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Abstract

Given a mixed-integer linear programming (MILP) model and an optimal basis of the
associated linear programming relaxation, the Gomory’s corner relaxation is obtained
by dropping nonnegativity constraints on the basic variables. Although this relaxation
received a considerable attention in the literature in the last 40 years, the crucial issue
of evaluating the practical quality of the corner-relaxation bound was not addressed so
far. In the present paper we report, for the first time, the optimal value of the corner
relaxation (in two possible variants) for a very large set of MILP instances from the
literature, thus providing a missing yet very important piece of information about the
practical relevance of this relaxation. The outcome of our experiments is that the corner
relaxation often gives a tight approximation of the integer hull, the main so for MILPs
with general integer variables–the approximation tends to be less satisfactory when a
consistent number of binary variables exists.

Key words: Mixed integer linear program, Gomory’s corner polyhedron, Computational
analysis.

We consider the Mixed-Integer Linear Programming (MILP) model

min{cT x : Ax ≤ b, xj integer for all j ∈ J} (1)

where A is a m × n rational matrix, b ∈ Qm, c ∈ Qn, and J ⊆ {1, . . . , n} is the (nonempty)
index set of the integer-constrained variables.

Given any optimal vertex x∗ of the linear programming relaxation min{cT x : Ax ≤ b},
let I(x∗) := {i ∈ {1, . . . ,m} : aT

i x∗ = bi} denote the index set of the constraints that are
binding at x∗. In this paper we address the following corner relaxation (called “Gomory
integer program” in [13]):

min{cT x : aT
i x ≤ bi for all i ∈ I(x∗), xj integer for all j ∈ J} (2)

obtained from (1) by removing all the constraints that are not binding at x∗. This definition
of the corner relaxation depends on the choice of vertex x∗ but not on the corresponding
optimal LP basis. The relaxation is a variant of the well-known group relaxation introduced
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by Ralph Gomory [8] for pure integer linear programming (ILP) problems, which is obtained
by dropping nonnegativity constraints on the variables that are basic in a given optimal LP
basis. By definition, the group relaxation is affected by the presence of primal degeneracy,
while definition (2) of the corner relaxation is not. Notice that the group relaxation can be
significantly weaker than (2) for highly-degenerate ILPs, as it drops the binding constraints
whose slack variable is basic (at level zero) in the chosen optimal basis.

The group relaxation was deeply investigated by Gomory and Johnson [9, 10] who ex-
ploited an interpretation in terms of mod-1 equations to obtain its complete facial char-
acterization through subadditive functions. Since then, the theoretical study of the group
relaxation received a considerable attention in the literature as witnessed, e.g., by the recent
papers [11, 12, 15], among others. The practical utility of the relaxation remains however a
quite unexplored topic; e.g., Gomory, Johnson, and Evans [12] observe that “If we were able
to come close to solving the corner polyhedron problem, say by having an adequate supply of
cutting planes or perhaps in other ways, such as finding solutions to the group problem, we
could come close to a different kind of algorithm—one based on solving a sequence of Corner
Polyhedron problems”. In particular, no computational study was performed to address a
key question: How tight is, in practice, the corner relaxation?

The following result about the computational complexity of optimizing over the corner
relaxation was implicit in the previous papers dealing with such a relaxation, but we could
not find an easy reference to its proof. E.g., Letchford [16] observed that “the only known
algorithms for solving the group relaxation have a running time which is proportional to
the determinant of the LP optimal basis (see Chen and Zionts [4]), that is often very large;
moreover, it is not difficult to show (for example by reduction from the multi-dimensional
knapsack problem) that the standard group relaxation is strongly NP-hard in general”. As
our definition of the corner relaxation differs from the standard one in case of degeneracy,
and for the sake of completeness, we also provide a complexity proof.

Proposition 1 The corner relaxation (2) is strongly NP-hard.

Proof: We provide a simple reduction from the following strongly NP-complete [7] Decoding
of Linear Codes (DLC) problem, in recognition form: Given a r×(t+1) 0-1 matrix (Q, d) and
a positive integer k, decide whether there exist a vector y ∈ {0, 1}t with Qy ≡ d (mod 2) and
1T y ≤ k, where 1 := (1, 1, . . . , 1) denotes a vector of 1’s of appropriate size. Without loss of
generality, we can assume d = 1, since one can always increase by 1 the threshold k and replace
the congruence system Qy ≡ d (mod 2) by Qy+(1−d)z ≡ 1 (mod 2), z ≡ 1 (mod 2), z ∈ {0, 1}.
In addition, condition y ∈ {0, 1}t can be replaced by “y ≥ 0 integer”, since one can iteratively
subtract 2 from the value of any component yj ≥ 2 without affecting the congruence system
while favoring the condition 1T y ≤ k. Hence, given a 0-1 matrix Q and an integer k, it is
strongly NP-complete to decide whether

min{1T y : Q y ≡ 1 (mod 2), y ≥ 0 integer} ≤ k. (3)

Given Q, we define our MILP model (1) as min{0T z + 1T y : z + Q/2 y = 1/2, (z, y) ≥
0 integer}. By construction, the LP relaxation of this model has a unique and nondegenerate
optimal vertex (z∗, y∗), where z∗ = 1/2 and y∗ = 0. Removing all nonbinding constraints
one therefore gets a corner relaxation min{1T y : z + Q/2 y = 1/2, y ≥ 0, (z, y) integer} =
min{1T y : Q/2 y ≡ 1/2 (mod 1), y ≥ 0 integer} that is equivalent to the minimization
problem in (3), hence the claim follows. �
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Note that the above proof applies to Gomory’s group relaxation as well, in that its construc-
tions refer to a unique and nondegenerate optimal LP basis.

In the present paper we report the optimal value (or a lower bound) of the corner and group
relaxations, computed through a commercial MILP software based on a standard branch-and-
cut solution method. From the point of view of computing time, this naive approach is far
from satisfactory, since the structure of the corner/group MILP (that involves integer variables
with no bounds) seems to be intrinsically unappropriate to be dealt with by branch-and-cut
methods. As a matter of fact, the computing time needed to solve the relaxations was almost
always much larger than the one needed for the original problem—often by 1-2 orders of
magnitude. This suggests that different techniques based, e.g., on dynamic programming
or basis-reduction methods, should be applied. Nevertheless, we believe that knowing the
quality of the bound that can be achieved on a large set of test cases is important to give the
researchers further motivations to study (or not to study) the corner and group relaxations.

In our experiments, the corner and group relaxations were solved with the commercial
MILP solver ILOG-Cplex 9.1 [14], using its default parameter setting. For each instance, the
relaxations were defined with respect to the original formulation, with the ILOG-Cplex pre-
solver turned off. All computing times are expressed in CPU seconds of a PC AMD Athlon
4200+ with 4 GB ram.

Our test-bed is taken from Fischetti and Saturni [6] and is composed of two sets of
instances:

• all MIPLIB 3.0 and 2003 instances [17], except those with unknown optimal solution or
having some variables with negative lower bound; also excluded from our analysis are
some very large MIPLIB instances with an LP file larger than than 1.7 MB;

• the hard MILP instances available at the Alper Atamtürk’s home page [1], associ-
ated with multiple-knapsack problems involving both binary and general-integer (either
bounded or unbounded) variables (see [2]).

For each instance in our test-bed, we report in the tables the number of general-integer
(column I ), binary (B) and continuous (C ) variables; the percentage integrality gap (LP
%gap) computed as

100 ∗ |(optimal integer value− LP bound)/optimal integer value|;

and the percentage of gap closed (%gc) defined as

100 ∗ (lower bound− LP bound)/(optimal integer value− LP bound),

where the lower bounds are computed by using six alternative bounding procedures. More
specifically, column GMI refers to the lower bound obtained by adding to the original formu-
lation all the Gomory mixed-integer cuts [18] that can be derived from the fractional tableau
rows (i.e., from the rows of the first LP optimal tableau with fractional right-hand-side value).
Column 1:50-c is computed in a similar way, by adding for each fractional tableau row all
the Cornuejols-Li-Vandenbussche [5] k-cuts for k = 1, . . . , 50. Column k = 60 exploits (im-
plicitly), for each fractional tableau row, all the so-called interpolated subadditive cuts with
group-order parameter k = 60, as recently proposed by Fischetti and Saturni [6]. All entries
in columns 1:50-c and k = 60 are taken from [6]. Columns Corner and Group refer to the
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optimal solution of the corner and group relaxation, respectively. For the cases where our
solution approach did not reach convergence within the imposed time limit of 10 hours, we
report the best lower bound available at the end of the computation.

Finally, column GMI ′ is intended to address the following important issue. In our ex-
periments, we compare the bound obtained by solving the corner/group relaxation with the
bound obtained by adding to the LP relaxation one round of GMI cuts. This comparison is
however biased in favor of the GMI cuts, since they are used in conjunction with the other
inequalities of the LP relaxation. Indeed, as shown in the tables below, for some instances
one round of GMI cuts produces a much larger improvement than solving the corner/group
relaxation. As a matter of fact, the GMI (as well as the 1:50-c and k = 60) bounds could only
be dominated by a bound obtained by optimizing over the intersection of the corner/group
polyhedron (defined as the convex hull of the relaxation feasible points) with the LP relax-
ation polyhedron, a task that would require a “dual” (cutting-plane or Lagrangian) solution
approach to the corner/group relaxation, whereas our approach is heavily based on enumera-
tion. As suggest by one of the referees, a more unbiased comparison between the strengths of
the corner/group relaxations and that of one round of GMI cuts can be obtained by solving
an LP relaxation of the original MILP model defined by the following constraints (i) all the
original constraints that define the Gomory’s group relaxation, and (ii) one round of GMI cuts
derived from the optimal LP tableau (that are easily seen to be also valid for the corner/group
relaxation as well). By construction, the optimal value of this relaxation (reported in column
GMI ′) cannot exceed the value reported in column GMI, as the latter uses the same GMI
cuts but does not remove any constraint from the LP. Hence, comparing columns GMI and
GMI ′ shows the bound deterioration when removing the nonnegativity constraints on the
variables that are basic in a given optimal LP basis, whereas comparing GMI ′ and Group
gives an idea of the marginal benefit of exploiting valid inequalities of the group relaxation
other than the GMI cuts read from the first LP tableau.

Table 1 includes all those instances for which the optimal value of both the corner re-
laxation and of the group relaxation have been computed within a time limit of 10 hours.
For these instances we report the computing times required to obtain the corner and group
relaxation as well. The first part of the table refers to pure 0-1 instances, while the second
one addresses the problems with general-integer and/or continuous variables. As expected,
the corner and group bounds differ in a significant way for highly-degenerate problems such
as mod010 or fixnet6.

Table 2 addresses all the instances for which the optimal value of either the corner relax-
ation or of the group relaxation (or both) cannot be computed in a provable way within the
10-hour time limit. In this table, the entries refer to the best lower bound achieved at the
time limit, thus in principle they give just a lower bound on the percentage gap closed by the
relaxations. However, this lower bound turns out to be a quite good estimate of the optimal
value of the relaxation, as confirmed by Table 3 where we report the percentage gap closed
after 1, 3, 5 and 10 hours by both the corner and the group relaxation (for this latter relax-
ation, 24 hours of computation were even allowed). The table shows that, for most instances,
the percentage of gap closed is not improved significantly after the first hour of computing
time, so the 10-hour bounds reported in Table 2 are likely to be very tight.

Finally, Tables 4 and 5 address the Atamtürk (bounded and unbounded, respectively)
multiple-knapsack problems. For those instances we report the same information as in Tables
1-2, the only difference being that the time limit for solving the corner/group relaxation was
set to 1 hour.
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According to our computational experiments, the pure 0-1 ILP models typically have a
corner/group bound that is not significantly better (and sometimes quite worse) than the
GMI one. This is not surprising, since for these problems removing the nonbinding bounds
on the binary variables is likely to produce a weak relaxation, and confirms experimentally
the theoretical observations in Balas [3]. The behavior is confirmed by the comparison of
columns GMI and GMI ′, showing that the GMI bound is considerably stronger than the
GMI ′ one, thus stressing the importance of the nonbinding constraints after the addition of
GMI cuts.

On the other hand, for many problems the corner and group relaxations do improve the
GMI bound considerably as a result of their ability of taking into account all the fractional
rows of the optimal LP tableau simultaneously. A comparison between the corner and group
bounds shows that the latter can be significantly weaker, the average gap closed (over all the
instances of Tables 1 and 2) being 34.48% for the corner, and 23.61% for the group relaxation.

Finally, our experiments stress the role of the nonbinding constraints in producing tight
LP bounds: though these constraints are, by definition, completely useless to improve the
initial LP relaxation bound, they become quite relevant even after just one round of GMI
cuts, due to their capability of cutting the optimal LP solution resulting from the addition
of the new cuts. As a matter of fact, the average gap closed (over all the instances of Tables
1 and 2) goes from 9.67% for GMI ′ (i.e., for GMI cuts without nonbinding constraints) to
25.32% for GMI (same GMI cuts with nonbinding constrains still in the LP model).
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Table 1: MIPLIB 3.0 and 2003 instances for which both the corner and the group relaxations
can be solved in a provable way within 10 hours of computing time.

GMI 1:50-c k = 60 GMI ′ Corner Group
Name I B C LP %gap %gc %gc %gc %gc %gc Time %gc Time
air03 0 10757 0 0.38 100.00 100.00 100.00 100.00 100.00 0.66 100.00 0.52
air04 0 8904 0 1.07 7.22 9.23 8.44 0.47 4.58 21.52 1.76 42.13
air05 0 7195 0 1.88 4.54 5.24 4.92 0.84 4.51 45.73 2.29 27.67

cap6000 0 6000 0 0.01 41.65 41.65 40.44 12.18 34.51 23.75 34.51 26.08
disctom 0 10000 0 0.00 - - - - - 502.01 - 1016.89
enigma 0 100 0 0.00 - - - - - 0.21 - 0.04
l152lav 0 1989 0 1.39 9.31 13.40 14.48 2.39 14.68 0.14 4.02 0.35

mod010 0 2655 0 0.24 100.00 21.47 24.61 6.54 100.00 0.70 37.17 1.43
p0282 0 282 0 31.56 3.70 3.70 3.63 1.05 9.28 9.21 9.27 7.89
p0548 0 548 0 96.37 60.59 40.04 37.94 0.00 0.02 0.05 0.02 0.05

seymour 0 1372 0 4.53 8.33 6.75 6.75 2.69 11.24 478.77 6.02 335.50
stein27 0 27 0 27.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
stein45 0 45 0 26.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

aflow30a 0 421 421 15.10 10.87 11.15 11.08 1.44 37.08 3.94 13.06 7.03
aflow40b 0 1364 1364 13.90 9.79 5.48 5.45 1.21 26.08 2090.51 8.21 108.30

bell3a 32 39 62 1.80 52.92 60.43 60.32 20.40 83.79 3.94 66.84 0.21
bell5 28 30 46 3.99 84.90 14.53 14.73 1.92 5.05 1.13 5.05 1.42

blend2 33 231 89 9.00 16.48 0.00 0.00 1.11 37.93 0.48 10.46 5.04
danoint 0 56 465 4.61 0.24 1.74 0.96 0.03 1.74 53.98 1.74 1316.85

egout 0 55 86 73.67 59.87 57.47 40.58 7.56 100.00 0.29 70.67 0.04
fixnet6 0 378 500 69.85 11.49 10.65 10.52 6.81 80.63 1028.28 13.77 1.02
flugpl 11 0 7 2.86 11.74 11.74 11.69 11.39 97.38 0.16 97.38 0.16

gesa2 o 336 384 504 1.18 31.03 30.29 30.19 23.43 97.64 1346.02 44.36 46.50
gesa3 168 216 768 0.56 53.26 47.56 47.50 39.47 70.19 0.98 59.85 3.38

gesa3 o 336 336 480 0.56 54.30 60.53 60.35 40.36 70.19 1.02 58.61 1.68
noswot 25 75 28 4.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

qiu 0 48 792 601.15 2.36 0.93 0.90 0.00 0.00 0.31 0.00 0.13
qnet1 129 1288 124 10.95 7.44 9.87 9.85 0.54 64.31 465.34 8.91 796.32

rentacar 0 55 9502 5.11 34.62 15.53 4.58 0.00 0.00 0.44 0.00 0.44
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Table 2: MIPLIB 3.0 and 2003 instances for which either the corner or the group relaxation
(or both) cannot be solved in a provable way within 10 hours of computing time. An asterisk
∗ indicates that the relaxation has been solved in a provable way, while z indicates that the
exact bound cannot be computed because of numerical problems.

GMI 1:50-c k = 60 GMI ′ Corner Group
Name I B C LP %gap %gc %gc %gc %gc %gc %gc
harp2 0 2993 0 0.61 28.62 29.43 28.09 11.11 15.69 13.93

lseu 0 89 0 25.47 57.82 56.88 58.04 z 4.58 4.58
mitre 0 10724 0 0.36 95.17 82.20 82.20 6.25 77.32 77.32

mod008 0 319 0 5.23 20.10 20.92 20.83 2.69 41.96 56.44
p0033 0 33 0 18.40 56.82 56.85 56.59 31.51 31.86 31.51
p0201 0 201 0 9.72 20.27 17.96 17.56 0.00 0.00 0.00 ∗

p2756 0 2756 0 13.93 3.20 0.61 0.29 z 0.00 0.00
10teams 0 1800 225 0.76 57.14 100.00 100.00 14.29 0.00 0.00

fiber 0 1254 44 61.55 57.68 54.28 51.98 31.76 80.22 46.02
gen 6 144 720 0.16 64.97 59.77 59.75 0.10 38.26 27.81

gesa2 168 240 816 1.18 30.83 30.17 30.02 21.85 97.64 ∗ 31.34
gt2 164 24 0 36.41 25.32 73.09 58.74 3.40 46.79 ∗ 27.99

manna81 3303 18 0 1.01 25.19 100.00 100.00 25.19 57.14 57.14
markshare1 0 50 12 100.00 0.00 0.00 0.00 0.00 0.00 0.00
markshare2 0 60 14 100.00 0.00 0.00 0.00 0.00 0.00 0.00

mas74 0 150 1 11.17 6.67 7.27 7.82 5.90 33.14 33.14
mas76 0 150 1 2.78 6.42 7.02 7.55 2.38 33.53 33.52

mkc 0 5323 2 8.51 7.96 6.62 6.11 0.00 0.00 0.00
modglob 0 98 324 1.49 17.28 17.28 16.75 9.48 62.88 31.47 ∗

net12 0 1603 12512 91.94 27.89 7.07 7.04 3.47 6.37 2.67
opt1217 0 768 1 25.13 19.61 19.74 19.68 14.24 0.00 0.00

pk1 0 55 31 100.00 0.00 0.00 0.00 0.00 0.00 0.00 ∗

pp08a 0 64 176 62.61 53.48 52.22 52.08 21.68 24.30 23.49
pp08aCUTS 0 64 176 25.43 32.83 31.32 31.17 14.39 40.32 33.13 ∗

qnet1 o 129 1288 124 24.54 37.77 42.02 41.76 19.39 64.80 ∗ 23.26
rgn 0 100 80 40.63 5.02 10.37 10.08 z 0.00 ∗ 0.00

set1ch 0 240 472 41.31 38.91 39.16 38.92 23.06 71.60 50.90
timtab1 107 64 226 96.25 24.08 23.51 23.51 17.56 28.17 26.56
tr12-30 0 360 720 89.12 45.52 60.27 59.81 42.09 69.24 68.54

vpm1 0 168 210 22.92 17.09 15.86 15.86 17.09 5.45 5.45
vpm2 0 168 210 28.08 8.25 10.36 10.36 2.59 17.35 2.61
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Table 3: Percentage gap closed by the corner and group relaxations with different time limits
for the instances of Table 2. An asterisk ∗ indicates that the relaxation has been solved in a
provable way, while † indicates that the exact bound cannot be computed because of memory
fault.

Corner Relaxation Group Relaxation
Name 1 hour 3 hours 5 hours 10 hours 1 hour 3 hours 5 hours 10 hours 1 day
harp2 14.09 15.26 15.69 † 13.26 13.47 13.90 13.93 13.93

lseu 4.58 4.58 4.58 4.58 4.58 4.58 4.58 4.58 †
mitre 77.32 77.32 77.32 † 77.32 77.32 77.32 †

mod008 29.85 35.14 37.69 41.96 31.46 39.89 44.34 56.44 ∗

p0033 31.86 31.86 31.86 31.86 31.51 31.51 31.51 31.51 †
p0201 0.00 0.00 0.00 0.00 0.00 ∗

p2756 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
10teams 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

fiber 80.22 80.22 80.22 80.22 46.02 46.02 46.02 46.02 †
gen 38.21 38.21 38.21 38.26 27.81 27.81 27.81 27.81 27.81

gesa2 97.64 ∗ 30.03 30.49 30.88 31.34 31.77
gt2 46.79 ∗ 27.99 27.99 27.99 27.99 27.99

manna81 56.02 56.39 56.77 57.14 56.02 56.39 56.77 57.14 57.52
markshare1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
markshare2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mas74 26.73 29.69 31.07 33.14 26.71 29.70 31.07 33.14 36.12
mas76 26.33 29.46 31.07 33.53 26.31 29.46 31.07 33.52 36.77

mkc 0.00 0.00 0.00 0.00 0.00 0.00 0.00 †
modglob 55.62 59.23 60.89 62.88 31.47 ∗

net12 6.23 6.34 6.37 6.37 2.67 2.67 2.67 2.67 †
opt1217 0.00 0.00 0.00 † 0.00 0.00 0.00 †

pk1 0.00 0.00 0.00 0.00 0.00 ∗

pp08a 24.30 24.30 24.30 24.30 23.49 23.49 23.49 23.49 †
pp08aCUTS 36.15 38.14 39.05 40.32 33.13 ∗

qnet1 o 64.80 ∗ 23.21 23.26 23.26 23.26 23.26
rgn 0.00 ∗ 0.00 0.00 0.00 0.00 0.00

set1ch 69.38 70.45 70.83 71.60 49.41 50.05 50.38 50.90 †
timtab1 28.17 28.17 28.17 28.17 26.56 26.56 26.56 26.56 26.56
tr12-30 67.97 68.57 68.86 69.24 67.02 67.78 68.10 68.54 †

vpm1 5.45 5.45 5.45 5.45 5.45 5.45 5.45 †
vpm2 17.35 17.35 17.35 17.35 2.61 2.61 2.61 2.61 †
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Table 4: Atamtürk’s bounded multiple-knapsack problems.

GMI 1:50-c k = 60 GMI ′ Corner Group
Name I B C LP %gap %gc %gc %gc %gc %gc %gc

mik.250-5-100.1 150 100 5 17.90 57.61 69.73 64.90 55.60 66.67 66.67
mik.250-5-100.2 150 100 5 19.31 61.45 69.23 66.55 59.63 67.16 67.16
mik.250-5-100.3 150 100 5 15.63 60.97 73.27 68.77 59.94 76.09 76.09
mik.250-5-100.4 150 100 5 16.02 61.16 68.39 64.12 60.34 67.25 67.25
mik.250-5-100.5 150 100 5 16.88 65.26 75.21 72.42 64.32 80.25 80.25
mik.250-10-50.1 200 50 10 21.15 48.71 77.75 60.01 48.11 80.15 80.13
mik.250-10-50.2 200 50 10 20.07 48.38 74.53 64.04 47.90 82.06 82.04
mik.250-10-50.3 200 50 10 22.13 52.63 74.66 67.42 51.91 83.94 83.93
mik.250-10-50.4 200 50 10 19.79 48.88 75.63 65.56 48.16 78.85 78.85
mik.250-10-50.5 200 50 10 20.15 55.77 79.14 73.18 53.75 94.91 94.89
mik.250-10-75.1 175 75 10 21.02 59.96 72.66 65.99 58.76 77.38 77.38
mik.250-10-75.2 175 75 10 21.04 55.25 73.59 67.52 53.52 76.71 76.71
mik.250-10-75.3 175 75 10 17.21 58.28 69.88 66.64 55.59 76.20 76.19
mik.250-10-75.4 175 75 10 19.05 51.03 72.33 63.23 50.74 72.22 72.22
mik.250-10-75.5 175 75 10 20.05 56.45 74.26 67.72 55.42 75.52 75.53

mik.250-10-100.1 150 100 10 13.92 71.20 74.50 73.50 69.08 82.79 82.79
mik.250-10-100.2 150 100 10 16.03 71.23 77.86 76.10 69.86 78.72 78.72
mik.250-10-100.3 150 100 10 16.30 58.80 73.70 68.77 57.80 73.38 73.38
mik.250-10-100.4 150 100 10 14.48 66.82 71.82 68.80 65.89 73.66 73.66
mik.250-10-100.5 150 100 10 15.82 69.03 75.60 72.91 68.04 82.37 82.36
mik.250-20-50.1 200 50 20 20.85 49.29 72.18 60.42 48.69 78.53 78.54
mik.250-20-50.2 200 50 20 20.04 48.44 74.33 63.95 47.97 81.42 81.42
mik.250-20-50.3 200 50 20 22.14 52.62 74.78 67.45 51.90 84.05 84.04
mik.250-20-50.4 200 50 20 19.25 50.02 74.93 66.25 49.28 88.04 88.04
mik.250-20-50.5 200 50 20 19.38 57.61 77.60 72.51 55.53 95.83 95.79
mik.250-20-75.1 175 75 20 18.99 65.25 77.13 71.80 63.94 82.94 82.93
mik.250-20-75.2 175 75 20 18.16 62.32 75.60 71.74 60.53 83.80 83.79
mik.250-20-75.3 175 75 20 16.13 61.59 73.06 70.39 58.75 78.82 78.82
mik.250-20-75.4 175 75 20 17.88 53.83 70.74 64.27 53.53 74.35 74.35
mik.250-20-75.5 175 75 20 17.46 63.44 75.31 72.48 62.27 86.20 86.20

mik.250-20-100.1 150 100 20 13.65 71.65 74.53 73.54 70.00 82.15 82.14
mik.250-20-100.2 150 100 20 15.53 72.99 78.25 76.95 71.75 80.42 80.41
mik.250-20-100.3 150 100 20 13.34 69.84 74.29 73.29 68.83 77.42 77.41
mik.250-20-100.4 150 100 20 13.77 69.79 73.33 71.20 68.86 78.04 78.05
mik.250-20-100.5 150 100 20 16.09 68.03 75.95 73.42 67.06 81.77 81.77

Average 17.90 59.87 74.16 68.79 58.66 79.43 79.43
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Table 5: Atamtürk’s unbounded multiple-knapsack problems.

GMI 1:50-c k = 60 GMI ′ Corner Group
Name I B C LP %gap %gc %gc %gc %gc %gc %gc

mik.250-1-50.1 200 50 1 21.16 48.69 84.62 59.98 48.09 88.79 88.77
mik.250-1-50.2 200 50 1 20.12 48.29 75.17 64.19 47.82 82.54 82.53
mik.250-1-50.3 200 50 1 22.43 52.07 75.98 67.79 51.35 84.43 84.41
mik.250-1-50.4 200 50 1 20.83 46.85 77.21 63.11 46.16 81.35 81.33
mik.250-1-50.5 200 50 1 20.73 54.46 79.63 72.53 52.49 90.66 90.67
mik.250-1-75.1 175 75 1 24.20 53.43 77.71 64.85 52.37 76.55 76.55
mik.250-1-75.2 175 75 1 22.21 52.84 79.50 68.64 51.19 74.10 74.09
mik.250-1-75.3 175 75 1 15.55 63.59 74.92 72.79 60.65 81.37 81.37
mik.250-1-75.4 175 75 1 19.74 49.53 73.14 62.28 49.25 71.39 71.38
mik.250-1-75.5 175 75 1 20.80 54.76 75.41 68.69 53.75 76.44 76.45

mik.250-1-100.1 150 100 1 19.65 53.52 71.86 65.88 51.41 70.79 70.79
mik.250-1-100.2 150 100 1 14.24 78.07 78.46 78.38 77.32 87.25 87.25
mik.250-1-100.3 150 100 1 17.01 56.70 74.63 68.61 55.74 73.81 73.80
mik.250-1-100.4 150 100 1 12.94 73.31 73.73 73.55 72.74 81.18 81.18
mik.250-1-100.5 150 100 1 20.83 54.68 74.09 67.71 53.90 72.54 72.54
mik.500-1-50.1 450 50 1 20.22 50.55 73.09 61.82 49.93 88.51 88.52
mik.500-1-50.2 450 50 1 20.36 47.82 78.56 63.94 47.35 88.25 88.28
mik.500-1-50.3 450 50 1 22.69 51.57 77.35 67.64 50.87 87.56 87.57
mik.500-1-50.4 450 50 1 19.11 50.33 74.25 66.32 49.59 92.19 92.19
mik.500-1-50.5 450 50 1 21.35 53.14 80.12 70.77 51.22 90.98 91.00
mik.500-1-75.1 425 75 1 23.89 54.00 73.68 64.48 52.92 73.61 73.61
mik.500-1-75.2 425 75 1 22.15 52.96 78.72 68.57 51.31 72.76 72.75
mik.500-1-75.3 425 75 1 15.76 62.86 74.77 72.42 59.96 81.19 81.19
mik.500-1-75.4 425 75 1 19.11 50.89 72.40 63.33 50.60 72.03 72.02
mik.500-1-75.5 425 75 1 20.71 54.95 75.02 68.58 53.94 76.78 76.77

mik.500-1-100.1 400 100 1 17.39 59.35 73.23 69.02 57.01 76.15 76.16
mik.500-1-100.2 400 100 1 17.11 68.38 79.15 76.79 66.05 85.62 85.61
mik.500-1-100.3 400 100 1 14.95 63.38 75.47 72.59 62.30 79.83 79.83
mik.500-1-100.4 400 100 1 13.55 71.38 74.40 73.66 69.83 81.08 81.07
mik.500-1-100.5 400 100 1 20.71 54.94 73.42 67.53 54.15 71.38 71.37

Average 19.38 59.87 75.99 68.21 58.66 80.37 80.37
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