degree of movement around its associated “reference point” (a pre-
specified point of the map corresponding to, e.g., the city whose name is
in the label). This problem has been formulated as a MIP model involving
big-M coefficients by Mützel and Klau [29], who report very poor results
when trying to solve the model directly. Much better results are in fact
obtained by the same authors when using a different (purely combinatorial)
0-1 ILP model, where the binary variables are associated with arcs of a
suitable digraph, and the non-overlapping conditions are translated by rank
inequalities forbidding the choice of all the arcs in a circuit with certain
properties. Actually, it was precisely the nice correspondence between the
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MIP model and its graph reformulation that motivated us to generalize
the Mützel-Klau construction, thus originating the work presented in the
present paper. As a matter of fact, applying our method to their MIP
model produces automatically a slave problem with a network structure,
hence it can be associated with a digraph whose circuits (under appropriate
conditions) correspond to minimal infeasible subsystems—and hence to CB
cuts.

Our test-bed contains 18 map labelling instances, of the so-called 4-slider
(4S) and 4-position (4P) type, kindly provided by G.W. Klau.

As shown in the computational section, the results we obtained on map
labelling problems are comparable with those reported in [29], even though
our method is more general and does not exploit the specific network struc-
ture of the slave. This is an indication that the overhead introduced in our
implementation (in particular, for computing MIS’s via LP methods rather
than using fast graph-search algorithms) is acceptable.

Two-Group Statistical Classification (discriminant analysis). This
problem can be described briefly as follow; see, e.g., Rubin [31] for more de-
tails. We have a population whose members can be divided into two distinct
classes—for example, people affected or not by a certain disease. We can
measure a number of characteristics that are related to the partition above–
e.g, biological parameters that show the presence or absence of the disease.
Based on the available measures, we want to obtain a linear function which
allows us to decide whether a new member belongs to the first or second
class. More specifically, we are looking for a linear function that minimize
the number of misclassified members in the known sample1. This problem
can be modelled as a MIP problem with big–M coefficients: the unknowns
are the coefficients of the linear function, and for every member there is a
binary variable used to deactivate the inequality in case of misclassification.
The purpose is to minimize the number of deactivated inequalities, so the
objective function is just the sum of the binary variables. (In [31] a slightly
different MIP model is used, involving also a real-valued variables in the
objective; this model can easily be transformed into the one we use in the
present study.)

The raw data from which we have generated our instances has been taken
from a public archive maintained at UCI [33], and converted to the final MIP
model with a slightly modified version of a program kindly provided us by
P. A. Rubin. This resulted into 38 instances coming from different real
situations (i.e., disease classification, interpretation of physical phenomena,

1Designing optimal linear classifiers consists in minimizing (resp., maximizing) the
number of misclassified (resp., correctly classified) members. Given the infeasible inequal-
ity system imposing correct classification of all members, the problem amounts to deleting
the minimum number of inequalities to make the system feasible, or equivalently to finding
a maximum feasible subsystem (MaxFS); see, e.g., [10, 1].
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animal behavior, etc.).

5.2 Results

Our experiments have been performed on a PC AMD Athlon 2100+ with 1
GByte RAM, and GNU/Linux (kernel 2.4) Operating System.

All the instances of our test-bed have been processed twice: the first time
by solving the original MIP model through the commercial ILOG-Cplex 8.1
solver (with default settings), and the second by using our implementation
of the master/slave decomposition based on CB cuts and {0, 1

2}-cuts (still
based on the ILOG-Cplex 8.1 library). A time-limit of 3 CPU hours was
imposed for each run. In addition, we set the IloCplex::NodeFileInd
parameter to 3: this forces Cplex to store the active-node data into the
hard disk when physical memory is exhausted (due to the efficiency of this
mechanism, we had no memory problems even when handling branching
trees much larger than 1GB)

In the tables below, label CBC refers to our code (based con CB cuts),
whereas label Cplex refers to the standard ILOG-Cplex 8.1 solver. We com-
pared the two codes in terms of execution times and/or integrality gaps
computed with respect to the best integer solution found, on the following
three instance subclasses:

1. instances solved to proven optimality by both CBC and Cplex

2. instances solved to proven optimality by CBC but not by Cplex

3. instances not solved (to proven optimality) by CBC nor by Cplex

Notice that there was no instance in our test-bed that was solved by Cplex
but not by CBC.

For the first subset, Table 1 reports the instance names, the optimal
objective values (opt), the Cplex and CBC computing times, their ratios
and the number of branching nodes enumerated by Cplex and by CBC for
the exact solution of the instances. On these instances, CBC turns out to
be up to 3 orders of magnitude faster that Cplex. According to the final
row of the table, Cplex ran for almost 8.5 hours to solve all the instances
of this subset, while CBC requires about 24 minutes, i.e., the latter code
was 21 times faster in processing the whole subset. As to the number of
nodes enumerated by the two approaches, we note that a direct comparison
of these figures is not immediate in that the two methods actually work on
different formulations—hence processing a single node may require different
computing times. In particular, for CBC the large number of generated cuts
tends to slow-down the node processing significantly.

Figure 1 reports the graph of the best bound and of the incumbent
solution values for Cplex and CBC executions on a sample instance in this
subset.
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The results for the second subset of instances are given in Table 2. As in
Table 1, for CBC we report the optimization time and the optimal objective
value, while for Cplex we give the value of the incumbent solution (best
sol.) and of the best bound (best bound), their percentage gap (gap (%),
computed as 100 |best sol − best boud|/best sol ), as well as the MBytes of
memory used (mem. MB). For each instance, we report two distinct rows
for Cplex execution: the first one refers to the time instant when CBC
finished its computation, and the second row gives the situation when Cplex
is aborted (time limit expired). Finally, in the last row of the two sections
of the table we report the total computing time and the average Cplex gaps,
computed both when CBC finished its execution (same t.), and at the end
of its own computation (end).

Figure 2 gives an illustration of the Cplex and CBC behavior on two

Subset 1 Exec. Times Ratio Nodes
File name opt Cplex CBC Cplex Cplex CBC

h:m :s h:m :s /CBC
ST. ANALYSIS
Chorales-116 24 1:24:52 0:10:18 8.2 10,329,312 20,382
Balloons76 10 0:00:10 0:00:14 71.4 40,481 4
BCW-367 8 0:08:33 0:00:13 39.4 79,980 463
BCW-683 10 2:02:29 0:00:32 229.7 399,304 671
WPBC-194 5 0:57:17 0:03:32 16.2 806,188 26,439
Breast-Cancer-400 6 0:02:50 0:00:16 1062 181,990 1
Glass-163 13 0:56:17 0:00:05 675.4 3,412,702 64
Horse-colic-151 5 0:04:50 0:00:23 12.6 135,018 2,184
Iris-150 18 0:09:29 0:01:10 8.1 970,659 1,290
Credit-300 8 0:19:35 0:00:02 587.5 176,956 66
Lymphography-142 5 0:00:11 0:00:01 11.0 8,157 106
Mech-analysis-107 7 0:00:05 0:00:01 5.0 11,101 68
Mech-analysis-137 18 0:07:44 0:00:27 17.2 938,088 1,888
Monks-tr-122 13 0:02:05 0:00:05 25.0 262,431 357
Pb-gr-txt-198 11 0:04:21 0:00:05 52.2 135,980 110
Pb-pict-txt-444 7 0:02:07 0:00:02 63.5 71,031 1,026
Pb-hl-pict-277 10 0:04:17 0:00:27 9.5 22,047 115
Postoperative-88 16 0:15:16 0:00:01 916.0 2,282,109 171
BV-OS-282 6 0:05:13 0:00:24 13.0 56,652 1,044
Opel-Saab-80 6 0:01:03 0:00:13 4.8 87,542 7,314
Bus-Van-437 6 0:09:17 0:00:28 19.9 55,224 6,795
HouseVotes84-435 6 0:04:59 0:00:11 27.2 42,928 734
Water-treat-206 4 0:01:10 0:00:06 11.7 12,860 482
Water-treat-213 5 0:17:00 0:00:51 20.0 168,656 4,036
MAP LABELL.
CMS 600-1 600 1:08:41 0:04:34 15.0 110,138 14
TOTAL/MEAN — 8:29:51 0:24:11 21.1 20,797,534 64,373

Table 1: Problems solved to proven optimality by both Cplex and CBC
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Subset 2 Cplex CBC
File Name time best best gap mem opt time

h:m :s sol. bound (%) MB h:m :s
ST. ANALYSIS
Chorales-134 0:36:23 33 16.0 51 371 30 0:36:23

3:00:58 30 21.1 30 992
Chorales-107 0:04:19 28 12.1 57 61 27 0:04:19

3:01:27 27 22.2 18 711
Breast-Cancer-600 0:00:13 108 1.5 99 9 16 0:00:13

3:00:11 16 13.2 18 45
Bridges-132 0:03:39 33 5.1 85 44 23 0:03:39

3:01:09 23 10.0 56 1406
Mech-analysis-152 0:34:12 22 12.1 45 328 21 0:34:12

3:00:50 21 16.1 24 865
Monks-tr-124 0:01:55 27 8.1 70 25 24 0:01:55

3:00:35 24 20.0 17 381
Monks-tr-115 0:04:16 29 9.1 69 67 27 0:04:16

3:01:07 27 19.0 30 1131
Solar-flare-323 0:00:04 51 5.0 90 18 38 0:00:04

3:00:45 43 17.0 61 977
BV-OS-376 0:09:04 9 3.1 65 9 9 0:09:04

3:00:10 9 6.0 33 56
BusVan-445 0:10:31 13 3.0 77 11 8 0:10:31

3:00:06 9 5.1 43 56
TOTAL/MEAN 30:07:18 gaps: same t.=71%, end=33% 1:44:36
MAP LABELL.
CMS 600-0 (4S) 0:04:27 592 600 1.35 18 600 0:04:27

3:03:00 594 600 1.01 770
CMS 650-0 (4S) 0:06:26 638 650 1.88 20 649 0:06:26

3:02:34 646 650 0.62 480
CMS 650-1 (4S) 0:04:50 647 650 0.46 7 649 0:04:50

3:03:13 648 650 0.31 904
CMS 700-1 (4S) 0:13:06 686 700 2.04 58 699 0:13:06

3:03:00 691 700 1.30 1045
CMS 750-1 (4S) 0:07:53 738 750 1.63 28 750 0:07:53

3:02:19 741 750 1.21 521
CMS 750-4 (4S) 0:07:05 736 750 1.90 28 748 0:07:05

3:00:24 743 750 0.94 417
CMS 800-0 (4S) 0:19:15 773 800 3.49 55 798 0:19:15

3:02:16 773 800 3.49 533
CMS 800-1 (4S) 0:22:24 784 800 2.04 92 800 0:22:24

3:02:30 786 800 1.78 761
Railway 0:00:31 95 103 8.42 1 100 0:00:31

3:00:02 100 101 1.00 19
CMS 600-0 (4P) 0:00:01 543 600 10.5 2 600 0:00:04

3:02:57 574 600 4.53 782
CMS 600-1 (4P) 0:39:07 565 600 6.19 184 597 0:39:07

3:02:55 568 600 5.63 831
TOTALS 33:25:10 gaps: same t.=3.6%, end=2.0% 2:05:4.1

Table 2: Problems solved to proven optimality by CBC but not by Cplex
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Figure 1: Optimizing the statistical-analysis instance Chorales-116 (mini-
mization problem)

sample instances of this second subset.
For this class, the difference between CBC and Cplex is even more evi-

dent: not only Cplex was not able to solve any of these problems within the
imposed time limit, but the best-bound trend suggests it is very unlikely it
will converge even allowing for an extremely large computational effort. On
the whole, CBC solved all the statistical analysis instances in less than 2
hours while, after the same time, Cplex had an average gap of more than
70%. Moreover, we found that after 28 additional hours of computation the
gap would have been only halved. An analogous behavior was observed on
map labelling instances, for which the gap is not even halved after more
than 31 additional hours of computation.

The results for the third subset are summarized in Table 3, where we
report both for Cplex and CBC the same information given for Cplex in
Table 2, excluding only the time column (as all instances reached the 3-hour
time limit). In addition, in the last column of the we report the differ-
ence between the Cplex and CBC gaps (∆Gap); in all cases, CBC obtained
significantly smaller gaps.

6 Conclusions

We have proposed and analyzed computationally an automatic MIP refor-
mulation method, aimed at removing the model dependency on the big-M
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Figure 2: Optimizing the statistical-analysis instance Bridges-132 (mini-
mization problem)

Subset 3 Cplex CBC
File Name best best gap mem best best gap mem ∆Gap

sol. bound (%) MB sol b. (%) MB (%)
ST. ANALYSIS
Flags-169 10 5.0 49.8 290 10 6.50 35.0 4052 14.8
Horse-colic-253 13 5.0 61.5 279 13 8.91 31.5 3394 30.0
Horse-colic-185 11 5.0 54.4 265 12 6.33 47.3 4494 7.1
Solar-flare-1066 273 7.6 97.3 787 284 201.30 29.1 1423 68.2
TOTAL/MEAN — 65.5 1,621 — 35.7 13,363 30.0
MAP LABELL.
Berlin 37 47.8 29.1 1063 38 43.0 13.1 1952 16.0
CMS 900-0 (4S) 881 900 2.2 676 897 898.5 0.2 283 2.0
CMS 1000-0 (4S) 945 1000 5.8 566 978 998.3 2.1 509 3.7
US-Abbrv 73 104.8 43.6 740 77 99.7 29.5 428 14.1
CMS 650-0 (4P) 611 650 6.4 764 633 646.9 2.2 1658 4.2
CMS 650-1 (4P) 604 650 7.6 798 638 648.0 1.6 706 6.0
TOTAL/MEAN — 15.8 3,261 — 8.12 5,536 7.7

Table 3: Problems solved to proven optimality by neither codes

18



coefficients often used to model logical implications.
Our technique is based on Hooker’s idea of deriving Benders’ cuts from

minimal sets of inconsistencies, as proposed in [19]. In this respect, our main
contributions have been (a) to present a separation heuristic that finds a min-
imal Benders’ cuts for the special case of conditional constraints with linear
implications, and (b) to test these cuts computationally on some hard MIP
problems. This is an important special case because conditional constraints
of this form are a very useful modeling device.

Our method proved particularly suited for the MIP’s whose objective
function only depends on the integer variables, and the continuous vari-
ables are linked to the integer ones through linear constraints involving a
single binary variable each–typically multiplied by a large coefficient. This
is precisely the situation arising in many important combinatorial problems
modelled by the big-M technique, where the continuous variables are only
used to certify a certain property of the feasible solutions (e.g., time-windows
in scheduling problems, piece non-overlapping in nesting problems, etc.)

Computational results on two specific classes of hard-to-solve MIP’s
(namely, Statistical Analysis and Map Labelling problems) show that the
new method produces automatically a reformulation which can be solved
some orders of magnitude faster than the original MIP model.

Future direction of work should address the more general case where
the MIP objective function depends on both the continuous and the integer
variables, and analyze computationally the merits of the resulting technique.
Some preliminary results in this directions are encouraging.

Finally, one could ask whether it is indeed convenient to use our approach
as a decomposition method, rather than simply as a cut generation strategy.
To this end, one could simply leave the continuous variables (and the asso-
ciated constraints) in the master problem, and use the generated CB cuts
as cutting planes. According to our computational experience, however,
this approach has the main drawback of producing wild fractional points
that are very difficult to separate by means of our simple CB-cut separation
heuristics. Instead, preliminary computational tests seem to indicate that,
for some problems, a better strategy would be to use our decomposition
approach as a preprocessing tool. To be more specific, one could first run
our decomposition approach for a while, so as to generate a large number
of globally-valid CB cuts, and then restart the optimization of the original
model with these cuts used to initialize the internal cut pool. The applica-
bility of this 2-step approach is left to future investigation.
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