
Computational Experience with the
Controlled Rounding Problem

in Statistical Disclosure Control

Matteo Fischetti, Juan José Salazar, and Alberto Caprara
CPR, Consorzio Padova Ricerche, Padova

Interim Report AT-1/D2

Abstract

Controlled rounding is a widely-used methodology in Statistical Disclosure Con-
trol. In this report we give a brief overview of the problem formulation for 2- and
3-dimensional tables. The basic algorithms for these cases have been implemented.
Some preliminary computational results are reported.

1

1 Introduction

We are given an integer rounding base β and a vector [ai : i ∈ I] satisfying a certain linear

system, say Ma = b. For example, vector [ai] may represent a 2-dimensional table with

row and column marginal totals.

The Controlled Rounding Problem (CRP) consists of finding a perturbation of every ai

to an integer multiple ãi of β, such that the new vector [ãi : i ∈ I] satisfies the linear system

Mã = b, and a certain “distance” between a and ã is minimized (or at least bounded by

a certain ε > 0).

As customary, for any real value z let bzc and dze denote the lower and upper integer

part of z, respectively. Moreover, we denote by

bzcβ := βb z

β
c

and

dzeβ := βd z

β
e

the lower and upper β-rounding of z, respectively.

In the sequel we consider the zero-restricted version of CRP, in which one requires

|ãi − ai| < β for all i, i.e., ãi ∈ {baicβ, daieβ}. This implies, in particular, that ãi = ai

whenever ai is an integer multiple of β.

CRP was first introduced by Bacharach [1] in the context of replacing non-integers by

integers in tabular arrays. The problem arises in several application contexts, including

statistical disclosure control to protect the privacy of published data; see Willenborg and

Waal [9] for details.

Cox and Ernst [3] proved that the zero-restricted CRP associated to any 2-dimensional

table with row and column marginal totals is always feasible. They also gave efficient

methods for finding controlled roundings optimally close to the original table. These

methods are based on the transformation of CRP into a network flow problem, see Section

2.

Causey, Cox and Ernst [2] showed that the zero-restricted CRP on multi-dimensional

tables with marginal totals is not always feasible, and gave a simple 2x2x2 counter-example.

Kelly, Golden and Assad [8] proposed a branch-and-bound procedure for the case of 3-

dimensional tables, based on a linear programming relaxation; see Section 3.

Heuristic methods for CRP on multi-dimensional tables have been proposed by several

authors, including Kelly, Golden and Assad [6, 7].

2

Zero-restricted CPR can be formulated as an Integer Linear Program. To this end,

observe that one can with no loss of generality assume that β = 1 (if this is not the case,

just divide [ai] by β). Now, consider [ãi] as a vector of decision variables, and define the

polytope

PCRP := {ã : Mã = b, bac ≤ ã ≤ dae}

containing the (possibly fractional) vectors ã which satisfy the given linear system along

with the lower and upper bounds derived from zero-restrictdness.

An important observation is that PCRP is never empty, in that it contains the “original

vector” [ai].

By construction, there is a 1-1 correspondence between the integer points in PCRP and

the feasible CPR solutions. Hence CPR translates into the problem of determining an

integer point inside PCRP .

A somehow related problem consists of finding a vertex of PCRP . If M is totally uni-

modular, as in the case of 2-dimensional tables, the two problems are in fact equivalent.

Even if this is not the case, however, a vertex of PCRP is likely to contain just a few

fractional components (never more than the number of rows in M), hence a vertex can be

viewed as a good starting point for heuristic algorithms to determine actual integer CRP

solutions.

Classical linear programming theory shows that every nonempty polytope always has a

vertex. The proof of this basic result is constructive, and applies iteratively the following

procedure to convert any given point of PCRP into a vertex.

Given the current point ã ∈ PCRP , let

F := {i : baic < ãi < daie}

contain the indexes of the fractional components of ã (those which are not equal to the

prescribed lower or upper bounds). If the columns of the submatrix of M indexed by F

are linearly independent, then the current point ã is a vertex of PCRP , and we are done.

Otherwise, there exists a nonzero multiplier vector [λi : i ∈ I] such that λi = 0 for all

i 6∈ F and
∑

i∈F λiMi = 0, where Mi denotes the column of M indexed by i. Notice that

such a λ can be found efficiently through well-known numerical techniques. But then for

every real ε we have that

M(ã + ελ) = Mã = b,

i.e., the point ã + ελ satisfies again the given linear system. In other words, λ gives a

3

“direction” along which one can perturb the current point without affecting the linear

system validity.

Suppose now we start with ε = 0, and keep increasing (or decreasing) ε until a threshold

ε∗ is reached such that any further increase would lead to a point ã + ελ violating a lower

or upper bound on the variables. In this situation, one can readily see that the new

point ã + ε∗λ has at least one more integer component than ã, i.e., the set F associated

with the new point has fewer elements. One can then replace ã by ã + ε∗λ, and repeat

the procedure until the fractional support F of the current point corresponds to a set of

linearly independent columns.

2 CPR on 2-dimensional tables

Let us consider a rounding base β = 1 and a “nominal” 2-dimensional table [aij : i =

0, 1, . . . , n; j = 0, 1, . . . , m] of reals satisfying the following system Ma = 0 (marginal

totals):

n∑

i=1

aij − a0j = 0, for all j = 0, 1, . . . , m,

m∑

j=1

aij − ai0 = 0, for all i = 0, 1, . . . , n.

The zero-restricted CRP asks for rounding every nominal value aij to ãij ∈ {baijc, daije}
so as to satisfy:

n∑

i=1

ãij − ã0j = 0, for all j = 0, 1, . . . , m,

m∑

j=1

ãij − ãi0 = 0, for all i = 0, 1, . . . , n.

The new table ã is called a consistent rounding of the original table a.

As already observed in the introduction, the system matrix M is totally unimodular in

this case, hence every vertex of polytope PCRP is integer. In this situation one can then

solve CRP efficiently by applying standard linear programming techniques.

Effective algorithms are based on a network-flow interpretation of the above linear

system. Consider the following (directed) network G = (V, A) with |V | = n+m+2 nodes.

G has a row node ri associated to every row i of M , and a column node cj associated to

every column j of M . The graph has the following arcs:

• an arc (ri, cj) for every row i 6= 0 and every column j 6= 0,

4

Percentage of Zeros
m× n× p 0% 25% 50% 75% 90%
100× 100 1.67 1.01 0.59 0.28 0.11
200× 200 9.04 6.92 4.51 2.09 0.57
300× 300 25.28 18.91 12.69 5.91 1.83

Table 1: Average computing time (over 200 random instances) in PC Pentium/75 seconds

• an arc (c0, ri) for every row i 6= 0,

• an arc (cj, r0) for every column j 6= 0,

• an arc (r0, c0).

Every arc in the network corresponds to an entry aij of a table, and has two associated

lower and upper capacity bounds equal to baijc and daije, respectively.

By construction, there is a 1-1 correspondence between the consistent roundings of the

original table and the integer flow circulations in the associated network. It then follows

that a consistent rounding minimizing a given cost function can be found efficiently by

solving a min-cost flow problem on the network.

We have implemented this idea by using the network simplex algorithm embedded

in the commercial package CPLEX 3.0. Computational analysis has been performed on

3,000 random instances solved on a PC Pentium/75 notebook. The objective was finding

consistent roundings with minimum distance from the nominal table. The base number

was fixed to β = 3.

Table 1 reports average computing times for several possible “Percentage-of-Zeros”

densities (defined as the percentage of table entries whose nominal value is already a

multiple of base 3).

When no objective function is given, a simpler computation can be performed to find

an integer flow circulation. This is in the spirit of the previously-described procedure to

detect vertices of a polytope, as it applies to the network-flow interpretation of the equation

system Ma = 0.

We consider the initial (feasible and fractional) flow circulation f given by fij := aij for

all i, j, and apply iteratively the following procedure until all the flow components become

integer. Define the incremental network G(f) = (V,A(f)) associated with the current flow

[fij]. For every arc (i, j) in G with baijc < fij < daije, the incremental network has two

arcs with opposite directions, namely a forward arc (i, j) and a backward arc (j, i). By

construction, circuits in G(f) correspond to flow re-routing, i.e., to patterns of linearly

5

Percentage of Zeros
m× n× p 0% 25% 50% 75% 90%
100× 100 0.38 0.26 0.18 0.11 0.08
200× 200 3.03 1.91 1.12 0.56 0.34
300× 300 10.06 6.18 3.37 1.51 0.81

Table 2: Average computing time (over 200 random instances) in PC Pentium/75 seconds

dependent columns of the system matrix M . Hence any such circuit gives a “perturbation

direction” along with one can get a new flow circulation f ′ with one less fractional flow

component.

The above algorithm has been implemented in C and ran on a PC Pentium/75 note-

book. Table 2 reports average computing times on the same random instances considered

in the previous table.

According to the table, the method finds consistent roundings of 2-dimensional tables

with up 300 rows and 300 columns in about 10 seconds.

3 CRP on 3-dimensional tables

We are given the rounding base β = 1 and a 3-dimensional table [aijk : i = 0, 1, . . . , n;

j = 0, 1, . . . , m; k = 0, 1, . . . , p] of reals satisfying the following system Ma = 0:

n∑

i=1

aijk − a0jk = 0, for all j = 0, 1, . . . , m, and for all k = 0, 1, . . . , p,

m∑

j=1

aijk − ai0k = 0, for all i = 0, 1, . . . , n, and for all k = 0, 1, . . . , p,

p∑

k=1

aijk − aij0 = 0, for all i = 0, 1, . . . , n, and for all j = 0, 1, . . . , m.

The zero-restricted CRP asks for rounding every nominal value aijk to its lower or upper

integer part, say ãijk, so as to satisfy:

n∑

i=1

ãijk − ã0jk = 0, for all j = 0, 1, . . . , m, and for all k = 0, 1, . . . , p,

m∑

j=1

ãijk − ãi0k = 0, for all i = 0, 1, . . . , n, and for all k = 0, 1, . . . , p,

p∑

k=1

ãijk − ãij0 = 0, for all i = 0, 1, . . . , n, and for all j = 0, 1, . . . , m.

Unlikely the 2-dimensional case, the zero-restricted CRP on 3-dimensional tables can

6

Percentage of Zeros
m× n× p 0% 25% 50% 75% 90%
15× 2× 2 36 15 18 18 2
10× 3× 2 37 52 45 21 7
6× 5× 2 82 92 81 35 9
5× 4× 3 140 156 129 59 12

Table 3: Number of instances requiring branching (out of 1000 trials).

Percentage of Zeros
m× n× p 0% 25% 50% 75% 90%
15× 2× 2 3.89 3.80 5.00 3.33 3.00
10× 3× 2 4.46 4.12 3.98 4.24 3.57
6× 5× 2 3.98 4.72 4.21 3.91 3.22
5× 4× 3 5.07 5.63 5.16 3.98 3.17

Table 4: Average number of esaminated nodes for the instances requiring branching.

be infeasible, see Causey, Cox and Ernst [2]. Moreover, Kelly, Golden and Assad [5] proved

the NP-hardness of the problem.

We have implemented a branch-and-bound procedure based on linear programming

relaxation. The objective was to determine consistent roundings with minimum distance

from the nominal table.

We evaluated the performances of our branch-and-bound method on random instances

generated as in Kelly, Golden, Assad and Baker [8]. We generated and solved 20,000 tables

with 60 entries, according to different dimensions and density levels. In particular, 1000

tables were generated for each choice of (m,n, p) in {(15, 2, 2), (10, 3, 2), (6, 5, 2), (5, 4, 3)}
and for percentage-of-zeros density in {0, 25, 50, 75, 90}. All tables were rounded using

base β = 3.

Table 3 gives the number of instances (out of 1000 trials) requiring branching. Table 4

gives the average number of esaminated nodes when branching is needed.

The computing time for solving each instance in our test-bed never exceeded 0.5 seconds

on a PC Pentium/75. This figure shows the effectiveness of our implementation.

Additional experiments have been performed on larger instances. Table 5 gives average

results for tables from 4x4x4 to 8x8x8. Column “count” gives the number of instances

requiring branching (out of 1000 trials). Columns “nodes” and “time” give the average

number of nodes and the average computing time on a PC Pentium/75, respectively,

computed with respect to the cases requiring branching. Again, all problems were solved

to optimality within short computing time.

7

m n p Perc.Zeros count nodes time
4 4 4 0 62 4.03 0.29
4 4 4 25 33 4.94 0.27
4 4 4 50 27 5.67 0.25
4 4 4 75 27 5.07 0.23
4 4 4 90 3 3.67 0.19
6 6 6 0 121 17.79 2.32
6 6 6 25 123 12.77 1.57
6 6 6 50 112 13.11 1.16
6 6 6 75 91 12.05 0.66
6 6 6 90 36 6.72 0.28
7 7 7 0 162 40.54 13.66
7 7 7 25 159 40.85 12.18
7 7 7 50 152 24.49 6.58
7 7 7 75 134 25.81 4.63
7 7 7 90 78 10.82 2.49
8 8 8 0 172 102.09 64.97
8 8 8 25 175 83.42 46.19
8 8 8 50 173 68.98 30.01
8 8 8 75 165 58.78 15.13
8 8 8 90 97 18.69 3.18

Table 5: Statistics on larger instances.

8

4 Non zero-restricted controlled rounding problem

In order to find a feasible rounding when the zero-restricted is infeasible, we have considered

the following mathematical model.

Let a = [ai : i ∈ I] be the nominal data set, satisfying a certain linear system, say
∑

i∈I mijai = bj (j ∈ J), and let β be the base number. Let us associate a variable xi

to each i ∈ I representing an integer such that xiβ is a possible rounding for ai (i ∈ I).

Let us given lbi and ubi the lower and upper limits, respectively, for a variable xi (i ∈ I).

Typically lbi = bai/βc and ubi = dai/βe, but depending on the statistical office they can

be other values.

The problem of finding a feasible rounding (zero-restricted or not) is the problem of

finding a feasible solution to the integer linear system:

∑

i∈I
mijxi = bj/β for all j ∈ J ,

lbi ≤ xi ≤ ubi for all i ∈ I,

xi integer for all i ∈ I.

When there are several feasible solutions to this systems, then it could be interesting to

look for the one minimizing a ”linear” distance between the nominal and rounded table. To

address this idea, we have added the following objective function to the previous system.

minimize
∑

i∈I
δixi

where δi is 1 if ai − lbiβ < ubiβ − ai and -1 otherwise. This aim favours rounding down a

cell when its nominal value is nearest such a value, and rounding up otherwise.

We have implemented a depth-first-search branch-and-bound scheme based on the LP-

relaxation of the model at each node.

5 Acknowledgment

Work supported by the European Union - ESPRIT project SDC on Statistical Disclosure

Control.

References

[1] M. Bacharach, “Matrix Rounding Problem”, Management Science 9 (1966) 732–742.

9

[2] B.D. Causey, L.H. Cox, L.R. Ernst, “Applications of Transportation Theory to Statis-

tical Problems”, Journal of the American Statistical Association, 80 (1985) 903–909.

[3] L.H. Cox, “Controlled Rounding”, INFOR 20 (1982) 423–432.

[4] L.H. Cox, “A Constructive Procedure for Unbiased Controlled Rounding”, Journal of

the American Statistical Association, 82 (1987) 520–524.

[5] J.P. Kelly, A.A. Assad, B.L. Golden, “Controlled Rounding of Tabular Data”, Oper-

ations Research, 38 (1990) 760–772.

[6] J.P. Kelly, B.L. Golden, A.A. Assad, “Using Simulated Annealing to Solve Controlled

Rounding Problems”, ORSA Journal on Computing, 2 (1990) 174–185.

[7] J.P. Kelly, B.L. Golden, A.A. Assad, “Large-Scale Controlled Rounding Using TABU

Search with Strategic Oscillation”, Annals of Operations Research, 41 (1993) 69–84.

[8] J.P. Kelly, B.L. Golden, A.A. Assad, E.K. Baker, “Controlled Rounding of Tabular

Data”, Operations Research, 38 (1990) 760–772.

[9] L. Willenborg, T. Waal, “Statistical Disclosure Control in Practice”, Lecture Notes in

Statistics 111, Springer, 1996.

10

