
Mathematical Programming manuscript No.
(will be inserted by the editor)

Matteo Fischetti?

Andrea Lodi??

Andrea Tramontani???

On the Separation of Disjunctive Cuts

the date of receipt and acceptance should be inserted later

Abstract. Disjunctive cuts for Mixed-Integer Linear Programs have been introduced by Egon
Balas in the late 70’s, and successfully exploited in practice since the late 90’s. In this paper we
investigate the main ingredients of a disjunctive cut separation procedure, and analyze their
impact on the quality of the root-node bound for a set of instances taken from MIPLIB library.
We compare alternative normalization conditions, and try to better understand their role. In
particular we point out that the constraints that become redundant (because of the disjunction
used) can produce over-weak cuts, and analyze this property with respect to the normalization
used. Finally, we introduce a new normalization condition and analyze its theoretical properties
and computational behavior. Along the paper, we make use of a number of small numerical
examples to illustrate some basic (and often misinterpreted) disjunctive programming features.

1. Introduction

We consider the Mixed-Integer Linear Program (MIP)

min{cx : Ax ≥ b, xj integer for all j ∈ J} (1)

with bounds on x (if any) included in Ax ≥ b, where A is a given m× n matrix
and J ⊆ {1, . . . , n}. For technical reasons, we assume w.l.o.g. that the system
Ax ≥ b implies (or contains explicitly) the trivial inequality 0x ≥ −1, in the
sense that this latter inequality can be obtained as a nonnegative combination
of the rows of Ax ≥ b1.

Let x∗ denote an optimal solution of the continuous relaxation min{cx : x ∈
P} where

P := {x ∈ <n : Ax ≥ b}. (2)

Address(es) of author(s) should be given

? DEI, University of Padova, via Gradenigo 6A - 35131 Padova, Italy. Supported in
part by the EU project ARRIVAL (contract n. FP6-021235-2) and by MiUR, Italy
(PRIN 2006 project “Models and algorithms for robust network optimization”). e-mail:
matteo.fischetti@unipd.it

?? DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy. Supported in
part by the EU project ARRIVAL (contract n. FP6-021235-2). andrea.lodi@unibo.it

??? DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna, Italy.
andrea.tramontani@unibo.it

1 For problems with at least one bounded variable, the trivial inequality can always be
obtained by adding the bound constraints on a single variable, say xj ≥ LBj and−xj ≥ −UBj ,
and dividing the resulting inequality by UBj − LBj > 0.

2 M. Fischetti, A. Lodi, A. Tramontani

We are given a disjunction of the form

πx ≤ π0 OR πx ≥ π0 + 1 (3)

such that (π, π0) is integer, πj = 0, ∀j 6∈ J and πx∗ − π0 = η∗, with η∗ ∈]0, 1[.
In this paper we are interested is deriving the “strongest” (in some sense

to be discussed later) disjunctive cut γx ≥ γ0 violated by x∗, according to
the classical approach of Balas [2]. (Disjunctive cuts which can be derived by
imposing a single disjunction as (3) on a polyhedron P are also known as split
cuts; see Cook, Kannan and Schrijver [14].) To this end, let us denote by P0

(respectively, P1) the polyhedron obtained from P by imposing the additional
restriction πx ≤ π0 (resp., πx ≥ π0 + 1). By Farkas lemma, the validity of
γx ≥ γ0 for P0 and for P1, and hence for conv(P0 ∪ P1), can always be certified
by means of nonnegative multipliers (u, u0, v, v0) associated with the inequalities
defining P0 and P1 according to the following scheme:

P0

(u) Ax ≥ b
(u0) −πx ≥ −π0

P1

(v) Ax ≥ b
(v0) πx ≥ π0 + 1

A most-violated disjunctive cut can therefore be found by solving the follo-
wing Cut Generating Linear Program (CGLP) that determines the Farkas mul-
tipliers so as to maximize the violation of the resulting cut with respect to the
given point x∗:

(CGLP) min γx∗ − γ0 (4)
γ = uA− u0π (5)
γ = vA + v0π (6)

γ0 = ub− u0π0 (7)
γ0 = vb + v0(π0 + 1). (8)

u, v, u0, v0 ≥ 0 (9)

Note that, according to Farkas lemma, the two equations (7) and (8) defining
γ0 should be relaxed into ≤ inequalities. However it is not difficult to see that,
due to the (possibly implicit) presence of the trivial inequality 0x ≥ −1, one can
always require that equality holds in both cases.

By construction, any feasible CGLP solution with negative objective function
value corresponds to a violated disjunctive cut. However, as stated, the feasible
CGLP set is a cone and needs to be truncated so as to produce a bounded LP in
case a violated cut exists. This crucial step will be addressed in the next session.

Usually, the CGLP is projected on the support of x∗. Given a variable xk

restricted to be nonnegative and such that x∗k = 02, it is well known that one

2 Of course, variables with nonzero lower bound can be shifted, while variables at the upper
bound can be complemented.

On the Separation of Disjunctive Cuts 3

can project xk away, not considering explicitly the CGLP constraints associated
with γk. The cut coefficient γk is derived afterwards by solving the trivial lifting
problem

min{γk : γk = uAk − u0πk = vAk + v0πk, u, v ≥ 0}, (10)

where all the Farkas multipliers are fixed, except those related to the bound
constraint xk ≥ 0 in P0 and P1.

In practice, disjunction (3) typically involves only one integer variable—for 0-
1 ILPs, it reads xj ≤ 0 OR xj ≥ 1, with x∗j fractional. As such, the disjunctive cut
only exploits the integrality requirement on a single variable and can therefore
be improved easily by an a posteriori cut strengthening procedure as the one
proposed by Balas and Jeroslow [5].

Recently, Balas and Perregaard [7] developed an elegant and efficient way
of solving the CGLP by making pivot operations in the “natural” tableau in-
volving the original x variables only, which represents a crucial speed-up in the
implementation of the method.

In this paper we investigate computationally the main ingredients of a di-
sjunctive cut separation procedure, and analyze their impact on the overall per-
formance at the root node of the branching tree. To be more specific, we consider
a testbed of MIPs taken from MIPLIB library [10]. For each instance, we solve
the root-node LP relaxation and generate 10 rounds of disjunctive cuts compu-
ted according to alternative strategies. In each round, a violated disjunctive cut
is generated for each fractional LP components x∗j , by exploiting the disjunction
xj ≤ bx∗jc OR xj ≥ bx∗jc+1. In order to limit possible side effects, no a posteriori
cut strengthening procedure is applied.

The paper is organized as follows. In Section 2 we compare some classical
normalization conditions used to truncate the CGLP cone, and try to better
understand their role. In Section 3 we characterize weak rays/vertices of the
CGLP leading to dominated cuts. In Section 4 we show that using redundant
constraints in the CGLP can lead to very weak cuts, and we analyze such an
issue with respect to the normalization used. In Section 5 we introduce a new
normalization and we analyze its theoretical properties and computational be-
havior.

2. The role of normalization

In order to truncate the CGLP cone one can introduce a suitable cut norma-
lization condition expressed as a linear (in)equality. A possible normalization,
called trivial in the sequel, is as follows:

u0 + v0 = 1. (11)

One of the most widely-used (and effective) truncation condition, called the
Standard Normalization Condition (SNC) in the following, reads instead:

m∑

i=1

ui +
m∑

i=1

vi + u0 + v0 = 1. (12)

4 M. Fischetti, A. Lodi, A. Tramontani

This latter condition was proposed in Balas [1] and investigated by Ceria and
Soares [12], and by Balas and Perregaard [6,7].

The choice of the normalization condition turns out to be crucial for an
effective selection of a “strong” disjunctive cut in that it affects heavily the
ranking of the feasible CGLP solutions. To see this it is enough to observe that,
since the CGLP feasible set is a cone and assuming a violated cut exists, one
can always swap the role of the objective function and of the normalization
condition. In other words, one could equivalently fix the objective function to
a given negative value (say, -1) so as to only allow for violated cuts, and use
the left-hand side of the normalization condition as the objective function to
be minimized. Hence, the actual CGLP “optimal” cut depends heavily on the
normalization condition.

Balas and Perregaard [7] showed that the well-known Gomory Mixed-Integer
(GMI) cut [18] is a basic solution of the CGLP when either the SNC or the
trivial normalization is applied. In fact, we next show that this solution is indeed
optimal when the trivial normalization (11) is used. We start with a useful
lemma.

Lemma 1 Let x∗ ∈ P and let (γ, γ0, u, v, u0, v0) be a feasible solution of the
CGLP (4)-(9). Then valid upper bounds on the cut violation can be computed as
follows:

UB1: γ0 − γx∗ ≤ u0η
∗

UB2: γ0 − γx∗ ≤ v0(1− η∗)
UB3: γ0 − γx∗ ≤ (u0 + v0) (1− η∗) η∗.

Proof. Because of (5) and (7), γx∗ − γ0 = u(Ax∗ − b)− u0(πx∗ − π0) ≥ −u0η
∗.

Analogously, from (6) and (8) we obtain γx∗−γ0 = v(Ax∗−b)+v0(πx∗−π0−1) ≥
−v0(1 − η∗). Adding up the two inequalities above weighed by 1 − η∗ and η∗,
respectively, one gets the claimed UB3 bound. ut

Given a vertex x∗ of P and the associated basis, the next theorem shows
how to compute a solution of the CGLP whose violation is equal to bound UB3
above—for any given disjunction (3). Moreover, as shown in [6,7], for an ap-
propriate choice of the disjunction this CGLP solution yields precisely a GMI
cut associated with the optimal LP tableau. As a consequence of Lemma 1, this
easily-computable cut has a violation that is optimal among the cuts with con-
stant u0 + v0, i.e., when the trivial normalization (11) is imposed. Note however
that this is not necessarily the case when a different normalization (in particular,
the SNC one) is applied.

For any vector v, let operator [v]+ takes the maximum between the argument
and zero (componentwise); by definition, v ≡ [v]+ − [−v]+ with [v]+ ≥ 0 and
[−v]+ ≥ 0.

Theorem 2 Assume w.l.o.g. rank(A) = n. Given a vertex x∗ of P , let system
Ax ≥ b be partitioned into Bx ≥ bB and Nx ≥ bN , where Bx∗ = bB and B
is an n × n nonsingular matrix. Let (uB , vB) and (uN , vN) denote the Farkas

On the Separation of Disjunctive Cuts 5

multipliers associated with the rows of B and N , respectively. For a given di-
sjunction (3) with η∗ = πx∗−π0 ∈ [0, 1], let u∗0 = 1−η∗, v∗0 = η∗, u∗N = v∗N = 0,
u∗B = [πB−1]+ and v∗B = [−πB−1]+, while γ∗ and γ∗0 are defined through equa-
tions (5) and (7), respectively. Then (γ∗, γ∗0 , u∗, v∗, u∗0, v

∗
0) is an optimal CGLP

solution w.r.t. the trivial normalization(11).

Proof. We first prove feasibility. Consistency between (5) and (6) requires u∗A−
u∗0π = v∗A+v∗0π, i.e., u∗B−v∗B = (u∗0+v∗0)πB−1 = πB−1, a condition that follows
directly from the definition of u∗B and v∗B . Analogously, consistency between (7)
and (8) requires (u∗B − v∗B)bB = (u∗0 + v∗0)π0 + v∗0 , i.e., πB−1bB = π0 + v∗0 . This
latter equation is indeed satisfied because B−1bB = x∗ and v∗0 = η∗ = πx∗− π0.
As to optimality, we first observe that u∗0 +v∗0 = 1 holds by definition. Because of
(5) and (7), γx∗−γ0 = u∗(Ax∗−b)−u∗0(πx∗−π0) = u∗B(Bx∗−bB)+u∗N (Nx∗−
bN)− u∗0η

∗ = 0 + 0− (1− η∗)η∗, hence the cut violation attains bound UB3 of
Lemma 1. ut

The theorem above shows that, in case the trivial normalization is adopted,
the CGLP can be solved in a closed form for any vertex x∗. Moreover, with this
normalization, in all optimal CGLP solutions the slack constraints receive a null
Farkas multiplier, i.e., only tight constraints play a role in the cut derivation—a
choice that typically leads to weak cuts.

The first set of experiments we designed was aimed at evaluating the actual
practical impact of different normalization conditions. In particular, we compa-
red the SNC normalization (12) with the alternative trivial normalization (11).

The outcome of our experiments is given in Table 1. As already mentioned, we
applied 10 rounds of cuts. At each round, a cut was generated from each fractio-
nal variable. No a-posteriori cut strengthening was applied. As usual, the CGLP
is solved projected on the x∗ support. Instances denoted as “∗” are neglected in
the average computations. The table reports (i) the number of separated cuts,
(ii) the quality of the lower bound (i.e., percentage gap closed at the root node)
and (iii) the average cardinality of S(u, v) := {i ∈ {1, . . . , m} : ui + vi > 0} (|S|
for short), i.e., how many constraints are actually used, on average, to generate
a cut.

Table 1 shows clearly that normalizations (12) and (11) yield quite different
results. As a matter of fact, the dual support of cuts separated with (12) is much
sparser (i.e., less constraints are used in the cut derivation) and the quality
of final bound is significantly improved. To get more insights on the different
behaviors of (12) and (11), for instance p0201 we provide a full picture of the
main differences between the separated inequalities.

Figures 1–3 report, for each iteration, the dual bound reached after adding
the cuts, the average density of the cuts (i.e., the number of nonzero coefficients),
and the average cardinality of S(u, v). Figure 4 reports, for each k = 1, . . . , 10,
the number of separated cuts having “rank” k. Here, we use a relaxed definition
of rank, namely we compute the rank rnk(γ, γ0) of a cut γx ≥ γ0 as

rnk(γ, γ0) := 1 + max
i∈S(u,v)

rnk(ai, bi),

6 M. Fischetti, A. Lodi, A. Tramontani

Table 1. Trivial vs. SNC normalization.

Trivial normalization (GMI) SNC normalization
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 137 70.74 59.49 71 70.74 43.72
bell5 202 28.18 31.20 178 94.29 11.75

blend2 156 28.73 11.70 192 30.51 8.10
flugpl 93 15.15 7.57 92 18.36 5.85

gt2 191 98.71 14.52 196 93.46 10.28
lseu 152 32.94 14.34 196 41.33 9.17

∗markshare1 68 0.00 1.00 74 0.00 1.39
mod008 104 12.09 10.40 139 17.05 12.41

p0033 103 58.33 5.72 113 67.86 4.81
p0201 574 18.58 56.03 767 93.82 13.43

rout 445 8.52 135.39 434 24.26 68.07
∗stein27 235 0.00 19.74 252 0.00 6.53

vpm1 255 36.95 9.03 263 55.84 5.39
vpm2 424 42.08 71.72 403 74.96 17.27
avg. 236.333 37.583 35.593 253.667 56.873 17.521

6400

6600

6800

7000

7200

7400

7600

7800

1 2 3 4 5 6 7 8 9 10

SNC
Trivial norm.

Fig. 1. SNC vs. GMI: dual bound for in-
stance p0201.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

SNC
Trivial norm.

Fig. 2. SNC vs. GMI: avg. cut density for
instance p0201.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

SNC
Trivial norm.

Fig. 3. SNC vs. GMI: avg. cardinality of
S(u, v) for instance p0201.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

SNC
Trivial norm.

Fig. 4. SNC vs. GMI: cut rank for instance
p0201.

where rnk(ai, bi) is the rank of constraint aix ≥ bi (constraints in the original
formulation are defined to be of zero rank)3.

3 Note that this way of computing the rank provides just an upper bound on the classical
definition of Chvátal rank [13].

On the Separation of Disjunctive Cuts 7

2.1. Why does SNC normalization work so well?

A careful analysis of the computational results in Table 1 and Figures 1–4 re-
veal a very (tricky but) important feature of the SNC scheme that improves
significantly its performance. Indeed, it turns out that the use of the SNC nor-
malization (12) enforces the following very nice properties:

1. The norm of the separated cuts tends to become smaller and smaller as a
result of the small multipliers used for the newly generated cuts (that is, in
turn, a consequence of having limited the multiplier sum to 1). This means
that the separated cuts inserted in the LP are automatically scaled so as to
have “small coefficients”. Therefore, in the subsequent iterations these cuts
would need big Farkas multipliers to become relevant, a situation that is
however penalized by the normalization condition itself. As a consequence,
the normalization penalizes implicitly the rank of the cuts to be generated,
because high-rank cuts will be “expensive” in terms of multiplier sum, hence
low-rank cuts tend to be separated at each step.

2. Since low-rank cuts are preferred and since the original (rank-0) inequalities
are generally sparse, the separated cuts tend to remain sparse; this is also a
consequence of the fact that the SNC normalization tends to reduce the sum
of the components of the Farkas multiplier vector and hence it increases the
sparsity of its support, so a small number of constraints are typically used in
the disjunctive cut derivation.

Trivial normalization (11), instead, takes care only of the Farkas multipliers
u0 and v0 associated with the disjunction. Indeed, as shown in Section 2, only
constraints which are tight at x∗ are used in the cut derivation, thus the rank of
the cuts increases very quickly, basically at each iteration. Moreover, all other
constraint multipliers are not penalized, hence (i) several constraints are used in
the cut derivation, thus cuts increase their density, and (ii) Farkas multipliers
can assume huge values, thus the subsequent cut lifting procedure may produce
very weak coefficients for the variables outside the support of x∗.

In the SNC normalization case the coefficient lifting is not an issue. Indeed,
since all the constraint multipliers in the SNC normalization are penalized and
each multiplier tends to be small, the coefficient lifting of the variables outside the
support of x∗ – to be performed afterwards – is “safe”, i.e., also the coefficients
of these variables remain under control.

2.2. Nothing is perfect!

Although it produced good results in the experiments reported in Table 1, there
are cases where normalization (12) may lead to very weak disjunctive cuts.

Bad Scaling. A bad feature of the SNC normalization is its dependency on the
relative scaling of the constraints, in the sense that the relative size of the Far-
kas multipliers (whose sum is fixed to 1) depends on the relative size of the

8 M. Fischetti, A. Lodi, A. Tramontani

coefficients of the corresponding constraints. Indeed, it is easy to see that the
multiplication by a positive factor φ of the i-th constraint in the system Ax ≥ b
implies that the corresponding ui and vi multipliers are divided by φ, which in
turn is equivalent to use a coefficient 1/φ (instead of 1) in the normalization con-
dition (12). Thus, the scaled constraint is “cheaper” if one interprets the right
hand side of (12) as a resource.

The following experiment clearly demonstrates this unstable behavior: we ran
the CGLP code with the classical SNC normalization condition, as in Table 1,
but we just multiply by 1,000 each disjunctive cut before its addition to the
current LP. At first glance, one could guess that this “innocent change” would
not have any impact on the overall performance, but the actual results reported
in Table 2 show that this is definitely not the case.

Table 2. “Classical” SNC approach vs. “Bad scaled” SNC approach.

“Classical” SNC “Bad scaled” SNC
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 71 70.74 43.72 69 70.74 44.32
bell5 178 94.29 11.75 214 88.83 17.47

blend2 192 30.51 8.10 166 28.91 11.71
flugpl 92 18.36 5.85 90 15.40 7.40

gt2 196 93.46 10.28 184 93.42 17.22
lseu 196 41.33 9.17 137 38.58 10.88

∗markshare1 74 0.00 1.39 206 0.00 14.60
mod008 139 17.05 12.41 104 3.90 10.21

p0033 113 67.86 4.81 94 57.09 6.40
p0201 767 93.82 13.43 610 49.91 45.72

rout 434 24.26 68.07 435 13.03 152.66
∗stein27 252 0.00 6.53 248 0.00 22.39

vpm1 263 55.84 5.39 244 47.59 8.50
vpm2 403 74.96 17.27 420 54.39 22.27
avg. 253.667 56.873 17.521 230.583 46.816 29.563

As explained, multiplying by 1,000 the generated cuts is equivalent to divi-
ding by 1,000 the coefficient of the corresponding Farkas multipliers ui and vi

in the normalization condition, so we actually weaken the penalty on the choice
ui + vi > 0 that leads to low-rank sparse cuts. In other words, the scaling ope-
ration interferes with the nice SNC tendency of producing low-rank cuts, and
the overall performance deteriorates significantly, as shown in detail for problem
p0201 in Figures 5–8. (Incidentally, the above example shows the importance of
“small implementation details” when evaluating the performance of a method–
two apparently equivalent implementations of precisely the same idea lead to
very different outcomes.)

Bad Examples. Even for toy instances, the CGLP can have hard time in finding a
good disjunctive cut. This is illustrated by the following two simple 2-dimensional
cases, where the optimal CGLP solution may correspond to very weak cuts.

On the Separation of Disjunctive Cuts 9

6400

6600

6800

7000

7200

7400

7600

7800

1 2 3 4 5 6 7 8 9 10

SNC
SNC with scaling

Fig. 5. “Classical” SNC vs. “Bad scaled”
SNC: dual bound for instance p0201.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

SNC
SNC with scaling

Fig. 6. “Classical” SNC vs. “Bad scaled”
SNC: avg. cut density for instance p0201.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

SNC
SNC with scaling

Fig. 7. “Classical” SNC vs. “Bad sca-
led” SNC: avg. cardinality of S(u, v) for
instance p0201.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

SNC
SNC with scaling

Fig. 8. “Classical” SNC vs. “Bad scaled”
SNC: cut rank for instance p0201.

Example 1. Consider the simple ILP whose continuous relaxation, depicted in
Figure 9, has one of the constraints, namely (a5), scaled by a parameter k > 0:

min −x1 −2x2

(a1) 4x1 −4x2 ≥ −2
(a2) −2x1 −2x2 ≥ −3
(a3) 8x1 −4x2 ≥ −1
(a4) −x1 ≥ −1
(a5) −kx2 ≥ −k
(a6) x1 ≥ 0
(a7) x2 ≥ 0

The optimal solution of the LP relaxation is x∗ = (1
2 , 1) and three cuts can be

derived from disjunction x1 ≤ 0 OR x1 ≥ 1, namely:

(c1) 2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v2, u0, v0), of
value z1 = − 2

11 , optimal for k ≤ 8;
(c2) −x1+4x2 ≤ 1, corresponding to the basic solution of the CGLP (u3, v2, u0, v0),

of value z2 = − 1
6 , never optimal.

(c3) −x1+2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v5, u0, v0),
of value z3 = − k

4+5k , optimal for k ≥ 8.

10 M. Fischetti, A. Lodi, A. Tramontani

So, depending on the value of k, the optimal CGLP solution corresponds to
weak cuts, either (c1) or (c3), whereas the facet-defining cut (c2) will never be
selected.

(1) (2)

(3)

x*

(4)

(5)

x1

x2 y*

(c1)

(c3)

(c2)

1/2 1

1/2

1

P1P0

Fig. 9. Example 1 depicted.

¤
Example 2. For the simple ILP whose continuous relaxation is depicted in Figure
10:

min −x1 −2x2

(b1) 2x1 −2x2 ≥ −1
(b2) −2x1 −2x2 ≥ −3
(b3) 4x1 +4x2 ≥ 3
(b4) −x1 ≥ −1
(b5) −x2 ≥ −1
(b6) x1 ≥ 0
(b7) x2 ≥ 0

the optimal solution of the continuous relaxation is again x∗ = (1
2 , 1) and three

cuts can be derived from disjunction x1 ≤ 0 OR x1 ≥ 1 (yielding P0 = ∅),
namely:

(c1) 2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v2, u0, v0), of
value z1 = − 1

6 (optimal);
(c2) x1 ≥ 1, corresponding to the basic solution of the CGLP (u1, u3, u0, v0), of

value z2 = − 1
22 (nonoptimal);

(c3) −x1+2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v5, u0, v0),
of value z3 = − 1

10 (nonoptimal).
Since (c2) is not optimal for the associated CGLP, the only facet-defining cut
(c2) will not be selected. ¤

On the Separation of Disjunctive Cuts 11

(1) (2)

(3)

x*

(5)

x1

x2

(c1)

(c3)

(c2)

P1

1/2 1

1/2

1

Fig. 10. Example 2 depicted.

2.3. Comments

The examples above show clearly the following fact: even if the solution of the
CGLP is a vertex, the corresponding disjunctive cut can be very weak. At first
glance, this may be seen as a counter-intuitive result as one would expect that
CGLP vertices correspond to facets of conv(P0 ∪ P1). This is however not the
case, as discussed e.g. in Balas and Perregaard [6], since the CGLP is not defi-
ned in the “natural” reverse polar space (γ, γ0) but in an enlarged space invol-
ving the Farkas variables explicitly. As a matter of fact, in the extended space
(γ, γ0, u, v, u0, v0) there are several rays/vertices whose projection in the (γ, γ0)
space is nonextremal, therefore the corresponding cut can be obtained as the
sum of other valid cuts and hence is dominated. By using software PORTA [15]
we can get a clear picture of the situation in Example 1. In the natural polar
space (γ, γ0), the projected CGLP cone has only 4 extreme rays that correspond
to the facets of conv(P0 ∪ P1). In space (γ, γ0, u, v, u0, v0), instead, the CGLP
cone has 117 extreme rays that correspond to 117 vertices once normalization
(12) is applied. Only 6 of these vertices correspond to violated constraints, and
3 of them correspond to the cuts depicted in Figure 9. So, most CGLP verti-
ces in the (γ, γ0, u, v, u0, v0) space correspond to very weak cuts, and the cut
separation procedure can be in trouble in returning a facet-defining cut even in
this toy example. As mentioned above, this is essentially due to the fact that
the cut is separated in the extended space (γ, γ0, u, v, u0, v0), where a dominated
cut could turn out not to be dominated in terms of the multipliers used for its
generation. For instance, 3 extreme rays of the CGLP cone for Example 1 are

12 M. Fischetti, A. Lodi, A. Tramontani

reported below.

γ1 γ2 γ0 u1 u2 u3 u4 u5 u6 u7 v1 v2 v3 v4 v5 v6 v7 u0 v0

(r1) 1 −4 −1 0 0 1 0 0 0 0 0 2 0 0 0 0 0 7 5
(r2) −1 0 −1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
(r3) 0 −4 −2 1 0 0 0 0 0 0 0 2 0 0 0 0 0 4 4

In the (γ, γ0) space, the third constraint is clearly dominated as it is just the sum
of the previous ones, but there is no way to obtain ray r3 as conic combination
of rays r1 and r2 in the extended space, due to the presence of the Farkas
components. The above drawback is even more evident in Example 2 where
P0 = ∅, hence x1 ≥ 1 itself is a valid cut (c2), but not the best one for the
CGLP.

3. Weak CGLP rays/vertices and dominated cuts

The examples in the previous section show that some rays/vertices of the CGLP
lead to weak cuts and should not be used. In this section we formally characterize
those rays/vertices which correspond to cuts which are trivially dominated by
other cuts associated with solutions of the same CGLP. The first step is the
following definition.

Definition 3 (Strictly dominated cuts) Let γ̃x ≥ γ̃0 be a cut valid for conv(P0∪
P1) but not for P . If there exists another cut γx ≥ γ0 valid for conv(P0 ∪ P1)
such that {x ∈ P : γx ≥ γ0} ⊂ {x ∈ P : γ̃x ≥ γ̃0}, then the cut γ̃x ≥ γ̃0 is said
to be strictly dominated w.r.t. P .

Note that, in the above definition, the domination of cut γ̃x ≥ γ̃0 only
depends on a single other cut (γx ≥ γ0).

Lemma 4 Let γ̃x ≥ γ̃0 be a valid cut for conv(P0 ∪ P1) such that P̃ := {x ∈
P : γ̃x ≥ γ̃0} ⊂ P , and assume P̃ full dimensional. If there exists another cut
γx ≥ γ0 valid for conv(P0 ∪ P1) and such that γ̃ = γ + µA, γ̃0 = γ0 + µb for a
certain µ ∈ <m

+ \ {0}, then γ̃x ≥ γ̃0 is strictly dominated w.r.t. P .

Proof. Define P := {x ∈ P : γx ≥ γ0}. By definition, x ∈ P and γx ≥ γ0 imply
γ̃x ≥ γ̃0, hence P ⊆ P̃ . We need to show that the above inclusion is always
strict. Indeed, let F̃ := {x ∈ P : γ̃x = γ̃0} denote the face of P̃ induced by
γ̃x ≥ γ̃0, and consider any given h ∈ {1, . . . ,m} such that µh > 0. Since P̃ is full
dimensional, there exists x̂ ∈ F̃ such that ahx̂ > bh (otherwise γ̃x ≥ γ̃0 would
be a positive multiple of ahx ≥ bh, impossible since we are assuming P̃ ⊂ P).
Hence γx̂−γ0 = (γ̃x̂− γ̃0)−µ(Ax̂− b) ≤ −µh(ahx̂− bh) < 0, i.e., x̂ ∈ P̃ \P . ut

For any feasible solution (γ, γ0, u, v, u0, v0) of (5)–(9), define S(u) := {i ∈
{1, . . . , m} : ui > 0} and S(v) := {i ∈ {1, . . . , m} : vi > 0}. It is not difficult to
show that in any extreme ray of (5)–(9) yielding a cut nonvalid for P , both u0 and
v0 are strictly positive, while S(u) and S(v) are disjoint (i.e., S(u) ∩ S(v) = ∅).

On the Separation of Disjunctive Cuts 13

This property is also inherited by the vertices of the CGLP with normalization
(12) (see, Balas and Perregaard [7]). We next give a characterization of the
extreme rays/vertices of the CGLP that lead to strictly dominated cuts according
to Definition 3.

Theorem 5 Assume conv(P0∪P1) full dimensional. Let (γ̃, γ̃0, ũ, ṽ, ũ0, ṽ0) be an
extreme ray of the CGLP cone (5)–(9) corresponding to a cut γ̃x ≥ γ̃0 nonvalid
for P . Then γ̃x ≥ γ̃0 is strictly dominated w.r.t. P if and only if there exists a
feasible solution (γ̃, γ̃0, û, v̂, û0, v̂0) of (5)–(9) such that S(û) ∩ S(v̂) 6= ∅.
Proof. We first prove the if condition. Given a feasible solution (γ̃, γ̃0, û, v̂, û0, v̂0)
of (5)–(9) such that S(û)∩S(v̂) 6= ∅, define µ = min{û, v̂} (componentwise) and
note that µi > 0 for any i ∈ S(û)∩S(v̂). Then, define u = û−µ ≥ 0, v = v̂−µ ≥ 0,
γ = γ̃ − µA, γ0 = γ̃0 − µb. Since (γ, γ0, u, v, û0, v̂0) is a feasible solution of (5)–
(9), the cut γx ≥ γ0 is valid for conv(P0 ∪ P1) and dominates γ̃x ≥ γ̃0 w.r.t. P
from Lemma 4. Concerning the only if condition, assume γ̃x ≥ γ̃0 to be strictly
dominated w.r.t. P by γx ≥ γ0, and let (γ, γ0, u, v, u0, v0) be a feasible solution
of (5)–(9) yielding the dominating cut. Then, there exist µ ∈ <m

+ \{0} and µ0 > 0
such that γ̃ = µA + µ0γ, γ̃0 = µb + µ0γ0. Hence (γ̃, γ̃0, û, v̂, û0, v̂0) is a feasible
solution of (5)–(9) yielding the dominated cut, where û = µ + µ0u, v̂ = µ + µ0v,
û0 = µ0u0, v̂0 = µ0v0 and S(û) ∩ S(v̂) 6= ∅. ut
Corollary 6 Let (γ, γ0, u, v, u0, v0) be an optimal solution of the CGLP with
normalization (12), yielding a cut violated by x∗ (i.e., γx∗ − γ0 < 0). Then
S(u) ∩ S(v) = ∅.
Note that the above corollary holds even if the CGLP cone is truncated with a
more general normalization than (12), e.g., the one to be discussed in Section 5.

4. Redundancy hurts

In the attempt of finding a way to get rid of the “weak vertices” in the CGLP, we
looked for more combinatorial properties that allow us to force some Farkas mul-
tipliers to zero, thus avoiding that certain “bad” constraints participate in the
definition of the optimal disjunctive cut. Our starting point was the observation
that a previous disjunctive cut generated for a certain disjunction, is certainly
“bad” and it should not to be used in the next iteration if the same disjunction is
used4, in the sense that we can force its Farkas multiplier to zero. However, this
multiplier is nonzero precisely in the cases where the cut rank keeps increasing
at each iteration.

A more careful analysis of Example 1 reveals a more general property that
allows one to classify as “bad” certain constraints. Indeed, consider the role
of constraint (a1) with respect to the left-branch polytope P0. This constraint
is clearly redundant, i.e., it can be removed without affecting P0 (note that
this is not the case if the original P is considered). However, if constraint (a1)

4 Assuming the original set of inequalities is the same.

14 M. Fischetti, A. Lodi, A. Tramontani

participates with a positive multiplier to the definition of the disjunctive cut
whereas constraint (a3) does not (i.e., if u1 > 0 and u3 = 0), then the cut
itself has to be valid for the point x1 = 0, x2 = 1/2 and cannot be “pushed” any
further inside P0. This is precisely what happens for the weak cuts (c3) and (c1),
that cannot be supporting for P0 precisely because of the bad choice u1 > 0.

The role of redundancy is formally stated as follows. Loosely speaking, a
redundant constraint for a polyhedron is a constraint whose removal does not
enlarge the polyhedron itself. More specifically, given a system of inequalities
Âx ≥ b̂, with Â ∈ <q×n, b̂ ∈ <q, and its associated polyhedron Q = {x ∈
<n : Âx ≥ b̂}, for any i ∈ {1, . . . , q} let ÂI and b̂I denote, respectively, the
submatrix of Â and the subvector of b̂ whose rows are indexed by the index set
I = {1, . . . , q} \ {i}, and define QI = {x ∈ <n : ÂIx ≥ b̂I}. Then the constraint
âix ≥ b̂i corresponding to the row i of the system Âx ≥ b̂ is redundant for
Q if QI = Q. In particular, we say that the constraint âix ≥ b̂i is strictly
redundant for Q if there exists (λI , δ) ∈ <q

+, with δ > 0, such that âi = λIÂI

and b̂i = λI b̂I − δ. Note that, for any strictly redundant constraint âix ≥ b̂i, if
0x ≥ −1 can be obtained as conic combination of constraints ÂIx ≥ b̂I , then
âix ≥ b̂i can be obtained as conic combination of ÂIx ≥ b̂I as well.

Proposition 7 If a constraint that is strictly redundant for P0 (resp. P1) is used
in the cut derivation with a nonzero multiplier, then the resulting disjunctive cut
is nonsupporting in P0 (resp. P1).

Proof. Let (γ̃, γ̃0, ũ, ũ0, ṽ, ṽ0) be a feasible solution of the CGLP, with ũi > 0,
and assume that constraint i is strictly redundant for P0. Then there exists
(λI , λ0, δ) ∈ <m+1

+ , with δ > 0 such that ai = λIAI−λ0π and bi = λIbI−λ0π0−δ.
By using equations (5) and (7), we get

γ̃ = ũI AI + ũi ai − ũ0 π = (ũI + ũiλI) AI − (ũ0 + ũiλ0) π
γ̃0 = ũI bI + ũi bi − ũ0 π0 = (ũI + ũiλI) bI − (ũ0 + ũiλ0) π0 − ũi δ

Thus, for each x ∈ P0 we have γ̃x− γ̃0 = (ũI +ũiλI)(AIx−bI)−(ũ0+ũiλ0)(πx−
π0) + ũiδ ≥ ũiδ > 0, and this shows that cut γ̃x ≥ γ̃0 is nonsupporting in P0. In
the same way it can be shown that if vh > 0 for a constraint h strictly redundant
for P1, then the cut γ̃x ≥ γ̃0 does not support P1. ut

By definition, a redundant constraint for P0 or P1 can be obtained as a
conic combination of other constraints. If the sum of the multipliers in the conic
combination is greater than 1, then using a redundant constraint is cheaper
(with respect to normalization (12)) than using the constraints that generate
it, hence a redundant constraint can in fact be preferred by the CGLP. This is
formally proved by the following theorem dealing with redundancy for P0 (the
case dealing with P1 being perfectly analogous).

Theorem 8 Assume that constraint aix ≥ bi is redundant for P0, hence it can
be obtained as a conic combination of constraints AIx ≥ bI ,−πx ≥ −π0, with
multipliers (λI , λ0) ∈ <m

+ ; i.e., ai = λIAI − λ0π, bi = λIbI − λ0π0. Further,
let (γ, γ0, uI , ui, u0, v, v0) be a feasible solution of the CGLP with normalization
(12), corresponding to a cut γx ≥ γ0 violated by x∗, and assume ui > 0. Then

On the Separation of Disjunctive Cuts 15

(i) there exist θ > 0 and a feasible solution (γ̃, γ̃0, ũI , ũi, ũ0, ṽ, ṽ0) of the CGLP
with normalization (12) such that ũi = 0, γ̃ := γ/θ, γ̃0 = γ0/θ;

(ii) γx∗ − γ0 = θ(γ̃x∗ − γ̃0), and θ > 1 if and only if 1λI + λ0 > 1.

Proof. Since (γ, γ0, uI , ui, u0, v, v0) is feasible for the CGLP with normalization
(12), writing aix ≥ bi in terms of the multipliers (λI , λ0) one gets

γ = (uI + uiλI)AI − (u0 + uiλ0)π = vA + v0π
γ0 = (uI + uiλI)bI − (u0 + uiλ0)π0 = vb + v0(π0 + 1)

while from the normalization condition 1u + 1v + u0 + v0 = 1 one obtains

1(uI + uiλI) + (u0 + uiλ0) + 1v + v0 = θ := 1 + ui(1λI + λ0 − 1).

Since cut γx ≥ γ0 is violated, one must have u0 + v0 > 0, hence θ > 0 holds.
Therefore, one can define the nonnegative quantities ũI := (uI +uiλI)/θ, ũi = 0,
ũ0 := (u0 + uiλ0)/θ, ṽ = v/θ, ṽ0 = v0/θ, γ̃ := γ/θ, γ̃0 = γ0/θ, thus getting a
feasible solution of the CGLP that satisfies normalization (12) and such that
γx∗ − γ0 = θ(γ̃x∗ − γ̃0). Moreover, being ui > 0, one has θ > 1 if and only if
1λ + λ0 > 1. ut

The above theorem shows that redundant constraints do not introduce new
cuts, but just scaled copies of already-existing cuts that may have a better ob-
jective function (violation). Loosely speaking, redundant constraints can “cheat”
normalization (12), in the sense that they can create vertices of the CGLP corre-
sponding to scaled copies of cuts that are strictly dominated but more attractive
(i.e., with a better objective function value) than the dominating ones.

A very natural way to cope with redundancy is to just eliminate the redun-
dant constraints from the CGLP, or equivalently to fix their Farkas multipliers
to zero5. In Example 1, the CGLP without redundant constraints has only 9
extreme rays and 9 vertices (instead of 117), and only one of them corresponds
to a violated constraint – namely, the facet-defining cut (c2).

At a first glance, this example seems to suggest that only strictly redundant
(i.e., nonsupporting) constraints should be avoided in the cut generation. Howe-
ver, redundant constraints should be avoided even in case they are supporting,
as shown by the example reported below.

Example 3. For the simple ILP

min −x1 −2x2 +10x3

(a1) 4x1 −4x2 ≥ −2
(a2) −2x1 −2x2 −x3 ≥ −3
(a3) 3x1 −2x2 −x3 ≥ −1
(a4) x1 ≥ 0
(a5) x2 ≥ 0
(a6) x3 ≥ 0

5 Of course, a more efficient approach would be to check redundancy “on the fly”, by only
considering those constraints that have a nonzero Farkas multiplier in the optimal CGLP
solution; the implementation of this approach is however outside the scope of the present
paper, and is left to future work on the subject.

16 M. Fischetti, A. Lodi, A. Tramontani

only two cuts violated by the optimal solution of the LP relaxation x∗ = (1
2 , 1, 0)

can be derived from disjunction x1 ≤ 0 OR x1 ≥ 1, namely:

(c1) 2x2 ≤ 1, corresponding to the basic solution of the CGLP (u1, v2, v6, u0, v0),
of value z1 = − 2

13 (optimal);
(c2) 2x2+x3 ≤ 1, corresponding to the basic solution of the CGLP (u3, v2, v6, u0, v0),

of value z2 = − 1
7 (nonoptimal).

Conv(P0 ∪P1) has 6 vertices, namely V1 = (0, 0, 0), V2 = (0, 1
2 , 0), V3 = (0, 0, 1),

V4 = (3
2 , 0, 0), V5 = (1, 1

2 , 0), and V6 = (1, 0, 1). In the reverse polar space (γ, γ0),
the projected CGLP cone has only 5 extreme rays that correspond to the facets
of conv(P0 ∪ P1). In space (γ, γ0, u, v, u0, v0), instead, the CGLP cone has 33
extreme rays that correspond to 33 vertices once normalization (12) is applied.
In the optimal basis, constraint (a1) (which is redundant but supporting for
P0) is used with u1 > 0, and the corresponding cut (c1) supports both P0 and
P1 in V2 and V5, respectively, but it is not facet-defining. The CGLP without
redundant constraints (in particular without (a1)) has only 10 extreme rays
and 10 vertices (instead of 33), and only one of them corresponds to a violated
constraint—namely, the facet-defining cut (c2). Note that cut (c2) dominates
cut (c1) and is facet-defining since it supports conv(P0 ∪ P1) in the 3 affinely
independent vertices V2, V3, and V5. For illustration purposes, 3 extreme rays
and an interior point of the CGLP cone are reported below.

γ1 γ2 γ3 γ0 u1 u2 u3 u4 u5 u6 v1 v2 v3 v4 v5 v6 u0 v0

(r1) 0 −2 −1 −1 0 0 1 0 0 0 0 1 0 0 0 0 3 2
(r2) 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
(p1) 0 −2 0 −1 0 0 1 0 0 1 0 1 0 0 0 1 3 2
(r3) 0 −2 0 −1 1/2 0 0 0 0 0 0 1 0 0 0 1 2 2

The weak cut (c1) is strictly dominated w.r.t. P by (c2), as the interior point
p1 is just the sum of the extreme rays r1 and r2, the latter corresponding to the
original constraint x3 ≥ 0. However, the redundant constraint (a1) creates an
extremal copy of the weak cut – the extreme ray r3 – which turns out to be the
optimal vertex once normalization (12) is applied.

¤

The previous discussion shows that extreme rays of the CGLP cone in the
extended space (γ, γ0, u, v, u0, v0) may be nonextremal when projected onto the
(γ, γ0) space, and redundant constraints can add to the cone several extreme-
rays corresponding to very weak cuts. The SNC normalization (12) simply maps
extreme rays to vertices, and creates a possibly “wrong” ranking among the
vertices. Unfortunately, as far as we know no normalization equation is able of
truncating the CGLP cone so as to guarantee that an optimal CGLP vertex in
the extended space remains a vertex when projected in the (γ, γ0) space. For
instance, let consider normalizations of the form

γ(q − x∗) = 1, (13)

On the Separation of Disjunctive Cuts 17

which have been deeply investigated in Bonami [11]. Balas and Perregaard [6]
proved that, if q ∈ conv(P0∪P1), then the CGLP truncated with (13) has a finite
optimum and that there exists an optimal vertex of the resulting polyhedron in
the extended space whose projection in the natural reverse polar space (γ, γ0)
remains extremal. However, this does not imply that any optimal vertex in the
extended space is a vertex in the projected space – hence even normalization
(13) could not help in finding a facet-defining cut.

Example 4. (Example 3 continued)
Let consider again the simple ILP discussed in Example 3. If the corresponding
CGLP cone is truncated with normalization (13), with q = (0, 0, 0), the resulting
polyhedron has 60 extreme rays and 20 vertices. As before, only two vertices
correspond to violated cuts, namely:

i) the basic solution (u1, v2, v6, u0, v0), of value z1 = − 1
2 (optimal), correspon-

ding to the weak cut (c1);
ii) the basic solution (u3, v2, v6, u0, v0), of value z2 = − 1

2 (optimal), correspon-
ding to the facet-defining cut (c2).

So, even in this case, the separation procedure could select the weak cut (c1),
since the choice of q makes (c1) and (c2) completely equivalent in terms of
objective function.

¤

4.1. Empirical Analysis

In our third set of experiments we eliminated redundant constraints in a trivial
way (i.e., by solving LPs) before solving the CGLP. To get a clearer picture,
we did not project the separation problem on the support of x∗ since such a
projection makes the definition of what is redundant and what is not less clear.

The results are reported in Table 3 and show that removing redundant con-
straints is indeed very useful. Besides an average improvement in the percentage
gap closed of around 2.5%, only for two problems, namely bell5 and gt2, the
“Classical” SNC is slightly better than the “No redundancy” SNC version, while
for some single problems the improvement is very large, up to 13% for instance
p0033. Concerning the average cardinality of the dual support of the cut there is
a slight increase in the “No redundancy” version which however does not seem
relevant.

4.2. Working on the Support

Projecting the separation problem into the support of x∗ has of course the ad-
vantage of dealing with a problem of smaller size. However, according to our ex-
perience the projection can enlarge the set of redundant constraints in a way that
vanishes part of the positive effects related to their removal. A possible explana-
tion of this behavior is that projection may hide the redundancy of some bound

18 M. Fischetti, A. Lodi, A. Tramontani

Table 3. “Classical” SNC vs. “No redundancy” SNC with no projection.

“Classical” SNC “No redundancy” SNC
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 71 70.74 64.65 54 70.74 66.19
bell5 188 94.12 16.83 189 93.54 15.80

blend2 197 30.49 71.42 212 30.63 119.90
flugpl 93 18.34 6.45 90 18.83 6.48

gt2 218 94.13 58.11 167 93.68 63.16
lseu 171 42.46 23.86 184 45.10 30.96

∗markshare1 77 0.00 55.99 77 0.00 56.00
mod008 107 15.46 304.18 107 15.48 304.19

p0033 116 57.25 8.75 126 70.32 10.99
p0201 692 92.53 23.40 757 98.31 37.44

rout 349 29.46 189.07 384 31.93 202.18
∗stein27 251 0.00 7.29 249 0.00 6.46

vpm1 267 50.62 11.13 282 54.55 11.10
vpm2 390 74.73 24.23 376 76.47 22.82
avg. 238.250 55.861 66.840 244.000 58.298 74.267

constraints, hence weakening the final disjunctive cut. Indeed, consider a varia-
ble xk restricted to being nonnegative and such that x∗k = 0. If xk is projected
away with the aim of computing coefficient γk afterwards through (10), then we
loose any control on the Farkas variables associated with the constraint xk ≥ 0,
say ui(k) and vi(k). In fact, if it happens that constraint xk ≥ 0 is redundant, it
is very useful to keep explicitly constraints γk = uAk − u0πk = vAk + v0πk in
the CGLP and to impose the additional requirement ui(k) = 0 and/or vi(k) = 0.

As the above property seems to be crucial for the variable bounds, we defined
an extended support of x∗ by avoiding projecting away any variable whose bound
condition is (tight in x∗ and) redundant. The results when using the extended
support are reported in Table 4, where %supp indicates the average percentage
of the x variables which are kept in the (extended) support.

Table 4. “Classical” SNC vs. “No redundancy” SNC with cuts separated projected on the
support.

“Classical” SNC “No redundancy” support “No redundancy” ext. support
Instance # cuts %gap %supp |S| # cuts %gap %supp |S| # cuts %gap %supp |S|

bell3a 71 70.74 69.25 43.72 88 70.74 69.32 44.82 54 70.74 65.61 44.60
bell5 178 94.29 72.69 11.75 207 94.62 72.88 13.32 180 94.29 71.64 11.99

blend2 192 30.51 53.06 8.10 200 30.99 53.54 10.84 193 30.53 53.99 8.34
flugpl 92 18.36 86.11 5.85 93 18.94 86.11 5.89 93 18.86 86.29 5.95

gt2 196 93.46 18.30 10.28 191 94.13 18.14 10.58 187 93.88 20.00 13.10
lseu 196 41.33 29.44 9.17 191 40.16 27.08 12.28 178 43.45 29.41 9.08∗markshare1 74 0.00 11.94 1.39 130 0.00 13.39 2.56 77 0.00 12.59 1.69

mod008 139 17.05 4.51 12.41 136 17.70 4.42 12.17 157 19.13 5.85 14.43
p0033 113 67.86 55.76 4.81 106 70.32 55.76 5.74 146 70.29 58.84 5.89
p0201 767 93.82 45.02 13.43 873 81.59 43.43 25.83 769 100.00 48.93 13.39

rout 434 24.26 42.19 68.07 355 6.56 38.11 58.23 353 30.88 69.46 140.29∗stein27 252 0.00 93.70 6.53 252 0.00 93.70 6.68 251 0.00 93.61 7.13
vpm1 263 55.84 62.14 5.39 275 50.18 62.25 6.30 259 57.63 65.18 6.60
vpm2 403 74.96 64.74 17.27 377 75.30 65.08 18.10 373 75.84 67.15 17.71
avg. 253.667 56.873 50.268 17.521 257.667 54.269 49.677 18.675 245.167 58.793 53.529 24.281

The first part of Table 4 reports the same figures as Table 1, plus a column
which gives the percentage size (w.r.t. the nominal size) of the CGLP projected

On the Separation of Disjunctive Cuts 19

on the support. By comparing the first and second part of the table, we note
that the gain shown by Table 3 due to the redundancy removal is lost here
(the average gap closed of 56.873% deteriorates to 54.269%), thus confirming
our intuition about the smaller precision of the redundancy test in such a case.
However, the situation is totally recovered using the extended support as defined
above. Indeed, the percentage value 56.873 improves to 58.793, and the average
size of the support does not increase much (from 50.268% to 53.529%). The
only large increase on the size of the CGLP arises for problem rout, which is
in fact a very instructive case: the “Classical” SNC closed 24.26% of the gap,
the “No redundancy” SNC version on the support closes only 6.56%, while in
the extended support the situation is totally recovered (and improved) with
30.88% gap closed. For such a particular instance the extended support size is
also substantially different from the support size, namely 69.46% with respect
to 42.19%. Our interpretation is the following: in order to forbid the use of some
variable bounds in the derivation of the cut we have to enlarge the support
considerably (half of the projected variables are re-inserted) with the overall
effect of generating much stronger cuts.

Detailed results on instance p0201 are given on Figures 11–14.

6800

6900

7000

7100

7200

7300

7400

7500

7600

7700

1 2 3 4 5 6 7 8 9 10

SNC
SNC no redundancy

Fig. 11. “Classical” SNC vs. “No re-
dundancy” SNC: dual bound for instance
p0201.

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

SNC
SNC no redundancy

Fig. 12. “Classical” SNC vs. “No redun-
dancy” SNC: avg. cut density for instance
p0201.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

SNC
SNC no redundancy

Fig. 13. “Classical” SNC vs. “No redun-
dancy” SNC: avg. cardinality of S(u, v) for
instance p0201.

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

SNC
SNC no redundancy

Fig. 14. “Classical” SNC vs. “No redun-
dancy” SNC: cut rank for instance p0201.

20 M. Fischetti, A. Lodi, A. Tramontani

5. A different normalization

As shown in the previous sections, the standard normalization has the main
advantage of generating low-rank inequalities, which is in general a desirable
property. As a matter of fact, it has been recently showed that rank-1 inequa-
lities alone are able to close a large portion of the integrality gap (see, e.g.,
Fischetti and Lodi [17], Balas and Saxena [8], Dash, Günlük and Lodi [16]).
When normalization (12) is applied, the norm of the separated cuts tends to be
smaller with respect to the constraints used for their generation, and small-norm
constraints are implicitly penalized by the normalization itself. Thus, high-rank
constraints are selected in the cut derivation only if needed, hence generating
weak cuts does not hurt the overall separation procedure in that these cuts are
less likely to be used in the next iterations. However, as stated in Section 4,
the standard normalization creates a ranking among the CGLP vertices which
depends on the scaling of the constraints, i.e., the overall separation procedure
is heavily affected by the scaling of the constraints in the original formulation.
To overcome the latter drawback, one can replace the standard normalization
with the following Euclidean Normalization (EN):

m∑

i=1

‖ai‖ui +
m∑

i=1

‖ai‖vi + ‖π‖u0 + ‖π‖v0 = 1, (14)

where ‖t‖ denotes the Euclidean norm of vector t.

Lemma 9 Let Ãx ≥ b̃ be a scaled copy of system Ax ≥ b where, for all i ∈
{1, . . . , m}, ãi := ai/Ki and b̃i := bi/Ki, with Ki > 0. For any solution of the
CGLP with normalization (14) corresponding to a cut γx ≥ γ0, there exists a
solution of the CGLP associated with the system Ãx ≥ b̃, still with normalization
(14), corresponding to the same cut.

Proof. Let (γ, γ0, u, v, u0, v0) be a solution of the CGLP with normalization (14),
and for all i ∈ {1, . . . , m} define ũi = Kiui and ṽi = Kivi. From equations (5)
we obtain

γ = uA− u0π =
m∑

i=1

uiai − u0π =
m∑

i=1

(Kiui)(ai/Ki)− u0π = ũÃ− u0π.

Analogously, from (6) we get γ = ṽÃ + v0π and from (7)–(8) we have γ0 =
ũb̃−u0π0 = ṽb̃+ v0(π0 +1). Hence (γ, γ0, ũ, ṽ, u0, v0) is a feasible solution of the
CGLP associated with system Ãx ≥ b̃ yielding the same cut as (γ, γ0, u, v, u0, v0).
Since ‖ãi‖ũi + ‖ãi‖ṽi = ‖ai‖ui + ‖ai‖vi ∀ i ∈ {1, . . . ,m}, then (γ, γ0, ũ, ṽ, u0, v0)
fulfills normalization (14) as well. ut

The above lemma shows that the CGLP with Euclidean normalization is not
affected by scaling issues. Moreover, the CGLP with (14) is the same as the
CGLP with the standard normalization for a system Ãx ≥ b̃ where all the
constraints have been scaled in order to have Euclidean norm equal to 1 (i.e.,

On the Separation of Disjunctive Cuts 21

‖ãi‖ = 1 ∀ i ∈ {1, . . . ,m}). By replacing normalization (12) with (14) we are
loosing the implicit penalization of high-rank inequalities hidden in the standard
normalization. However, the Euclidean normalization associates penalties with
the Farkas multipliers which are in some way related to the structure of the
corresponding constraints.

Computational results comparing the standard and the Euclidean normali-
zation are reported in Table 5.

Table 5. SNC normalization vs. Euclidean normalization on MIPLIB instances.

SNC normalization Euclidean normalization
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 71 70.74 43.72 71 70.74 34.95
bell5 178 94.29 11.75 213 93.01 13.78

blend2 192 30.51 8.10 182 31.80 9.04
flugpl 92 18.36 5.85 89 18.75 6.41

gt2 196 93.46 10.28 166 93.68 12.03
lseu 196 41.33 9.17 177 42.35 10.40

∗markshare1 74 0.00 1.39 75 0.00 1.77
mod008 139 17.05 12.41 135 18.27 11.98

p0033 113 67.86 4.81 97 70.32 4.28
p0201 767 93.82 13.43 741 99.07 28.72

rout 434 24.26 68.07 412 7.92 71.53
∗stein27 252 0.00 6.53 254 0.00 12.39

vpm1 263 55.84 5.39 256 67.17 5.59
vpm2 403 74.96 17.27 379 71.68 12.34
avg. 253.667 56.873 17.521 243.167 57.063 18.421

Table 5 shows that the proposed normalization slightly improves on average
over the “Classical” SNC with the only relevant exception of instance rout on
which the gap closed decreases from 24.26% to 7.92%. (Without such an instance,
the Euclidean normalization would exhibit an average improvement of 1.7%.)
The negative result for rout is not a total surprise since Table 4 had shown that
both redundancy and projection play crucial roles for such an instance. How
much one of the two is more important than the other is hard to state, but
the gap closed without projection is 20.10%, i.e., considerably smaller than the
29.46% of SNC on the complete model (see Table 3). A natural question is now
if the removal of redundant constraints would also help the proposed Euclidean
normalization. The answer is empirically given by the computational results in
Table 6, by comparing the “Classical” SNC and the Euclidean normalization
after removal of redundant constraints and by working in the extended support.
According to the table, removing redundant constraints helps also the Euclidean
normalization as the average gap closed raised from 58.793% (“No redundancy”
SNC) to 60.014% (“No redundancy” EN). Moreover, for instance rout the gap
closed is 29.42%, i.e., very similar to the SNC one (30.88%).

22 M. Fischetti, A. Lodi, A. Tramontani

Table 6. SNC vs. Euclidean normalization on MIPLIB instances. Redundant constraints
removed in both versions and projection on the extended support of x∗.

“No redundancy” SNC “No redundancy” EN
Instance # cuts %gap |S| # cuts %gap |S|

bell3a 54 70.74 44.60 50 70.74 44.21
bell5 180 94.29 11.99 194 94.07 15.39

blend2 193 30.53 8.34 181 32.83 9.99
flugpl 93 18.86 5.95 92 19.20 6.02

gt2 187 93.88 13.10 215 94.71 13.54
lseu 178 43.45 9.08 165 45.00 8.86

∗markshare1 77 0.00 1.69 75 0.00 1.77
mod008 157 19.13 14.43 135 18.36 11.98

p0033 146 70.29 5.89 99 70.32 4.47
p0201 769 100.00 13.39 765 100.00 32.44

rout 353 30.88 140.29 351 29.42 193.85
∗stein27 251 0.00 7.13 251 0.00 13.17

vpm1 259 57.63 6.60 272 68.91 6.44
vpm2 373 75.84 17.71 361 76.61 14.38
avg. 245.167 58.793 24.281 240.000 60.014 30.131

5.1. The Set Covering (special) case

As showed in Tables 5–6, associating with each constraint a penalty equal to the
Euclidean norm of the constraint itself leads on average to a slight improvement
over the “Classical” SNC. For a general-purpose MIP such a choice might have
drawbacks as in the instance rout discussed above. However, if the problem has
some special structure the improvement over SNC can be more consistent, as
in the case e.g. of the well-known Set Covering problem. Indeed, set covering
constraints have nonnegative coefficients only, and this property is known to be
inherited by nontrivial valid inequalities, including the disjunctive cuts we can
separate through our procedure.

We performed additional computational experiments on a test-bed of Set
Covering instances taken from the OR–Library [9], and the results are reported
in Table 7. The improvement in the percentage gap closed by EN with respect

Table 7. SNC normalization vs. Euclidean normalization on SCP instances.

SNC normalization Euclidean normalization
Instance # cuts %gap |S| # cuts %gap |S|
scpnre1 904 13.67 89.22 951 17.35 93.62
scpnre2 963 9.38 95.42 997 12.51 98.14
scpnre3 923 15.14 91.41 944 18.13 92.82
scpnre4 878 13.25 85.99 897 15.70 87.82
scpnre5 889 16.84 87.77 935 21.03 91.16
scpnrf1 678 10.23 67.75 682 12.62 67.77
scpnrf2 655 9.62 65.42 689 12.90 68.50
scpnrf3 586 12.08 58.34 617 15.58 60.93
scpnrf4 664 10.21 66.35 692 12.59 68.91
scpnrf5 661 8.63 66.05 700 11.85 69.70

avg. 780.100 11.905 77.372 810.400 15.026 79.937

On the Separation of Disjunctive Cuts 23

to SNC is quite substantial as it ranged from 2.38% to 4.19%, with an average
of 3.12%.

Figures 15–18 describe the behavior of the two normalizations on the par-
ticular instance scpnre5. Figures 16 and 18 are particularly interesting. The

21.8

21.9

22.0

22.1

22.2

22.3

22.4

22.5

22.6

22.7

22.8

1 2 3 4 5 6 7 8 9 10

SNC norm.
Euclidean norm.

Fig. 15. SNC vs. Euclidean normaliza-
tion: dual bound for instance scpnre5.

4820

4840

4860

4880

4900

4920

4940

4960

4980

5000

1 2 3 4 5 6 7 8 9 10

SNC norm.
Euclidean norm.

Fig. 16. SNC vs. Euclidean normaliza-
tion: avg. cut density for instance scpnre5.

70

75

80

85

90

95

100

105

1 2 3 4 5 6 7 8 9 10

SNC norm.
Euclidean norm.

Fig. 17. SNC vs. Euclidean normaliza-
tion: avg. cardinality of S(u, v) for instance
scpnre5.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

SNC norm.
Euclidean norm.

Fig. 18. SNC vs. Euclidean normaliza-
tion: cut rank for instance scpnre5.

considerably higher rank of the cuts generated using the Euclidean normali-
zation with respect to those obtained through SNC (see Figure 18) does not
correspond at all to denser cuts. Indeed, as shown in Figure 16, the former cuts
are consistently sparser than the latter. (Cuts generated using SNC are fully
dense: the number of variables of the instance is 5,000 and the number of non-
zero coefficients is almost always very close to 5,000 too; see Figure 16).

References

1. E. Balas, A modified lift-and-project procedure, Mathematical Programming 79 (1997),
19-31.

2. E. Balas, Disjunctive programming, Annals of Discrete Mathematics 5 (1979), 3–51.
3. E. Balas, Disjunctive programming: properties of the convex hull of feasible points, Di-

screte Applied Mathematics 89 (1998) 3–44.

24 Fischetti, Lodi, Tramontani: On Split Cuts from Elementary Disjunctions

4. E. Balas, S. Ceria, G. Cornuéjols, Mixed 0–1 programming by lift-and-project in a branch-
and-cut framework, Management Science 42 (1996), 1229–1246.

5. E. Balas, R. Jeroslow, Strengthening Cuts for Mixed Integer Programs, European Journal
of Operations Research 4 (1980), 224–234.

6. E. Balas and M. Perregaard, Lift-and-project for mixed 0–1 programming: recent progress,
Discrete Applied Mathematics 123 (2002), 129–154.

7. E. Balas and M. Perregaard, A precise correspondence between lift-and-project cuts, sim-
ple disjunctive cuts, and mixed integer gomory cuts for 0–1 programming, Mathematical
Programming Series B 94 (2003), 221-245.

8. E. Balas and A. Saxena, Optimizing over the split closure, Mathematical Programming
Series A, to appear, doi:10.1007/s10107-006-0049-5.

9. J. E. Beasley, OR–Library: a collection of test data sets for a variety of Operations Research
(OR) problems, http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

10. R. E. Bixby, S. Ceria, C. M. McZeal, M. W. P. Savelsbergh, An updated mixed integer pro-
gramming library: MIPLIB 3.0, http://www.caam.rice.edu/~bixby/miplib/miplib.html.

11. P. Bonami, Étude et mise en oeuvre d’approches polyédriques pour la résolution de pro-
grammes en nombres entiers ou mixtes généraux, PhD Thesis, Université de Paris 6
(2003).

12. S. Ceria, J. Soares, Disjunctive cuts for mixed 0–1 programming: duality and lifting, GSB,
Columbia University (1997).

13. V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Ma-
thematics 4 (1973), 305–337.

14. W. J. Cook, R. Kannan, and A. Schrijver, Chvátal closures for mixed integer programming
problems, Mathematical Programming Series A 47 (1990), 155–174.

15. T. Christof, A. Löbel, PORTA - POlyhedron Representation Transformation Algorithm,
http://www.zib.de/Optimization/Software/Porta/.

16. S. Dash, O. Günlük, A. Lodi, “On the MIR closure of polyhedra”, in M. Fischetti, D.P.
Williamson, Eds., Integer Programming and Combinatorial Optimization - IPCO 2007,
Lecture Notes in Computer Science 4513, Springer-Verlag, Berlin Heidelberg, 2007, 337–
351.

17. M. Fischetti and A. Lodi, Optimizing over the first Chvátal closure, Mathematical Pro-
gramming Series B 110 (2007), 3–20.

18. R. E. Gomory, An algorithm for the mixed integer problem, RM-2597, The RAND Cor-
poration (1960).

