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Abstract

The Crew Rostering Problem (CRP) aims at determining an optimal sequencing
of a given set of duties into rosters satisfying operational constraints deriving from
union contract and company regulations. Previous work on CRP addresses mainly
urban mass-transit systems, in which the minimum number of crews to perform the
duties can easily be determined, and the objective is to evenly distribute the workload
among the crews. In typical railway applications, however, the roster construction
has to take into account more involved sequencing rules, and the main objective is
the minimization of the number of crews needed to perform the duties. In this paper
we propose a basic model for CRP, and describe a Lagrangian lower bound based on
the solution of an assignment problem on a suitably-defined graph. The information
obtained through the lower bound computation is used to drive an effective algorithm
for finding a tight approximate solution to the problem. Computational results for
real-world instances from railway applications, involving up to 1,000 duties, are pre-
sented, showing that the proposed approach yields, within short computing time,
lower and upper bound values that are typically very close. The code based on the
approach we propose won the FARO competition organized by the Italian railway
company, Ferrovie dello Stato SpA, in 1995.

Key Words: crew rostering, Lagrangian relaxation, assignment problem, heuristic
algorithm.

A typical problem arising in the management of large transit systems is the following:
given a set of trips to be covered every day in a given period and a set of crews, build a
daily assignment of each trip to a crew so as to guarantee that all the trips are covered
in the period and the corresponding overall cost is minimized. A widely-used approach
to solve this problem consists of decomposing it into two phases. In the crew scheduling

phase, the short-term schedule of the crews is considered: a convenient set of duties is



constructed, each representing a set of trips to be covered by a single crew within a given
time period (typically, 24-48 hours). Generally this problem is solved by generating a very
large number of potential duties, each with a given cost, and by solving a Set Covering
Problem (SCP) in order to select a minimum-cost set of duties covering all the trips. In the
crew rostering phase, a set of working rosters is constructed which determine the sequence
of duties that each single crew has to perform over the given time period, so as to cover
every day all the duties selected in the first phase.

In this paper we focus on the second phase, and address the associated Crew Ros-
tering Problem (CRP). Most of the previous works on CRP refer to urban mass-transit
systems, where the minimum number of crews to perform the duties can easily be deter-
mined, and the objective is to evenly distribute the workload among the crews; see Jachnik
(1981), Bodin et al. (1983), Carraresi and Gallo (1984), Hagberg (1985), and Bianco et
al. (1992). Set partitioning approaches for airline crew rostering are described in Ryan
(1992), Gamache and Soumis (1993), Gamache et al. (1994), and Jarrah and Diamond
(1995). Finally, related cyclic scheduling problems are addressed in Tien and Kamiyama
(1982), and Balakrishnan and Wong (1990).

In 1994 the Italian Railway Company, Ferrovie dello Stato SpA, jointly with ATRO, the
Italian Operational Research Society, organized two competitions among departments of
the Italian universities, in order to promote the design of effective heuristic codes for the
crew scheduling and rostering phases. The first competition, named FASTER (Ferrovie
Airo Set covering TendER), required the design of algorithms for very-large scale SCP’s,
involving up to 5,000 rows and 1,000,000 columns; see Caprara, Fischetti and Toth (1995).
The second competition, named FARO (Ferrovie Airo Rostering Optimization), called for
algorithms for the CRP arising in the construction of rosters for railway crews, which is
characterized by several operational constraints. The problem objective function was of
a hierarchical type, the most important goal being the minimization of the number of
crews needed to perform the duties; see AIRO, Ferrovie dello Stato SpA (1994). Each
participant to the FARO competition had to design a code to be sent to Ferrovie dello
Stato SpA. Two prizes of approximately US$ 60,000 and US$ 30,000 were to be assigned
to the codes giving the best and the second best solution values, respectively, on three
instances with up to 1,000 duties, within 90 minutes on a PC 486/33 with 8 Mbyte RAM.
We took part in the FARO competition as the unit of the Dipartimento di Elettronica,
Informatica e Sistemistica, Universita di Bologna. Our code won the first prize, and gave

the best solutions for all the instances of the competition; see AIRO, Ferrovie dello Stato



SpA (1995).

In this paper we propose a general model designed for airline/railway rostering appli-
cations, and we develop heuristic algorithms for its solution. The paper is organized as
follows. Section 1 presents a general description of the problem, and gives graph-theoretical
and integer programming formulations. In Section 2 we illustrate a Lagrangian lower bound
based on the solution of an assignment problem on a suitably-defined graph. The infor-
mation obtained through the lower bound computation is used in Section 3 to drive an
effective algorithm for finding an approximate solution to the problem. Section 4 gives a
detailed description of the FARO competition problems. Computational results are pre-
sented in Section 5, showing that the proposed approach yields, within a short computing

time, lower and upper bound values that are typically very close.

1 A general model

In this section we present a model for the class of rostering problems we consider, which
includes some main features of the airline/railway applications. The formulation can easily
be extended to take into account other problem-specific constraints which can arise in
practical situations, see Section 4. Unless explicitly specified, all times are integer and are
expressed in minutes.

The problem we consider is periodic, in the sense that each duty has to be covered
every day. (Situations in which there are slight differences in the workload of some days,
e.g., Sundays, are typically dealt with by heuristically rearranging the solution associated
with a periodic basic problem.)

We are given a set of n duties to be covered by a set of crew rosters. Each duty 7 has
a start time, s;, 0 < s; < 1440 (= 24 hours), and a duration p;. Moreover, each duty %
has an associated working time, w; < p;, which is the time actually spent working during
the duty, and a paid teme, a; > w;, which is the sum of the working time and all the
possible additional paid time intervals of the duty (e.g., short rests and transfers). We
allow a; > p;, as in practice some of the paid time intervals can be fictitious. Each duty
can have additional attributes, which are not all mutually exclusive and are explicitly given
on input. For example, a duty can be an overnight duty if it requires working during the
night, or a long duty if its working time is greater than a given threshold, etc.

A week is conventionally defined as a group of k consecutive days. A roster consists of
a subset of duties, and spans over a cyclic sequence of consecutive weeks. The length of a

roster is defined as the number of its days (an integer multiple of k). Typically, an upper
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Figure 1: An example of a roster

bound g on the length of the roster is imposed. The periodic nature of the problem implies
that the length of a roster gives the number of crews needed to cover its duties every day.
We call complete day a time interval of 24 hours (i.e., 1440 minutes) starting at midnight.
Moreover, a complete day is called idle if no duty or part of a duty is executed during that

day, otherwise the day is called working. We also define
a = k - 1440 = number of minutes in a week. (1)

An example of a roster is illustrated in Figure 1. Here a week spans k = 6 days. The
roster consists of a cyclic duty sequence dy,...,d4,d1, ..., and spans 5 weeks in which each
6-th day is idle. The roster length is then 30 days. Accordingly, 30 crews are needed to
perform each daily occurrence of dy,...,ds. Indeed, a first crew covers: on calendar day
z, say, duty dy, on day = 4+ 1 duty ds, ..., on day = + 29 no duty, on day = + 30 duty d,
again, and so on. On day = + 1, duty d; is instead covered by a second crew, which also
performs on day z + 2 duty d,, and so on. Analogously, duty d; on day = 4 2 is covered
by crew number 3, on day z 4+ 3 by crew number 4, and finally on day = + 29 by crew
number 30. In other words, on each calendar day, the 30 crews perform the assignments
of a different day of the roster.

Clearly, feasible rosters have to include weekly rests for the crews, which may be of
different types. Although the model does not require this, for the sake of concreteness
we consider a common situation arising in railway applications, where each week in a
roster is separated by the next one through a continuous rest, which always spans the
complete k-th day of the week, i.e., every k-th day is idle. There are two types of weekly

rest, conventionally called simple and double weekly rests, each characterized by a different
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minimum length. Double weekly rests are generally longer than simple ones; in each roster
their number must be at least equal to a given fraction 8 > 0 of the total number of weeks
in the roster. The average length of the weekly rests, computed over all the weeks in a
roster, must be at least equal to a given threshold. Moreover for a given attribute j, for
each week and for each cyclic group of m; consecutive days, an upper bound is imposed on
the total number of duties having attribute j. Similar upper bounds are also imposed on
the total working and paid time of the duties. In the example in Figure 1, no more than 2
overnight duties can be included in each week, and no more than 7 overnight duties can be
included in each cyclic group of 30 consecutive days. In addition, the total working time
cannot exceed 36 hours for each cyclic group of 7 consecutive days, and the total paid time
cannot exceed 170 hours for each cyclic group of 30 consecutive days.

Two consecutive duties of a roster, say ¢ and 7, can be sequenced either directly (without
an intermediate weekly rest), or with a simple or double weekly rest between them. For each
type of sequencing and for each set of attributes of duties 2z and 7, a minimum time interval
between the end of duty 2 and the start of duty j is imposed. In the example in Figure
1, the minimum time interval between two duties z and j sequenced directly is 22 hours if
they are both overnight, and 18 hours otherwise. This explains why, for instance, duties
d» and ds are not both scheduled on the second day of the roster, and why an idle day (the
14-th day in the roster) is present between duties ds and dy. For simple and double weekly
rests, instead, the minimum time interval is 48 hours and 2 idle days, respectively. For
instance, the first and the third weekly rests are double, while all the others are simple.
All the constraints concerning the sequencing of two consecutive duties within a roster
(independently of the other duties in the roster) will be called sequencing rules, while all
the remaining constraints imposed on CRP will be called operational constraints. Notice
that operational constraints may require the insertion of additional idle days between two
consecutive duties (see duties d;5 and dy¢ in Figure 1).

Problem CRP then consists of finding a feasible set of rosters, covering all the duties
and minimizing the total number of weeks in the rosters. As already observed, the global
number of crews required every day to cover all duties is equal to k times the total number
of weeks. Thus the minimization of the number of weeks implies the minimization of the
global number of crews required.

In the following we give a formulation of CRP as a graph-theoretical problem. We are
given a complete directed multigraph G = (V, AU L), where V = {1,...,n} is the set of

vertices, A is a set of arcs, and L is a set of loops. Each vertex is associated with a duty.
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Figure 2: A looped cycle corresponding to a feasible roster.

The arcs from vertex i to vertex j represent the consecutive sequencing of duty pair 2,7
within a roster, while each loop incident with a vertex ¢ represents idle days spent between
the end of duty 7 and the start of the subsequent duty in the roster. To be more specific,
the arc set A contains arcs of three different types and is partitioned into three subsets,
Ai, Ay and Aj. Arcs belonging to A; are called direct arcs, while arcs belonging to A,
(resp., As3) are called simple rest arcs (resp., double rest arcs). For each pair of vertices
1,7 € V we have a direct arc (¢,7) € Ay, whose length c}j is the minimum time, in minutes,
between the start of duty z and the start of duty 7 when they are sequenced directly, i.e., in
the same week. In other words, c}j := (s + h-1440) — s;, where h is the minimum number
of complete days leading to a feasible direct sequencing. Similarly, we have a simple rest
arc (i,j) € Ay (resp., a double rest arc (¢,j) € As) whose length cf; (resp., ¢};) is the
minimum time, in minutes, between the start of duty ¢z and the start of duty 7 when a

1

simple (resp., double) weekly rest is imposed between them. Matrices c',c* and ¢* can

easily be computed from the input data, according to the sequencing rules. For all z we
also define ¢}, := ¢ := +o0, and ¢}, := a (as defined in (1)), so as to take care of 1-duty
rosters. Notice that, by definition, for any given pair z,7 € V the values c}j,c?j,cf’j differ
by integer multiples of 1440. The loop set L is partitioned into o + 1 subsets, Lo, ..., L,,
where o is an upper bound on the number of idle days between two duties. For each vertex
1€ Vandfort=0,...,0, we have a loop (z,2) € L; of length d! := t - 1440, representing
a rest of ¢ idle days between 7 and the subsequent duty in the roster.

A looped pathis a (possibly closed) path of G of the form P = {(v1,v1), (v1,v2), (v2,v2),
(va,v3), ..., (v, v1), (vi,vi41)}, where vq,...,v4; are distinct vertices (with vy = vy if the
path is closed), i.e., a simple path amended by a series of loops, one for each vertex of

the path except the last one. A looped cycle is a closed looped path. Each feasible roster



then corresponds to a looped cycle of G (note that the converse does not hold). As an
illustration, Figure 2 shows the looped cycle corresponding to the roster in Figure 1. For
each arc (1,7) € 4; (t =1,2,3) or loop (3,7) € L; (¢t =0,...,0) belonging to the solution,

“t”

we report in the figure the label besides the corresponding arc/loop. Notice that the
idle day after duty dg follows from the sequencing rules, hence loop (ds, ds) € Lo, while the
idle day after duty d;5 follows from the operational constraints, hence loop (di5,d;5) € L.

An equivalent graph-theoretical model, which avoids the use of loops, could be obtained

by using the following standard transformation:

e cach vertex i € V is split into two copies = and 7™}
e each arc (¢,7) € A is replaced by an arc (s%,77);
e each loop (7,7) € L is replaced by an arc (¢7,77).

In this way looped paths of the original graph correspond to simple paths of the transformed
graph.

In order to derive a mathematical formulation for CRP, we introduce the notion of
infeasible looped path, defined as a looped path which cannot be contained in any looped
cycle corresponding to a feasible roster. An infeasible looped path is called minimal if it
does not contain another infeasible looped path.

CRP then calls for the determination of a minimum-length set of disjoint looped cycles
of G containing no infeasible looped path, and such that each vertex is covered by exactly
one cycle. It is worth noting that the feasibility of the overall solution follows from that of
each single roster.

We next give an Integer Linear Programming (ILP) model for CRP, based on the above-
described graph-theoretical formulation. In the model the sequencing rules are implicitly
imposed by means of the length matrices ¢!, c?, c®, whereas the operational constraints are
modeled via inequalities which forbid the occurrence of infeasible looped paths.

For each arc (4,7) € Ay, 4,5 = 1,...,n, t = 1,2,3, we introduce a binary variable z;
equal to 1 if arc (z,5) € A, is in the optimal solution, and 0 otherwise. Similarly, for each
loop (¢,2) € Ly, i =1,...,n,t =0,...,0, we introduce a binary variable y! equal to 1 if
loop (z,2) € L; is in the optimal solution, and 0 otherwise. Finally, we let P be the set of
all minimal infeasible looped paths of G. The model then reads

n n 3 n o

o(CRP) =min Y 3 Y bzl +3 3 dly! (2)

1=1j5=11t=1 1=1 t=0



subject to

t=1(i,5)eAinNP t=0 (i,3)eLiNP
mfje{(),l}, 5,7j=1,...,n; t=1,2,3 (7)
yie{0,1}, 4,5=1,...,n;t=0,...,0. (8)

Constraints (3) and (4) impose that each vertex has exactly one in-going arc and one out-
going arc, respectively, while constraints (5) ensure the solution contains exactly one loop
incident with each vertex.

The presence of infeasible looped paths P in the solution is forbidden by constraints
(6), which stipulate that at least one variable associated with the arcs/loops of P must be
set to 0. These constraints could be reinforced in several ways, so as to produce tighter LP
relaxations. We do not pursue this objective in the present paper, since we are interested
in more combinatorial relaxations.

Note that the length of any looped cycle is an integer multiple of 1440, hence the
objective function value corresponds to an integer number of days, namely the total number
of days required to cover all the duties.

Our model can easily be modified in order to take into account many possible variations
of the problem. Among others, we mention the case in which the number of possible types

of sequencing of subsequent duties is, say, g. This can be handled by introducing g different



arcs between each duty pair in the graph G. Another possible variation arises when the
weeks in a roster can have different lengths, provided a weekly rest is scheduled at the
end of each week, and each roster contains a number of days, say r, which is multiple of
k, and r/k weekly rests. This latter situation does not require any change in the above
formulation. Other examples of additional features that are easily included in the model
are given in Section 4.

We now extend the ILP model above by adding some additional variables and inequal-
ities which are redundant as long as the infeasible-path constraints (6) are imposed, but
turn out to be useful in the relaxation of CRP defined in the next section, where these
constraints are removed. The new variables and inequalities impose that the total number
of weekly rests is at least equal to the total number of weeks composing the rosters, and
that the total number of double weekly rests is at least equal to 3 times the total number

of weekly rests. In our graph-theoretical formulation, these constraints can be stated as:

1) the total number of simple or double rest arcs in the solution has to be at least equal

to the total length of the cycles, expressed in weeks;

11) the total number of double rest arcs in the solution cannot be less than 3 times the

total number of simple or double rest arcs.

These constraints are modeled by introducing two integer variables: w, representing the
minimum number of simple or double rest arcs in the solution, and z, representing the
minimum number of double rest arcs in the solution. The new inequalities associated with

1) and 72) then read:

n n 3 n o
DIDIPIIE D IO
w Z =1 j=11t=1 - 1=1 t=0 (9)
Y () > w (10)
=1 j=1
z > Pw (11)
Z Z mf’J >z (12)
1=1 7=1



w,z > 0 integer. (13)

2 Lower bounds

Simple lower bounds on the length (in minutes) of a CRP solution can easily be obtained
in O(n) time, by considering each of the constraints imposing a limit on the total number
of duties with a given attribute 7, or on the total working and paid time, in a week and
in a cyclic group of m, consecutive days in a roster. For instance, if the total paid time
cannot exceed 170 hours for each cyclic group of 30 consecutive days, a lower bound can be
obtained as (1440 -30) >, a;/(170 - 60). Bounds of this type will be called ¢rivial bounds
in the sequel.

We now describe a more sophisticated relaxation of CRP, derived from the ILP for-
mulation introduced in the previous section. The relaxed problem is defined as follows.
First, we remove the infeasible looped path constraints (6). This allows one to get rid of
the loop variables y!, as in any optimal solution one has y) =l and y; = ... =37 =0
for all 7. Then, we relax constraints (10) and (12) in a Lagrangian way, using nonnegative

Lagrangian multipliers A; and A,, respectively, and obtain the objective function

3 n n
min )\1’w+)\22‘|‘222 Jm”, (14)

t=1:1=1 3=1
where for all 4,5 = 1,...,7n the values ¢}; := c}j, cii=c;— A and ¢ = ¢l — A — Ay,
are the Lagrangian costs for the variables z; i ar: . and z? i respectlvely. Flnally, we replace

constraint (9) with the inequality

n

3 n
)\1w—|—)\22—|—22

J
t=14=1 =1
w > I=

> ; (15)

a

m”

whose validity follows from the easy observation that, for all feasible solutions, the right-
hand-side value in (15) can never exceed that in (9). Let LRP(A1, A2) denote problem (14),
(3), (4), (15), (11), (7), (8) and (13), and let v(LRP(A1,A2)) be its optimal solution value.
We remark that this relaxed problem takes into account all the sequencing rules. The
following proposition shows that v(LRP(A;,A;)) can be computed by solving an associated
Assignment Problem (AP).

10



Proposition 1 For any giwen pair of multipliers A1,Ay > 0, an optimal solution to
LRP(A, ;) can be computed by:

i) solving the AP on the cost matriz defined by v;; := min{<};, ¢, ¢} fori,j=1,...,n,

thus obtaining the solution value v(AP);

11) determining the minimum value w such that
aw > Mw + A [Bw] + v(AP), w > 0 integer; (16)

11t) defining z := [Pw].

Proof. In order to optimize the objective function in LRP(A1, A2), one is first interested

in determining the smallest possible value for

>3

t=1:1=1 j=

n

Jm” (17)
1

subject to (3), (4), (7) and (8). This task amounts to finding a minimum Lagrangian-cost
set of disjoint cycles of G such that each vertex is covered by exactly one cycle. Clearly,
for each vertex pair 2,7 € V one can keep only the arc having the minimum Lagrangian
cost among the three arcs (z,5) € 4; (¢t = 1,2,3), and solve the AP on the resulting cost
matrix (v;;). Once the optimal solution value v(AP) has been computed, the minimum
(and best) possible value for w is given by (16), which is derived from (15) by replacing z
with [Bwl], i.e., by the minimum value allowed by (11). O

Accordingly, solving LRP(A1, A2) essentially amounts to solving an AP problem, which
takes O(n?) time in the worst case.

In order to get the best posible Lagrangian lower bound, one is interested in finding
multipliers A7, A; > 0 which maximize v(LRP(A1, A2)). This can be done by using standard
iterative techniques, such as subgradient optimization.

Even if AP’s can be solved fairly quickly in practice, the subgradient procedure could
be rather time consuming for large-size instances. Furthermore, computational experience
has shown that for the real-world instances we consider, the optimal values for A;, A; are
usually A} = A5 = 1440, or, in a few cases, A] = 1440, A5 = 0. This is related to

the structure of the arc lengths, which are such that, for any vertex pair ¢, j, the values

1

c]’ z]’ l]

3. differ by integer multiples of 1440. Moreover, one typically has c = c?j + 1440,

although case c¢j; = ¢}; is also possible. We then compute our Lagrangian lower bound as

11



LB := max{v(LRP(1440, 1440)), v(LRP(1440,0))}, by solving only two AP’s. The value
LB is expressed in minutes; due to the structure of the arc lengths and to the values
we assign to the multipliers, it always corresponds to an integer number of days, namely
d := LB/1440. In addition, the optimal value of variable w gives a typically very tight
lower bound on the number of weeks in an optimal solution.

We define a global lower bound LB* as the maximum among LB and the trivial bounds

mentioned at the beginning of this section.

3 The heuristic algorithm

In this section we describe a constructive heuristic for CRP, which extensively uses the
information obtained from the solution of the relaxed problem defined in the previous
section. The heuristic constructs one roster at a time, choosing in turn the duties to be
sequenced consecutively in the roster. Once a roster has been completed, all the duties it
contains are removed from the problem. The process is iterated on the remaining duties
until all duties have been sequenced. We next outline the procedure we use to build each
single roster, as it applies to the construction of the first roster.

Let (u,v) be an optimal dual solution to the AP corresponding to the best Lagrangian
lower bound LB, where v, (resp., u;) is the optimal dual variable associated with the i-th
constraint of type (3) (resp., of type (4)), for i = 1,...,n. For each pair 7,5 € V and for
t = 1,2,3, the reduced cost of arc (i,5) € A; is &, := ¢, — u; — v; > 0, representing a
lower bound on the increase of objective function v(AP) if arc (3,7) € A; is imposed in
the solution. According to our experience, ¢}, gives a much more accurate estimate than
the original length cfj of the likelihood of arc (i,j) € A; to be in an optimal solution.
One is therefore interested in possibly constructing a collection of rosters where only zero
reduced-cost arcs are used.

We start building the roster by selecting its initial duty, say 29, which will be performed
at the beginning of a week, i.e., just after a weekly rest. Once the initial duty has been

selected, a sequence of iterations is performed where:
a) the best duty to be sequenced after the last duty in the current roster is chosen;

b) the Lagrangian lower bound LB and the trivial bounds are parametrically updated,

in O(n?) time;

c) the possibility of “closing” the roster is considered, possibly updating the current

12



best roster.

The procedure is iterated until no better roster than the current best one can be con-
structed, stopping anyway if the roster length attains its maximum value (g days). At the
end of the procedure the current best roster is added to the current overall CRP solution,
and a new roster is constructed if some duties are still not covered.

The next subsections give a more detailed description of the steps of the roster con-
struction procedure. As a general rule, the algorithm mainly tries to minimize the number
of days in the solution; to this end, no idle day is left between two consecutive duties,

unless strictly necessary.

3.1 Choice of the initial duty

Duty 2¢ is chosen as the duty z having the best value of a score which takes into account
the number of arcs with zero reduced cost which are incident with vertex :. In particular,
since the initial duty is scheduled at the beginning of a week (generally on the first day),
we give priority to the duties having a small number of zero reduced-cost in-going direct
arcs (i.e., arcs belonging to A,), and a large number of zero reduced-cost in-going simple
and double rest arcs (i.e., arcs belonging to A, and As). Moreover, since the initial duty is
likely to be followed by other duties in the same week, we strongly penalize duties which

have no zero reduced-cost out-going direct arc.

3.2 Choice of the next duty

We choose the duty j to be sequenced after the current duty ¢ (i.e., the last duty in the
current roster) as follows. For each candidate duty h we consider the sequencing of A
after 7 through three possible moves: direct move p}, simple weekly rest move p}, and
double weekly rest move p}, corresponding to the arc (¢,h) belonging to Ay, 4., and Aj,
respectively. For each move p! (I = 1,2,3) we schedule duty h at the earliest time for
which all the constraints are satisfied. Move p. is assigned a score 7} taking into account
the increase #! of the global lower bound value LB* when arc (i,h) € A; is imposed in the
solution. In the computation of 8! it is necessary to consider the number 6! of additional
idle days (with respect to cl,) to be inserted between i and h for the move to be feasible
(see Section 3.3). In addition, score 77 (resp., 7}}) is penalized if the number of double
weekly rests already performed in the roster is smaller (resp., greater) than 8 times the

current number of (possibly incomplete) weeks included in the roster.
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Additional terms are present in the scores, in order to break ties. These terms take
into account both the number of arcs with zero reduced cost entering and leaving node h,
and the attributes of duty h. The aim is sequencing first the duties which are “critical”,
i.e., duties having a small number of in-going and out-going arcs with zero reduced cost,
large working or paid time, or some additional attributes (overnight, etc.). The weight
of each term in the score is dynamically updated so as to consider the tightness of the
associated constraint, evaluated as a function of the ratio between the corresponding trivial
bound and the global lower bound LB*. Finally, the scores try to evenly distribute the
workload among rosters and among weeks inside a roster. Duty h is then assigned a score
7, := min{r!, 77,77}, and the duty j to be sequenced after duty z is chosen as the one
having the minimum score.

The computation of values 8} for all duties & can be performed in O(n?) time by using
AP parametric techniques for the computation of the Lagrangian bound. Thus, since both
the feasibility check and the computation of the additional terms can be carried out in
constant time for each duty h, the overall time complexity of this step is O(n?).

When few duties (say less than 100) remain to be sequenced, the choice of j is more
accurate, using a more time-consuming look-ahead technique. In particular, we add to
each score 7} (I = 1,2,3) the minimum score corresponding to the sequencing of any other
duty g after move ). These additional scores are computed analogously to the previous
ones, but here we estimate the Lagrangian lower bound increase as the reduced cost 529
plus 5;. The above minimum score can be computed in O(n) time for each duty h, hence

the overall time complexity of this step remains O(n?).

3.3 Lower bound recomputation

After the insertion of each duty, we compute the new lower bound value LB*. As to the
Lagrangian lower bound LB, we consider a modified CRP where, for each pair of duties
that have been consecutively sequenced so far, the corresponding arc of G is imposed in
the solution. This is simply done by setting to +oo the length of all the other arcs joining
sequenced duties, and by increasing LB by the additional idle days possibly included in

the current roster. The new AP’s required to compute LB are solved parametrically.

3.4 Closing the roster

Given the current duty z, for each duty 7 that can be feasibly sequenced after z we consider

the possibility of closing the roster right after 7, i.e., of sequencing duty 7 as soon as possible
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after ¢ (with a move ,ué-), and then the initial duty 7, preceded by a simple (or double, if
necessary) weekly rest. This requires checking of the feasibility of the resulting roster. If
the roster is feasible, it is assigned a score taking into account the difference between the
values of lower bound LB* before and after the construction of the roster. The Lagrangian
lower bound LB after the construction of the roster is estimated as follows. Let g =3 if a
double weekly rest between j and i, is needed for the roster to be feasible, g = 2 otherwise.
Furthermore, let € be the total number of additional idle days (with respect to the original
lengths ci-j and c; ) which have to be inserted between ¢ and j and between j and i, to
ensure feasibility. Then, LB = LB+ 05- + gg + 1440 - ¢, where LB is the Lagrangian lower
bound computed after the insertion of duty z, 05- is defined as in Section 3.2, and gg is
the increase of the Lagrangian lower bound value when arc (7,%9) € A, is imposed in the
solution of CRP. The computation of values 05- and gg for all duties j can be performed in
O(n?) time by using AP parametric techniques.

The overall complexity of this step is O(n?).

3.5 Overall heuristic algorithm

Since a roster is not further extended if it is ¢ days long (where ¢ is a fixed value), the
overall complexity of our roster construction procedure is O(n?), from which the overall
complexity O(n?) of our algorithm follows.

When a complete solution to the problem is available, we try to improve it by applying
a refining procedure. For each roster we compute the difference between the global lower
bounds on the original problem, computed with and without imposing the roster in the
solution, respectively. We then remove from the solution all the rosters for which the above
difference is positive, and re-apply the heuristic algorithm to the corresponding duties.
Before this, some parameters of the roster construction procedure are changed, either with
a random perturbation, or deterministically in an adaptive fashion, so as to take into
account the constraints that made the construction of the removed rosters difficult.

We apply the refining procedure to the best solution obtained, until a given time limit

is reached.

4 Application to the Italian railways

In this section we give a detailed description of the real-world CRP proposed by Ferrovie
dello Stato SpA within the FARO competition.
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In the FARO problem, all the durations and paid times of the duties are not greater
than a complete day. Each duty can have the following additional attributes:

o duty with external rest, if it includes a rest out of the depot for the crew;

o long duty, if it does not include an external rest and its working time w; is longer

than 8 hours and 5 minutes;
o overmight duty, if its working period overlaps the interval from midnight to 5:00 am;

o heavy overnight duty, if it is an overnight duty without external rest which requires

more than 1 hour and 30 minutes of work between midnight and 5:00 am.

A week is a group of 6 consecutive days, i.e., k = 6. The length of a roster is typically
30 days (5 weeks) and must not exceed 60 days (10 weeks), i.e., ¢ = 60.

Each idle day between two duties in the same week is called a technical interval. In the
roster in Figure 1, two technical intervals are present (days 14 and 27). If possible, the

occurrence of technical intervals is to be avoided.

4.1 Sequencing rules

The minimum rest between the end of a duty and the start of the subsequent duty within
a week is 18 hours, unless both duties are overnight. In this case, if at most one of them
is heavy overnight, the minimum rest is 22 hours, otherwise the rest must span a complete
day. Moreover, operational constraints impose that after two consecutive overnight duties
in a week whose intermediate rest does not span a complete day, the rest before the start
of any other duty in the same week must be at least 22 hours. The direct sequencing of
long duties is never allowed.

Simple weekly rests must be at least 48 hours long, whereas double weekly rests must
span at least two complete days, i.e., either the fifth and sixth day of a week or the sixth
day of a week and the first day of the subsequent one.

When a simple weekly rest is preceded by an overnight duty, then either the first duty
in the next week starts after 6:30 am, or the rest must span two complete days. Note that
in this latter case the weekly rest does not necessarily become a double weekly rest (see
below). Finally, if the first duty in a week following a double weekly rest starts before 6:00
am, then the rest must span at least three complete days, including the first day of the
week (i.e., either the last two days of the previous week and the first day of the current

week, or the sixth day of the previous week and the first two days of the current week).
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4.2 Operational constraints

Each week can include at most the following number of duties having particular attributes:
e 2 duties with external rest;
o 1 long duty;
e 2 overnight duties.

For each roster the following constraints on the weekly rests are imposed:

e the number of double weekly rests must be at least equal to 40% of the total number

of weekly rests, i.e., 3 = 0.4;
o the average weekly rest time must be at least equal to 58 hours.

Moreover, for each cyclic group of 30 consecutive days within a roster we have the

following constraints:
e no more than 7 duties with external rest can be included;
o the total paid time of the included duties cannot exceed 170 hours.

Finally, for each cyclic group of 7 consecutive days within a roster the total working
time of the included duties cannot exceed 36 hours. Notice that each week must have its
sixth day idle, hence there is always a group of 7 consecutive days including only the duties
in the week, and therefore 36 hours is also an upper bound on the total working time of

the duties in a week.

4.3 Special roster

A solution is allowed to include a single special roster made up of only one week. In
this week the last three complete days must be idle. The only other constraints are the
above-defined rules for sequencing duties within the same week (no operational constraint
is imposed). Each idle day of the special roster not followed by a duty (with the exception
of the last two days) is called available day. Notice that the number of available days can
be equal to 1, 2 or 3. The occurrence of a special roster with many available days is highly
appreciated, since it corresponds to a “soft” roster which can easily be covered by using

Spare Crews.

17



4.4 Problem objective

The problem calls for finding a feasible set of rosters covering all the duties and optimizing

a hierarchical objective function which requires, in decreasing order of importance:

a) the minimization of the total number of weeks making up the rosters of the solution

(possibly including the special roster);
b) the minimization of the number of technical intervals in the solution;

c¢) the maximization of the number of available days (by definition, the number of

available days is zero if the special roster is not used).

4.5 Trivial lower bounds

For the computation of the trivial lower bounds, the following five attributes of the duties
have been considered: paid time, long duty, overnight, external rest, and working time.
According to the operational constraints, the following values represent trivial lower bounds

(expressed in minutes) when the special roster is not included in the solution:
o Ii=0a-5->7",a;/(170 - 60);
e L, = a- number of long duties;
e L; = o - (number of overnight duties)/2;

e L, =a-5-(number of duties with external rest)/7;
e Ly=oa->" w;/(36-60).

When the special roster is imposed in the solution, the trivial lower bounds can be
computed by considering each possible number e of available days in the special roster.
For each value of e (e = 1,2,3) and for each attribute j (j = 1,...,5), we assign to the
special roster the set of duties maximizing the “load” associated with attribute j (sum
of the paid times, ...) for a period of 4 — e working days. The corresponding trivial
lower bound L', is given by 1440 - (4 — e) plus the bound for attribute j computed with
respect to the remaining duties. It follows that a valid trivial lower bound for attribute
jis I~)j := min{Lj, L%, L}, L’3}. The upper bound é; on the number of available days in
the solution is given by the maximum value of e such that [L;-e/a-l = [Zj/a-l, with €;:=0

if no such e exists.
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The trivial lower bounds give no information about the number of technical intervals

in the optimal solution.

4.6 Lagrangian bound

We now describe how the relaxed problem defined in Section 2 can be adapted to take
into account the additional terms in the objective function and the possible presence of
the special roster. In particular, we show how to compute a lower bound on the number
of technical intervals and an upper bound on the number of available days in the special
roster. Since the objective function is of hierarchical type, these latter bounds are valid
only if each bound on the terms of higher importance coincides with the corresponding
optimal solution value.

As to the technical intervals, we proceed as follows. We first define the arc lengths in
@ in the ordinary way. Then, for each arc (,7) € A; such that the direct sequencing of j
after 7 requires a technical interval, we add a sufficiently small positive value € to length
c}j. Notice that here the value of LB does not necessarily correspond to an integer number
of days. Let LB be the Lagrangian lower bound we obtain, and let d := | LB/1440| and
w := [d/6] be the corresponding lower bounds on the number of days and weeks in a
solution, respectively. If d is a multiple of 6, our lower bound ¢ on the number of technical
intervals is set to (LB — (d-1440))/¢, which is the number of arcs associated with technical
intervals in the AP solution. Otherwise, ¢ is set to 0, since the addition of one day in the
AP solution could avoid the use of the technical intervals, without increasing the number
of weeks.

The possibility of introducing the special roster in the solution can also be taken into
account, yielding a different lower bound LB’ and an upper bound on the total number of
available days in an optimal solution. Besides considering the problem defined by (2)-(13),
we define a similar problem CRP’, where the use of the special roster is imposed. To this
end, we introduce a “dummy” duty n + 1, such that s,.; := 0 and p,4; := 3 - 1440. This
duty represents the last three complete days of the special roster, which have to be idle,
the first one being an available day. Since any duty can immediately precede or follow
this block, for i = 1,...,n we set ¢;, , := p; + (1440 — f;) and ¢}, ; := Pny1 + i, Where
fi = (s; + p;) mod 1440 is the end time of duty 7 within a day. Also, no weekly rest can
precede or follow this block, therefore for ¢ = 1,...,n we set ¢f, ., = ¢}, = ci ;=
ci—l—l,i := +o00. Furthermore, since no weekly rest is required in the special roster, in problem

CRP’ the total number of simple or double rest arcs in the cycles has to be at least equal
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to the total length of the cycles, expressed in weeks, minus one. Constraint (9) is redefined
accordingly. Problem LRP’(Aq, ;) is then defined from CRP’ and solved in the same way
as LRP()Aq, A,), yielding the Lagrangian lower bound LB’, and the corresponding lower
bounds d', w’ and t' on the number of days, weeks and technical intervals, respectively, in
an optimal solution where the special roster is imposed. The value LB := min{LB, LB’}
is then a valid lower bound for the overall problem. Lower bounds on the number of days
and weeks in an optimal solution are given by d := min{d,d’} and by @& := min{w,w'},
respectively. Also, a lower bound on the number of technical intervals is

t if w<w
t:=< t ifw>w | (18)
min{¢, '} if w=w'
and an upper bound on the number of available days is
- _Jo ifw<w or (w=w and t <) (19)
€= (6-w —d)+1 otherwise
(recall that one available day is included in the dummy duty n + 1).
Notice that it is easy to show that, with the numerical parameters defined in Sections
4.1, 4.2, and 4.3, LB’ is in fact not less than LB.

4.7 Heuristic algorithm

Our heuristic algorithm follows the outline we gave in Section 3, with the following mod-
ifications related to the presence of technical intervals and available days in the objective

function.

1) In the choice of the duty h to be sequenced after the current duty ¢ in our heuris-
tic procedure, the possible presence of a technical interval between ¢ and A is also

considered in the definition of score T}}.

1) Each time we consider the possibility of closing a roster of one week only, we check
whether the roster can be considered as a special roster, and compute the correspond-
ing number of available days. Among all rosters of one week in a complete solution,

we consider as special roster the one having the largest number of available days.

5 Computational results

The lower and upper bounding procedures proposed in Sections 2 and 3, adapted to the
FARO problem, have been implemented in FORTRAN. The resulting code was tested
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Lower Bound BO NA TO
Name n | weeks t.1. a.d.|weeks t.1. a.d.|weeks t.1. a.d.|weeks t.1. a.d.
FARO164 | 164 | 48 0 1 48 0 0 48 5 0 49 2 0
FARO360 360 | 108 0 3 112 2 1 113 8 4 113 0 0
FAROb525 525 | 164 0 1 166 0 2 168 5 3 168 2 0

Table 1: Results on the test instances of the FARO competition. Time limit of 90 minutes
on a PC 486/33.

both on the real-world instances provided by Ferrovie dello Stato SpA within the FARO

competition, and on “artificial” instances obtained by combining real-world instances.
Seven teams took part in the FARO competition. Table 1 illustrates the results obtained

within the competition by the teams whose code was able to produce valid solutions for

the three proposed test instances, namely:

BO Dipartimento di Elettronica, Informatica e Sistemistica, Universita di Bologna

(A. Caprara, M. Fischetti, P. Toth and D. Vigo);

NA Dipartimento di Informatica e Sistemistica, Universita di Napoli

(G. Bruno, G. Ghiani, G. Improta and M. Vento), see Bruno et al. (1995);

TO Dipartimento di Automatica e Informatica, Politecnico di Torino
(C. Alfieri, P. Baracco, F. Della Croce, F. Rizzante, M. Sbodio and R. Tadei), see
Tadei et al. (1995).

For each instance the table reports the number of weeks (weeks), technical intervals
(t.2.) and available days (a.d.) of the heuristic solutions obtained by the three teams
within a 90 minutes time limit on a PC 486/33 with 8 Mbytes of memory. We also report
the lower bound obtained by our algorithm. The computing times required to obtain the
reported solutions are 18, 76, and 25 minutes, respectively. For instances FARO164 and
FAROb525, we obtained tight lower and upper bound values. For FARO360, instead, the
gap between the lower and upper bound values is larger. The main reason for this behavior
is that the constraint on the paid time for this instance is much more binding than in the
other cases. Typically, the Lagrangian lower bound w on the number of weeks is much
better than the trivial bounds (see Table 3). For instance FARO360, however, both @ and
the trivial bound L; computed by taking into account only the maximum paid time of a
roster, are equal to 108. For this reason, several rosters which are checked for feasibility
in our heuristic turn out to be infeasible because they violate the paid time constraint. If

this constraint is relaxed, we obtain for this instance a solution of value 108.
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Name n | ext. rest | long | overnight | heavy | P w a
FAROO021 | 21 5 3 7 2 575 | 446 | 575
FAROO033 | 33 6 3 14 8 525 | 437 | 525
FAROO069 | 69 13 2 18 2 507 | 411 | 507
FARO134 | 134 24 6 50 23 | 510 | 420 | 514
FARO386 | 386 100 22 171 66 | 560 | 429 | 576
FARO164 | 164 34 13 59 27 | 514 | 409 | 522
FARO360 | 360 92 52 136 49 | 587 | 456 | 610
FAROb525 | 525 149 29 240 89 | 579 | 439 | 595

Table 2: Characteristics of the FARO instances.

Table 2 illustrates the characteristics of the real-world instances from the FARO com-
petition, the first 5 distributed before the competition, and the last 3 actually used in the

competition. For each instance the table reports:

Name instance name;

n number of duties;

ext. rest number of duties with external rest;

long number of long duties;

overnight number of overnight duties;

heavy number of heavy overnight duties;

P average duration of the duties (in minutes);

w average working time of the duties (in minutes);
a average paid time of the duties (in minutes).

Table 2 shows that a significant fraction of the duties have special attributes, for example
more than one third of the duties are overnight.

In order to test the algorithm on larger and different test problems, additional instances
have been obtained by merging all the pairs of distinct FARO instances. Table 3 illustrates
the results obtained by the final version of our heuristic (the one described in this paper),
containing several improvements with respect to the one used in the competition. For each
instance we also report the values of the trivial lower bounds and the computing time to
obtain the given solution. Time limits of 60 and 150 minutes have been imposed for the
instances with n» < 500 and n > 500, respectively. The computing times are expressed in
PC Pentium 90 CPU seconds. Observe that the average computing times for obtaining
the reported solution are about 15 and 49 minutes for the instances with n < 500 and
n > 500, respectively. With a time limit of 300 minutes, the algorithm found for instances
F164F525 and F134F360 solutions with 182 and 148 weeks, respectively.

The table clearly shows the effectiveness of the approach, for what concerns the lower
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bound, the heuristic solution, and the computing time, also when applied to large size
instances. For 26 out of 36 test problems the lower and upper bounds on the number
of weeks coincide, i.e., the heuristic algorithm found solutions with the optimal number
of crews. The average percentage gap between the heuristic solution value and the lower
bound equals 0.8%. As previously mentioned, the Lagrangian lower bound is generally
much better than the trivial bounds. Among these bounds, the one associated with the

paid time gives the best value, which is on average 7.6% worse than the Lagrangian bound.
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