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High-sensitivity to initial conditions is generally viewed as a drawback of tree search methods, as it leads
to an erratic behavior to be mitigated somehow. In this paper we investigate the opposite viewpoint, and
consider this behavior as an opportunity to exploit. Our working hypothesis is that erraticism is in fact
just a consequence of the exponential nature of tree search, that acts as a chaotic amplifier, so it is largely
unavoidable. We propose a bet-and-run approach to actually turn erraticism to one’s advantage. The idea is
to make a number of short sample runs with randomized initial conditions, to bet on the “most promising”
run selected according to certain simple criteria, and to bring it to completion. Computational results on a
large testbed of mixed-integer linear programs from the literature are presented, showing the potential of
this approach even when embedded in a proof-of-concept implementation.
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1. Introduction

It is a common observation that tree search methods tend to exhibit high-sensitivity to initial
conditions, possibly leading to an erratic behavior. This fact was explicitly pointed out, for the
first time, in [4] who reported large differences—in terms of both computing times and number of
nodes—for solving a same instance with the same release of IBM ILOG Cplex solver on different
machines. In [15] an explanation was given for such a large variability: although deterministic, all
algorithms have to decide how to break ties during the solution process (e.g., within heuristics,
when defining the branching variable, etc.). It is thus not surprising that different ways of breaking
ties can produce a considerably different performance of the algorithms.

Erraticism is generally viewed as a drawback to be avoided. Instead, we argue that a certain
degree of erraticism is unavoidable, as it is related to the exponential nature of tree search that
acts as a chaotic amplifier, so one has to cope with it.

Restart policies in search are popular approaches that can be used to exploit erraticism. They
essentially implement the idea of aborting the current run after a while, and then restarting it
from scratch with an improved set of constraints (and/or just with different initial condition)
in the hope that the new search will exhibit a better behavior or that new information on the
problem is available. These strategies were originally proposed for solving SAT problems through
AI techniques, where each aborted run improves the SAT formulation through additional clauses,
thus increasing the chances that the next run will exhibit a better behavior. An analysis of the
effect of erraticism on the performance of a SAT solver was given in [8], while a general method
for adding controlled randomization into enumerative algorithms for SAT and CSP problems was
proposed in [10, 9], and for scheduling problems in [11]. Restart strategies are considered nowadays
one of the most robust tools for solving hard SAT instances, and are in fact embedded in modern
clause-learning solvers where restart is executed with a very high frequency [13, 12].

The adoption of restart policies by the MIP community is more recent: the concept of backdoor
for MIPs was introduced in [5], whereas in [14] a restart strategy is used to collect useful information
for branching variable selection. Backdoor branching [6] is another example of a branching strategy
based on restart, where a high-priority set of branching variables is defined by solving a set-covering
model feeded-up by a collection of diversified fractional solutions.
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Another way to exploit erraticism has been implemented for the solution of very hard problems,
where computing times can be tremendously large. A notable example is the work of [1] on solving
some extremely hard Quadratic Assignment Problem instances on a very large computational grid.

Erraticism is also exploited in the context of massive parallel computing, which nowadays is
becoming widely available due to multi-core technology and computer grids, allowing for the devel-
opment of effective parallel MIP solvers [19, 18, 17]. Taking full advantage of the new architecture
is far from trivial, in particular because the branching nodes produced in the earliest “ramp up”
phase of the enumeration cannot be distributed in a balanced way among the processors. Racing
ramp-up is a technique proposed in [17, 16] with the aim of avoiding idle processors: a same MIP
solver is initially run with different settings, in parallel, until a stopping criterion is reached. Then
it is decided which of the generated trees performed best according to some criterion (not described
in full details). The nodes of this tree are then distributed among the parallel processors, while all
the other results, with the exception of primal solutions, are discarded. According to [16], however,
so far these approaches have not proven to be effective enough in terms of number of subproblems
solved per thread per second in the initial parts of the search.

In this paper we analyze a related approach intended to add just little overhead to a sequential tree
search method, yet being able to produce improved average results for medium-to-hard instances.
As in racing ramp-up, we make a number of short runs with randomized initial conditions, bet
on the most promising run, and bring it to completion. The resulting approach, that we call bet-
and-run, is intended for sequential computation, and is not driven by the need of avoiding idle
processors in a parallel setting.

Of course, bet-and-run could be applied by trying different parameter settings for the solver—
instead of just using blind randomization—or by choosing alternative solvers in a portfolio of options
[7]. These latter approaches are however beyond the scope of the present paper, which is devoted
to investigate pure erraticism.

To be effective, our bet-and-run framework needs to address two main questions: (i) how to
produce diversified runs, and (ii) how to choose, after short computing time, the “best run” to be
brought to conclusion.

Point (i) calls for a perturbation method that triggers diversity but that does not deteriorate the
average tree-search performance—producing different runs that are systematically worse than the
first run is of course of little use in practice.

Point (ii) is more intriguing. If erraticism implies non-predictabilty, there is no hope to come
out with a criterion that is systematically able to select a good run—any implementable criterion
will have a certain probability of actually selecting the worst one. Therefore, one has to content
him/herself with a criterion that gives a positive correlation between the selected run and those
that a posteriori behave better than the average.

The success of the resulting framework then relies on finding the right balance between sampling
overhead and expected improvement achievable by a clever (yet intrinsically unperfect) selection of
the best run.

To test the potential of our framework, we concentrate on tree search applied to a generic Mixed-
Integer linear Program (MIP) of the form:

(P ) min cTx (1)

Ax= b, x≥ 0 (2)

xj integer, ∀j ∈ I, (3)

xj continuous, ∀j ∈ C, (4)

where A is an m×n input matrix, and b and c are input vectors of dimension m and n, respectively.
The variable index set N := {1, . . . , n} is partitioned into (I,C), where I is the index set of the
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integer variables, while C indexes the continuous variables, if any. Bounds on the variables are
assumed to be part of system (2). Removing the integrality requirement on the integer variables
leads to the LP relaxation min{cTx : x∈ P} where P := {x∈Rn

+ :Ax= b}.
Our proof-of-concept implementation is built on top of a state-of-the-art MIP solver (IBM ILOG

Cplex 12.3 in its default setting), with the ambitious goal of improving its average performance on
medium-to-hard instances.

The paper is organized as follows. Preliminary experiments to illustrate the role of randomness
in MIP solvers are discussed in Section 2. Possible policies to trigger diversity are sketched in
Section 3, whereas rule-of-thumb criteria for selecting the most promising run are described in
Section 4. Computational results on a proof-of-concept implementation are given in Section 5.
Section 6 finally draws some conclusions and outlines possible directions for future research.

2. Erraticism in MIP solvers

To evaluate the effect of small changes in the initial conditions of a MIP solver, we conducted the
following preliminary experiment.

We considered 58 problems1 of medium difficulty, taken from the testbed libraries COR@L and
MIPLIB 2010, and repeatedly solved each of them 100 times, using a same solver (IBM ILOG Cplex

12.3) with different input random seeds, so so to diversify the runs in a completely random way—no
clever parameter tuning was performed.

Each execution was done in single-thread mode and had a time limit of 3,600 CPU seconds.
11 instances were not solved to proven optimality with default settings of the parameters (i.e.,
in the first execution), but all of them were eventually solved after 100 runs. Table 1 reports the
minimum number of branch-and-bound nodes and LP simplex iterations that were required, on
average (geometric and arithmetic means), after different numbers k of executions; the number of
unsolved instances is given in column # uns. CPU time is not given in the table as the runs were
executed on a workstation with different load conditions, but it is proportional to the reported
figures. Each line k in the table then gives a measure of the running time needed by a method that
just executes k times, in parallel, a same solver with randomized initial conditions, and stops as
soon as one run solves the problem—or the time limit is reached for all runs.

# executions # uns # nodes # LP iter.
k geom. mean aritm. mean geom. mean aritm. mean
1 11 13,207 320,138 2,212,849 9,882,765
2 7 7,781 266,811 1,444,085 8,104,845
3 5 6,344 254,196 1,170,356 7,118,396
5 5 5,601 238,561 1,090,606 6,574,864
10 4 4,445 217,472 864,700 5,890,291
25 2 3,060 175,976 680,443 5,648,135
50 1 2,192 159,203 494,159 4,660,565
100 0 1,880 149,399 424,593 3,731,679

Table 1 Reduction in the number of nodes by exploiting randomness (58 instances)

1 namely: aflow40b, app1-2, biella1, bienst2, dano3 5, eilB101, gmu-35-50, n3seq24, n4-3, neos-1056905,
neos-1171737, neos-1324574, neos-1337307, neos-1396125, neos-1440460, neos-1595230, neos-1601936,
neos-1605075, neos-1622252, neos-551991, neos-555343, neos-565672, neos-631694, neos-641591, neos-662469,
neos-785912, neos-820146, neos-820157, neos-831188, neos-848845, neos-849702, neos-859770, neos-863472,
neos-905856, neos-935627, neos-936660, neos-941313, neos-950242, neos17, neos18, net12, netdiversion,
noswot, ns1208400, ns1688347, ns1830653, ns894788, pw-myciel4, rail507, ran14x18, ran14x18 1, rocII-4-11,
rococoC10-001000, roll3000, satellites1-25, tanglegram1, timtab1, and vpphard.



Author: Exploiting erraticism in search
4 Article submitted to Operations Research; manuscript no. OPRE-2012-05-278(R)

The table shows that even changing just the random seed introduces a considerable variability
in the solver’s performance—at least, in our testbed. Indeed, a single additional run (row k = 2
in the table) is enough to reduce the number of nodes by about 40% in geometric mean, whereas
7x reduction is obtained for 100 runs. This is particularly interesting when a large number of
parallel processors is available. Indeed, it is known that in this situation the performance of parallel
MIP solvers scale-up with some difficulty [16], while randomization can play a role in improving
scalability.

Incidentally, during these experiments we were able to solve to proven optimality, for the first
time, MIPLIB 2010 instance buildingenergy. In fact, our second run (k=2) converged after 10.899
nodes and 2,839 CPU seconds of a IBM power7 computer (using IBM ILOG Cplex 12.3, single
thread), finding an integer solution of value 33,285.4433 that was considered optimal according to
the solver’s default tolerances. We then redefined the optimality tolerance to zero, and reran IBM

ILOG Cplex12.3 (8 threads) by providing 33,285.4433 as the initial upper bound. This run took
623,861 additional nodes and 7,817 CPU seconds, and found a 0-tolerance optimal solution of value
33,283.8532.

3. Triggering diversity

Our first order of business is to find a cheap way to produce diversified runs of our MIP solver,
without deteriorating its average performance.

A direct access to all internal mechanisms of the solver would give us plenty of choices on how to
randomize the search path in an effective way. As external users, however, we had to find different
ways to achieve diversification.

A first possibility, also used in [15], is the following
• (RAN0) just permute, in a random way, the rows and columns of the input instance.

Another possibility is the one used in the experiments of the previous section, namely
• (RAN1) randomly perturb some MIP-solver input parameters (e.g, the random seed, if avail-

able), with the aim of changing the very first LP optimal solution at the root node—and then the
whole search path.

We stress again that the aim of (RAN1) is not to find an hypothetical best-possible parameter
combination, but just to change the search path in a random way.

Both approaches above require to solve each randomized instance from scratch, hence the rela-
tively time-consuming processing of the root node, and in particular the preprocessing and solution
of the very first LP, must be reapplied at each run. Because for easy instances the resulting over-
head may be significant, one is interested in perturbation schemes that take place right after the
preprocessing step and the solution of the very first LP—even if this choice might lead to a signif-
icant reduction of diversification. Possible strategies to perturb the choice of the optimal basis of
the initial LP at the root node and require only a limited interaction with the MIP solver are as
follows:
• (RAN2) after preprocessing and solution of the very first LP, create a copy of the LP, replace

its objective function with a random one, reoptimize it to get to a different LP basis, load this basis
into the original LP, and reoptimize it;
• (RAN3) as before, but in the LP copy fix all nonbasic variable with nonzero reduced cost to

their value in the optimal solution of the original LP.
To keep computing time under control, one can impose an upper bound on the number of simplex

iterations allowed for solving the randomized LP problem.
Because of variable fixing, policy (RAN3) will return an alternative vertex in the optimal LP

face—assuming dual degeneracy, that arises almost invariably in MIP problems. Note that we are
considering a MIP with equality constraints. In presence of inequalities (including variable upper
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bounds), our variable fixing needs to implicitly address slack variables as well, and requires to
temporarily impose as an equality each inequality with nonzero optimal dual variable.

In our experiments, we implemented scheme (RAN3) by defining an auxiliary problem according
to the optimal solution, say x̃, of the LP relaxation of (P), as follows. Let Nu and N ` denote the
set of nonbasic variables with zero reduced cost that hit their upper and lower bound, respectively,
in the LP optimal basic solution x̃. Our auxiliary objective function (to be minimized) is defined
as follows: each variable j ∈Nu receives a uniformly-randomly cost in range [1,100], each variable
j ∈ N ` receives a uniformly-randomly cost in [−100,−1], whereas the cost of all other variables
was not changed. The maximum number of simplex pivots allowed for the reoptimization of the
perturbed LP is at most 10% of the number of iterations for solving the first LP, provided that
the resulting number is not smaller than 10 and not larger than 100 (in which case we allow for, at
most, 10 or 100 pivots, respectively).

According to our extensive computational experiments, (RAN3) is able to produce diversified
optimal solutions to the first LP relaxation in a short computing time. The subsequent application
of cutting planes algorithms, as well as of primal heuristics, leads to different solutions and cutting
planes at the root node. Because of erraticism, even minor change of the status at the end of the
root node are amplified by branching, leading to very diversified search paths.

4. Exploiting diversity

A pseudo-code of our bet-and-run algorithm is given in Figure 1. By clone we mean a copy of the
original MIP, to be solved with diversified initial conditions.

Algorithm bet-and-run

parameters: C = number of clones;
N = number of nodes for each clone;

initialization
1. solve the LP relaxation of the problem and get solution x̃;
sampling phase
2. for i= 1 to C do
3. apply randomization (RAN3) to x̃ and define a new clone;
4. solve the clone for at most N nodes;
5. if the current clone is solved to optimality then stop;
6. endfor
long run
7. determine the “best” clone;
8. solve the chosen clone up to the time limit.

Figure 1 Conceptual bet-and-run algorithm.

At Step 7, one has to decide the clone to bring to completion. To this aim we selected a few main
indices (called indicators) of the performance of the short run on each clone. To be specific, at the
end of each short run, for each clone we collect the following indicators, listed in priority order:
I1) number of open nodes;
I2) percentage lower bound improvement with respect to the root node, in geometric mean for

all open nodes;
I3) sum of the number of integer-infeasible variables among all open nodes;
I4) sum of the depths of the open nodes;
I5) sum of integer infeasibilities among all open nodes, as computed by IBM ILOG Cplex 12.3;
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I6) best lower bound;
I7) best upper bound;
I8) total number of simplex iterations.

As a general rule, the smaller an indicator the better, so indicators I2 and I6 are actually stored
with opposite sign.

At the end of the last short run, all clone indicators are processed to define the “winning” clone
according to the following selection criterion.

For the instance at hand, an indicator is just disregarded in case it provides no discriminant
information among clones, i.e., if it is not useful to distinguish between good and bad clones. More
specifically, let C denote again the number of clones and let Ii(k) be the stored value of indicator
Ii for the k-th clone (k= 1, . . . ,C). For each indicator Ii, we compute its minimum over all clones,
say IMIN

i = mink Ii(k), and define its scaled value

I i(k) =

{
Ii(k)− IMIN

i , if IMIN
i < 0;

Ii(k), otherwise.

Indicator I i (i= 1, . . . ,8) is disregarded if

max
k
I i(k)−min

k
I i(k)< θ

∑
k I i(k)

C

where θ is an input parameter set to 0.2 in our implementation.
After the above preprocessing, non-discarded clone indicators are scanned according to their

priority order. We first keep only the (at most) K = b0.6×Cc clones having the minimum value of
the first non-discarded indicator. Then, we consider all the remaining clones having a minimum value
for the second non-discarded indicator, and in case of further ties we select the first clone having
the minimum third non-discarded indicator. This scheme is intended to break ties by favoring clone
k = 1, corresponding to the unperturbed run in our implementation—so as to select a perturbed
clone only when this seems to be really beneficial.

We finally observe that our clone selection procedure (including the choice of the relevant indi-
cators) is quite unsophisticated, hence we expect that an even better rule—possibly using sound
machine learning tools—could be derived.

5. Computational experiments

We tested the potential of our bet-and-run approach within a proof-of-concept implementation
where diversification criterion (RAN3) was implemented as discussed in Section 3.

All codes were executed on an Intel i5-750 CPU running at 2.67 GHz with IBM ILOG Cplex 12.3
as a MIP solver, using callback functions. For a fair comparison, all codes use a (possibly dummy)
callback function, thus deactivating IBM ILOG Cplex’s proprietary dynamic search. Experiments
were performed in single-thread mode, with no concurrent threads running on the same PC (this
ensures reliability of the reported computing times). In all tables, computing times are expressed
in CPU seconds (geometric means shifted by 0.01 seconds).

We compare the following algorithms:
• default, i.e., IBM ILOG Cplex 12.3 with default parameters (but no dynamic search because

of the dummy callback);
• our bet-and-run algorithm which executes the sampling phase for 5 nodes and for 5 clones,

and selects the best clone according to the rule described in Section 4.
Furthermore, we report additional information on the best possible performance that one could

hope to obtain with our perturbation scheme, and consider the following two “ideal” algorithms:
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• best, i.e., the algorithm that exploits an “ideal oracle” to find, for each instance and with no
computational overhead, the a-posteriori best (with respect to computing time) between algorithms
default and bet-and-run;
• ideal, i.e., the algorithm that exploits an “ideal oracle” to find, for each instance and with

no computational overhead, the a-posteriori best (with respect to computing time) among all the
5 clones that have been generated.

We stress here that the latter two idealized algorithms are reported for benchmark purposes only,
to quantify performance variability triggered by randomization over the instances of a given class.

Note that in bet-and-run we consider just 5 clones, namely, the “default” one (with no ran-
domization after the very first LP) that would produce the same search path as default, plus 4
additional clones. This conservative choice was motivated by the need of reducing the sampling
overhead for easy instances; more aggressive policies are of course possible. For each clone, only 5
branching nodes are explored in the sampling phase, again with the aim of reducing sampling over-
head. We also tried to explore just one node and use the clone indicators available at the end of the
root node, but this setting produced worse results on average—at least, by using our clone-selection
policy based on the ranked indicators described in the previous section.

We first considered two sets of instances from the literature, namely:
• COR@L [2]: we considered all the 372 instances in this library, and removed two instances,

namely neos-1417043 which is just an LP model, and neos-578379 which cannot be downloaded
in a correct format, plus three instances (neos-1346382, neos-933364 and neos-641591) that were
duplicated in the library; thus we got 367 problems.
• MIPLIB 2010 [15]: we considered all the 166 instances belonging to classes benchmark and

tree, plus all the instances that were marked as hard when we conducted our experiments.
It turns out that 41 instances belong to both sets, thus they were included only once. For each

instance, both default and bet-and-run were run with a time limit equal to 10,000 CPU seconds.
The 148 instances that were not solved by best within the time limit were disregarded; this lead
to a final testbed made by 344 instances.

As this set of instances includes problems of different difficulty, we partitioned the problem set
into classes. In particular, each problem was classified according to the maximum number of nodes
that was required by the two competing algorithms, default and bet-and-run, to provide a proven
optimal solution. This is a fair policy as the competing methods play an indistinguishable role in
the class definition, so no biasing is expected.

Table 2 reports how many time each clone was selected by bet-and-run in the various runs of
Table 3; clone 0 refers to the default run. Class [0−10) is not reported because almost all instances
in this class were solved to optimality during the sampling phase of the default (first) clone. As
expected, no significant biasing in the clone choice seems to exist; in particular, clone 0 does not
play a distinguished role as it exhibits a “median” behavior.

Node range # inst. clone 0 clone 1 clone 2 clone 3 clone 4
[10− 100) 34 3 15 4 5 7
[100− 1,000) 46 7 12 7 4 16
[1,000− 10,000) 66 11 13 8 9 25
[10,000− 100,000) 50 7 15 6 5 17
≥ 100,000 72 9 17 10 9 27
total 268 37 72 35 27 92

Table 2 Number of times a clone was selected by bet-and-run; clone 0 is the default one.

Table 3 reports, for each class of instances, the associated range for the maximum number of
nodes, the total number of instances and, for each algorithm, the following information:
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• number of instances solved to proven optimality—this information is omitted for the “ideal”
algorithms as, by definition, this figure equals the number of instances in the class;
• geometric mean of the computing time and its percentage increase w.r.t. default (negative if

better than default);
• geometric mean of the number of nodes and its percentage increase w.r.t. default (negative

if better than default);
Note that computing times for bet-and-run include the sampling phase. For the sake of com-

pleteness, we also report in column Tlast the geometric mean of the computing time required by the
last (long) run of bet-and-run, along with the associated percentage increase w.r.t. default. To
be conservative, instances that hit the time limit for algorithm bet-and-run are counted as a time
limit for column Tlast as well, although the saved sampling time could allow for their exact solution
in some cases.

As expected, for “easy” instances our approach is not beneficial in that the sampling overhead
does not pay off. However, our approach turns out to produce interesting outcomes for the hard
instances—those for which both default and bet-and-run take more than 1,000 nodes. On the
whole, bet-and-run solves 3 more instances within the time limit than default (which is by itself
a main accomplishment), and also allows for a significant saving in terms of both CPU time and
number of nodes for medium-to-hard instances, even with respect to a very effective code such
as IBM ILOG Cplex 12.3. In particular, for the instances in class [10,000− 100,000) bet-and-run

allows for a CPU time and node saving with respect to default of about 28% and 51%, respectively.
Savings are less impressive (but still relevant) for class ≥ 100,000, where they amount to about 17%
(CPU time) and 28% (number of nodes). A possible explanation of the reduced savings is that the
clone-selection criterion used by bet-and-run is only based on the very early part of the search, so
its positive effect tends to be overtaken by erraticism after a very large amount of enumeration.

Of course, a much better improvement could be obtained if we were able to reduce the overhead
due to the preprocessing phase, getting closer to the very attractive computing times reported in
column Tlast. However, this task is hardly achievable without having a direct access to the solver’s
source code, hence it is out of the scope of the present paper.

Also very interesting are the savings achieved by best, i.e., by running default and bet-and-run

in parallel and aborting their execution as soon as one of two terminates—very much in the spirit
of the experiments reported in Table 1—and by ideal. For parallel architectures, this is in fact an
option that deserves future investigation.

We have seen that the speedup achieved by bet-and-run is quite important for medium-to-hard
instances, while (as expected) for easy instances the new approach is not competitive with default.
In our view, this behavior is not really an issue and just suggests an implementation where bet-and-
run can be switched on/off through an input parameter. Indeed, most MIP-solver users routinely
solve problems of the same nature (e.g., crew scheduling instances related to different scenarios)
and thus know in advance whether their model is likely to require a small or large amount of
enumeration—so they can decide in advance whether to activate or not the bet-and-run flag.

Whether bet-and-run strategy can be included by default in a MIP solver is instead less obvious.
Although the investigation of this implementation issue is outside the scope of the present paper, we
observe that two main approaches for reducing sampling overhead can be addressed, thus improving
bet-and-run for easy instances.

One is to exploit parallelism/multi-threading for running the sampling phase in parallel. This is
an interesting option in that it is known that parallel enumerative codes do not scale well in the
“ramp-up” phase when the number of open tree nodes is smaller than the available CPUs. Therefore
running our sampling phase in parallel is likely to add a negligible overhead when a reasonable
number of CPUs is available (say, 8 or more, as it is the case for any modern architecture).

A second option, not based on parallelism, is based on the following simple restart policy. Run
the default enumerative algorithm, default, for a certain number of nodes, say NR. If the instance
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Node range Algorithm # opt. Time %incr # Nodes %incr Tlast %incr
default 76 1.50 0.0 1 0.0

[0− 10) bet-and-run 76 1.50 -0.7 1 0.0 1.47 -2.0
# inst. 76 best 1.49 -1.3 1 0.0

ideal 0.92 -38.7 1 0.0
default 33 6.95 0.0 18 0.0

[10− 100) bet-and-run 33 16.70 140.3 21 16.7 4.93 -29.2
# inst. 34 best 6.84 -1.7 18 0.0

ideal 3.90 -44.0 5 -72.2
default 46 8.73 0.0 302 0.0

[100− 1,000) bet-and-run 46 16.03 83.5 210 -30.5 6.64 -23.9
# inst. 46 best 8.03 -8.1 225 -25.5

ideal 5.64 -35.5 94 -68.9
default 65 21.89 0.0 2,503 0.0

[1,000− 10,000) bet-and-run 66 33.47 53.0 2,702 8.0 22.02 0.6
# inst. 66 best 20.86 -4.7 2,434 -2.8

ideal 17.38 -20.6 1,799 -28.1
default 48 212.73 0.0 23,942 0.0

[10,000− 100,000) bet-and-run 50 152.10 -28.5 11,551 -51.8 129.59 -39.1
# inst. 50 best 122.99 -42.2 9,592 -59.9

ideal 93.81 -55.9 7,546 -68.5
default 62 1,561.65 0.0 649,103 0.0

≥ 100,000 bet-and-run 62 1,282.88 -17.9 463,201 -28.6 1,211.58 -22.4
# inst. 72 best 971.90 -37.8 357,213 -45.0

ideal 736.08 -52.9 264,589 -59.2

Node range Algorithm # opt. Time %incr # Nodes %incr Tlast %incr
default 330 32.51 0.0 951 0.0

≥ 0 bet-and-run 333 38.12 17.2 778 -18.2 26.64 -18.1
# inst. 344 best 26.52 -18.4 638 -32.9

ideal 18.86 -42.0 471 -50.5
default 221 110.41 0.0 14,807 0.0

≥ 100 bet-and-run 224 122.89 11.3 10,868 -26.6 87.20 -21.0
# inst. 234 best 82.37 -25.4 8,694 -41.3

ideal 63.24 -42.7 6,355 -57.1
default 175 205.43 0.0 38,351 0.0

≥ 1,000 bet-and-run 178 202.29 -1.5 28,518 -25.6 163.73 -20.3
# inst. 188 best 145.61 -29.1 22,822 -40.5

ideal 114.25 -44.4 17,816 -53.5
default 110 689.87 0.0 167,863 0.0

≥ 10,000 bet-and-run 112 535.36 -22.4 102,034 -39.2 484.72 -29.7
# inst. 122 best 416.58 -39.6 80,991 -51.8

ideal 316.41 -54.1 61,580 -63.3
default 62 1,561.65 0.0 649,103 0.0

≥ 100,000 bet-and-run 62 1,282.88 -17.9 463,201 -28.6 1,211.58 -22.4
# inst. 72 best 971.90 -37.8 357,213 -45.0

ideal 736.08 -52.9 264,589 -59.2

Table 3 Results on the 344 instances in our testbed (geometric means).
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turns out to be easy, the problem is solved and no overhead is incurred. Otherwise, pause default

and execute the sampling phase of bet-and-run: if the winning clone is the default one2, just
continue with default; otherwise, abort default and continue with bet-and-run. This approach
has of course the drawback of wasting some amount of CPU time for all instances requiring more
than NR nodes, namely, the CPU time required by either the first NR nodes of default or by the
sampling phase of bet-and-run. Computational results for this modified algorithm, called hybrid

in what follows, are reported in Table 4 for NR= 500, and in Table 5 for NR= 1,000. We also
report statistics for best, now defined as the best between default and hybrid, while we omit
ideal that is not affected by the initial execution of default. Note that 2 more instances were not
solved within the time limit by this new best (because of the overhead introduced in bet-and-run)
and thus were removed from the testbed. Also to be noted is that a same instance can belong to
different classes in Tables 3-5, because our class definition depends on the maximum number of
nodes required by the two analyzed algorithms. As a result, a direct comparison of, e.g., the number
of solved instances in each class can be misleading.

By design, the execution of default before bet-and-run has a positive effect when easy instances
are considered. On the other hand, the additional overhead can be nonnegligible for “not easy nor
too hard” problems. In fact, class [1,000,10,000) is the most critical one when NR= 500 or 1,000
is chosen, as the restart overhead is not compensated by the improved performance of the hybrid
method. On the whole, the results confirm the viability of using a restart policy within the overall
bet-and-run scheme.

Of course, different NR thresholds would produce different statistics, moving criticality into
different classes. A more sophisticated approach, not investigated in the present paper, would be to
determine NR on the fly, by using a (possibly rough) estimate of the remaining branching nodes,
e.g., by using the early tree-node estimator proposed in [3].

6. Conclusions and future directions of work

Erraticism is typically viewed as a drawback of tree search. We have argued that a certain degree of
erraticism is unavoidable, as this is in fact an intrinsic property of such a method, whose exponential
nature acts as a chaotic amplifier. We have then presented a simple bet-and-run approach to turn
erraticism to one’s advantage. Computational results on a simple proof-of-concept implementation
show the potential of the approach.

Future research should be devoted to improving the diversification mechanism used, a task that
would be most successful if a complete access to the source code of the solver was available. Also of
interest is a better classification mechanism—possibly using machine learning tools—to discriminate
between “good” and “bad” sample runs, so as to increase the correlation of the chosen clone with
the a posteriori best one.

Also to be investigated is an improved restart strategy borrowed from the AI/CP community, that
(i) modifies the backtrack condition on the fly, and (ii) takes advantage of information resulting from
the previous runs—in the MIP context, this include primal solutions, collected cuts, and variable
pseudocosts for branching. The use of portfolio approaches (on sequential or parallel machines) is
also worth investigating.

Finally, an interesting research topic is the role of erraticism in improving the quality of the
incumbent solution found after a short while by an enumerative exact method.
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Node range Algorithm # opt. Time %incr # Nodes %incr
default 80 1.51 0.0 1 0.0

[0− 10) hybrid 80 1.51 0.0 1 0.0
# inst. 80 best 1.51 0.0 1 0.0

default 31 6.38 0.0 21 0.0
[10− 100) hybrid 31 6.38 0.0 21 0.0
# inst. 31 best 6.38 0.0 21 0.0

default 37 9.81 0.0 279 0.0
[100− 1,000) hybrid 37 10.58 7.8 277 -0.7
# inst. 37 best 9.74 -0.8 279 0.0

default 72 17.69 0.0 2,308 0.0
[1,000− 10,000) hybrid 72 31.19 76.4 2,964 28.4
# inst. 72 best 17.53 -0.8 2,245 -2.7

default 49 220.78 0.0 24,203 0.0
[10,000− 100,000) hybrid 50 175.09 -20.7 14,876 -38.5
# inst. 51 best 135.81 -38.5 12,415 -48.7

default 61 1,563.83 0.0 674,703 0.0
≥ 100,000 hybrid 62 1,291.98 -17.4 527,052 -21.9
# inst. 71 best 1,002.00 -35.9 428,666 -36.5

Node range Algorithm # opt. Time %incr # Nodes %incr
default 330 31.44 0.0 964 0.0

≥ 0 hybrid 332 33.11 5.3 897 -7.0
# inst. 342 best 26.47 -15.8 779 -19.2

default 219 111.42 0.0 15,836 0.0
≥ 100 hybrid 221 120.59 8.2 14,237 -10.1
# inst. 231 best 86.95 -22.0 11,565 -27.0

default 182 177.11 0.0 34,201 0.0
≥ 1,000 hybrid 184 191.80 8.3 30,165 -11.8
# inst. 194 best 132.01 -25.5 23,613 -31.0

default 110 689.87 0.0 167,863 0.0
≥ 10,000 hybrid 112 560.28 -18.8 118,623 -29.3
# inst. 122 best 434.56 -37.0 96,119 -42.7

default 61 1,563.83 0.0 674,703 0.0
≥ 100,000 hybrid 62 1,291.98 -17.4 527,052 -21.9
# inst. 71 best 1,002.00 -35.9 422,144 -37.4

Table 4 Hybrid method (geometric means) when NR = 500 nodes are explored before bet-and-run.
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