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Abstract

While it was known for a long time how to transform an asymmet-
ric traveling salesman problem on the complete graph with n vertices
into a symmetric traveling salesman problem on an incomplete graph
with 2n vertices, no method was available until recently for using this
correspondence to derive facets of the symmetric traveling salesman
polytope from facets of the asymmetric one. In this paper we develop
a procedure for accomplishing this task, and use it to obtain several
classes of new facet defining inequalities for the symmetric polytope,
derived from odd CAT inequalities and lifted cycle inequalities for the
asymmetric polytope.



1 Introduction

The Traveling Salesman Problem (TSP), one of the earliest, most heavily
studied combinatorial optimization problems, has two major variations in
its definition. There is the Asymmetric Traveling Salesman Problem (ATSP)
formulated on a directed graph, and the Symmetric Traveling Salesman Prob-
lem (STSP) formulated on an undirected graph. Of these two variations, the
STSP has gotten much more attention up to now, but we have learned a fair
amount regarding the ATSP as well, [4].

Interestingly, relationships between the STSP and ATSP are not well un-
derstood, and are seldom exploited for the purposes of better understanding
both types of TSP problems. In this paper, we start to better understand
these relationships. In our case, we exploit current insights into the ATSP
to better understand the STSP.

Let us denote the complete undirected graph whose vertex set is V' by
Ky = (V, E(V)) and the complete directed graph whose vertex set is V' by
Ky = (V,A(V)). Notice that we have need to specify the exact vertex set
instead of using the usual notation K, for a complete graph. A Hamilton
cycle in a graph is a cycle that visits every vertex of the graph exactly once.
The input to the ATSP (STSP) is the vertex set V' and a cost ¢, for each
arc e € A(V) (edge e € E(V)). The ATSP (STSP) consists in finding a
minimum cost Hamilton cycle in Ky (Ky).

Most methods for solving the ATSP (STSP) exactly involve integer and
linear programming. Hence, it is important to study the ATS polytope (STS
polytope), defined as the convex hull of the edge incidence vectors of all the
Hamilton cycles in Ky (Ky). The ATS polytope for Ky will be denoted by
ATS(V'), whereas the STS polytope will be denoted by STS(V'). In particular,
we aim at finding facet-defining and wvalid inequalities for these polytopes.
The goal of this paper is to provide a method of deriving facet-defining STSP
inequalities from a facet-defining ATSP inequality, based on the technique
introduced in [1].

In order to achieve our goal, we use the idea of [ifting a valid inequality for
a lower dimensional polyhedron to create a valid inequality for a polyhedron
of higher dimension. Let P be a polyhedron. If H is a closed half space
containing P, and whose boundary is the hyperplane B, then F' := BN P
is said to be a face of P. A facet of P is a face ' # P having maximal
dimension. A face F' of a polyhedron P is itself a polyhedron, with its own



facets. We will explain later how a facet-defining inequality ax < a¢ for F
can be lifted to produce a facet-defining inequality o'z < af for P.

Our main idea is to first take a facet-defining inequality for the ATS
polytope and, exploiting known relationships between the ATS and STS
polytopes, produce an inequality that is facet-defining for a particular face
F' of the STS polytope. Then, we lift this inequality of the STS face F' to
obtain a new facet-defining inequality for the entire STS polytope.

The paper is organized as follows. Section 2 explains how ATS inequali-
ties can be lifted into STS inequalities (A2S liftings) even though the corre-
sponding polytopes live in apparently incomparable spaces. Section 3 gives
facet-defining A2S liftings of the CAT inequalities of the ATSP [2], includ-
ing a new facet-defining inequality class that generalizes the newl inequality
found in [5]. Section 4 analyzes the properties of lifting the variables fixed to
1 in the A28 lifting procedure. Finally, Section 5 applies our lifting procedure
to obtain STSP facets from the curtain inequalities [1] of the ATSP.

2 Exploiting relationships between the ATSP
and STSP

Consider the ATSP on the complete directed graph K. We create two copies
of each vertex i € V, as in [7, 6], resulting in:

vt = {it i eV},
Vo = {im i€V}
Let the subsets
Et = E(VT)
E- = EV7)
E° = {{iti"}:ieV}
Et= = §(V*)\ E°

define a partition of the edges of the complete graph Ky + - on the vertex
set VT UV ™. Take any directed Hamilton cycle (V, H) in Ky. We construct
an undirected Hamilton cycle in Ky +_ - as follows. We define

H = {{it,j7} : (4,j) € H} UEy. (1)

Then, by construction, (VtUV ™, H') is a Hamilton cycle in Ky +_y - such
that
E° c H, @)
(EYUE")NH = .
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We call such a Hamilton cycle satisfying (2) an admissable Hamilton cycle.
So, for any directed Hamilton cycle in l?v, there is a corresponding admiss-
able Hamilton cycle in Ky +_y- given by (1). Conversely, for any admissable
Hamilton cycle in K+ -, there is a corresponding directed Hamilton cycle
in Ky, defined so as to give this admissible Hamilton cycle via (1). Hence, we
have a bijection ¢ between directed Hamilton cycles in [?V and admissable
undirected Hamilton cycles in Ky + y-.

Define F(V* U V™) to be the convex hull of the edge incidence vectors
for all the admissable Hamilton cycles in Ky+_y-. It is fairly easy to see
that F(VT UV ™) is the face of ST'S(V* UV ™) obtained by fixing the edge
variables of the E* and E~ edges to be 0 and fixing the edge variables of the
Ey edges to be 1.

Because of our bijection ¢, we can determine each extreme point 2’ of
F(VTUV7) from an extreme point z* of ATS(V) by ' = ¢(z*). In fact,
we will see that when ¢ is extended linearly to all of R*Y), we get that
F(VtUV™) = ¢(ATS(V)). We further aim at determining the facets of
F(VTUV™) from the facets of ATS(V). We do this by breaking down ¢
from = € RAY) to ¢(z) € RFV™UV7) into ¢ = ¢3 0 ¢ 0 ¢y, where

¢1 - RAWV) N REJF*(V)
by RET(V) —, REW*uvVT)
b3 REWVTUVT) . REWVTUV)

are defined as follows:

G1(2) i+j-y = T(ig),

bo(2), = z, ifee Bt
2TV =V 0 ifec EYUE-UEY,
and A
¢3(ZL‘”) . ZL‘” _}_vshzft7
with

€ ) 0 otherwise.

We first obtain the facet-defining inequalities for AT'S'(V') := ¢, (AT'S(V))
from those of AT'S(V'). Consider an inequality

axr < ag
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defining a facet of AT'S(V'). Define

a/{i+7j_} = a(%])

Since ¢y just relabels indices, the corresponding facet of AT'S’(V) is clearly
defined by the inequality
dx' < ap.

We next obtain the facet-defining inequalities for AT'S” (V') := ¢o(ATS'(V'))
from those of AT'S'(V'). Consider an inequality

adx’ < a

defining a facet of AT'S’(V'). Define

. a, ifee ET7,
0 ifee EYUE- UE".

Since ¢9 just adds components of value 0 to the point 2z, the corresponding
facet of AT'S”(V') is then defined by the inequality

a'zs! < ao.

We finally obtain the facet-defining inequalities for F'(VTUV ™) = ¢3(ATS"(V))
from those of AT'S”(V'). Since ¢3 just translates every point by a fixed vector,
the normal vector a” of the facet-defining AT'S” (V') inequality

a//lx/l < ao

remains unchanged in the corresponding facet-defining inequality for F/(V*U
V), with only the right hand side aq being possibly affected. But since the
translation ¢3 is perpendicular to this normal vector, even the right hand
side ag remains the same.

Thus, corresponding to each facet-defining ATS(V') inequality

ar < ag

is the inequality

CL”:L‘” S a()

that is facet-defining for F(VT UV ™).



2.1 Asymmetric to Symmetric Lifting

Consider a particular vertex set V', and any facet-defining inequality for
AT S(V). By the previous analysis, we can easily find a corresponding facet-
defining inequality for F/(VTUV ™). Since F(VTUV ™) is a face of ST S(V*TU
V™), we can lift it to a facet-defining inequality for ST'S(V T UV ™) by using
well-known sequential lifting techniques,[9]. We call our procedure of taking a
facet-defining ATS inequality and producing facet-defining STS inequalities
in this manner an A2S lifting (Asymmetric to Symmetric lifting). This type
of lifting was first described in [1].

In sequential lifting, one creates a lifting sequence for the variables fixed
at 0 or 1. Let us first consider the case where our variables are only fixed at 0,
and we have a < inequality. Going one-by-one through the lifting sequence,
we calculate the largest possible value for the coefficient of our current vari-
able, so that our inequality remains valid when the current variable is no
longer fixed. At the end of this process, we will have a facet-defining in-
equality for the larger dimension polytope, assuming the polytope dimension
increases by exactly one unit at each lifting step, as is the case in our appli-
cation. Having variables fixed at 1 essentially does not change the procedure,
but one must first complement these variables and then calculate the value
of the lifting coefficient. As a result, the right hand side of our inequality
can change in this case.

We currently create our lifting sequence so that we lift first all the vari-
ables fixed at 0, and then lift those fixed at 1. If we stop the lifting once all the
variables fixed at 0 have been lifted, we are left with a facet-defining inequal-
ity on a polytope that includes F(VTUV ™) and is included in STS(VFUV ™).
We name this polytope the Twin Traveling Salesman Polytope TTS(V* U
V), which can be defined as the convex hull of all Hamilton cycles that use
all edges of E°.

3 STSP Analogues of odd CAT Inequalities

We first did our lifting methods for a subclass of the odd closed alternating
trail (odd CAT) inequalities [2] of the ATS polytope. The first odd CAT
inequality we look at comes from the odd closed alternating trail shown in
Figure 1.

The odd CAT inequality corresponding to this is denoted by axr < 2,
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N
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Figure 1: An odd closed alternating trail.

where the coefficients a;; are as follows.

(12 = Q91 = A31 = A34 = Q14 = 1,
a;; =0 otherwise.

This odd CAT inequality is facet-defining for AT'S(V) for |V| > 4, [2].
Through our lifting methods, we obtain inequalities which are facet-defining
for STS(V* UV™). The inequalities we obtain are, of course, well-known
since a complete description of STS(Ky) is known, [5]. On 500 randomly
chosen lifting sequences, we obtained the following:

(i) a three-tooth comb inequality on 213 cases,
(ii) a four-tooth ladder inequality on 33 cases,
(iii) a newl inequality on 254 cases.

The newl! inequality was discovered in [5], and along with two other inequal-
ities, completed the polyhedral description of STS(V) for |V| = 8. Figure
2 shows the standard form for the newl inequality that our procedure pro-
duced. Figure 3 displays the skeleton of the tight-triangular form of this
inequality [8].

3.1 SymCAT Inequalities

This prompted us to investigate what STS inequalities we could produce from
other odd CAT inequalities. Here, we consider odd CAT inequalities formed
from one alternating cycle and one two-cycle. An example on six nodes is
seen in Figure 4.



®
3+
2+ 1-
<7
2_
4_
@ 4+

Figure 2: The newl inequality in standard form.

The odd CAT inequality is denoted by az < 3, where the coefficients a;;
are as follows:

(12 = Q21 = A31 = A34 = G54 = As6 = Q16 = 1,
(14 = aze = as; = 1,
a;; =0 for all other arcs (i, ).

We again used our lifting procedure with random lifting sequences, obtain-
ing facet-defining inequalities for ST'S(V* U V™) from the above odd CAT
inequality on AT'S(V) for |V| > 6. On some of these lifting sequences, we ob-
tained just comb inequalities. However, on most of the lifting sequences, we
encountered a ST'S(VTUV ™) facet-defining inequality, with |[VTUV ™| = 12,
which we could not identify as a known STS inequality. The support of this
inequality is shown in Figure 5. Figure 6 shows this inequality in tight-
triangular form.

We studied this ST'S inequality in the attempt of generalizing it, and
as a result we inferred the following class of STS inequalities, that we call
symCAT inequalities. Let V' = {1,2,...,n}, where n is an even integer.
Let ax < % be the odd CAT inequality for AT'S(V') corresponding to an
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Coefficients for edges not drawn are equal

to the shortest path in the graph above.

Figure 3: The newl inequality in tight-triangular form.
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Figure 4: Support of a 6-node odd CAT inequality.
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Figure 5: Support of the 12 node SymCAT inequality
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Coefficients for edges not drawn are equal

to the shortest path in the graph above.

Figure 6: The 12 node SymCAT inequality in tight-triangular form
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odd closed alternating trail on n vertices which, when directions are ignored,
has a cycle on vertices 1 and 2 and another cycle of vertex 1 and all the
other vertices except 2, such as is shown in Figure 4. We then have the
STS(V* U V™) inequality ar < 37” + 1, where the coefficients @;; for edges
{i,j} are given by:

G- = ag for all i £ j € {1,2,...,n},

Girjr = 0 for all i £ j € {1,2,...,n},

a-;- = 1 forall i # j € {2,4,...,n} U {1}, (3)
a-- = 0 otherwise,

are1- = 2,

e = 1 for all i € {2,3,...,n}.

Figure 7 gives an

has this in tight-triangular form.

illustration of the general SymCAT inequality. Figure 8

3.2 Proof that SymCAT's are valid
Theorem 1 The inequality ax < 3 +1 is valid for STS(VT UV ™).

Proof: Consider the comb shown in Figure 9, where the handle is {17} U
{17,27,3%, 47, ..., n"} and the teeth are {i*,i"} for i = 2,3,...,n. Denote
the corresponding comb inequality by bz <

Define S := {17,27,17,27}. Consider adding up the following inequali-

ties, weighted by %:

3(’”,72) __3n
32 43— sn,

(z(6(17)) < 2
(z(6(47)) < 2
(z(6(67)) < 2
@Em) < 2
(s < )
(2141~ < 1)
(w315~ < 1
(Tn—1)ytm-1- < 1)
(z(E(S)) < 3).

3n

When these are all added up, one obtains ax +uxr < =* + %, where u is a non-

2

negative vector. By performing Chvatal rounding, one obtains az < 37” + 1.

This proves our theorem.

12
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Edges between all pairs of black nodes also have coefficient 1 but are not drawn

Figure 7: The 2n-node SymCAT inequality
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Coefficients for edges not drawn are equal

to the shortest path in the graph above.

Figure 8: The 2n-node SymCAT inequality in tight-triangular form
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3.3 Proof that SymCATSs are Facets for TTSP

This section shows a general method that can be used to show that inequal-
ities obtained from the lifting procedure are facet-defining for the STSP. It
is based on the idea of creating a tree structure outlining the order the co-
efficients can be maximally lifted. The root of the tree can be chosen freely
because the lifting process has one degree of freedom (see below). As a spe-
cific example, the process will be shown on the symCAT inequality on 12
nodes, which is derived from the CAT inequality on a 6-node ATSP from
Figure 4, and then we will generalize this for higher n. If only the coeffi-
cients whose variables are fixed to zero are lifted, one gets an inequality valid
for the twin traveling salesman polytope (TTSP). If this can be shown to be
facet-defining, most of the work will be done, as it is fairly easy to show that
lifting the remaining variables (those fixed to one), creates a facet-defining
inequality for the STSP (see Section 4).

The odd CAT inequality of the ATSP that we use here arises from a
closed alternating trail where node 1 is both a source and sink, node 2 is
neither a source nor sink, and the cycle visits in order (ignoring directions)
1,3,4,5,6, and back to 1. (See Figure 4) The odd nodes greater than 1 are
only sources and the even nodes greater than 2 are only sinks. Denote this
inequality on the expanded undirected graph as ax < 3. Lifting this to the
TTSP yields:

ag+j+ =0 for all ¢,7,
a;i-;- =1 foralli,je{1,2,4,6} (5)
a;-j- =0 otherwise .

In lifting the coefficients for the missing £+ and E~ variables, notice that
one could choose any variable and assign its coefficient an arbitrary value and
still have a valid TTSP inequality, for the following reason. Let ax < ag be
a valid TTSP inequality, and let € > 0. Define a’ by:

a
a
a

!'=a.+e forallee ET
l:=a.—e€ foralleec E~ (6)
L= ae otherwise.

Then d'z < ag is a valid TTSP inequality that defines the same face as
ar < ag since the equation z(ET) = z(E~) is valid for the TTSP and the
STSP.

Hence, we may assign any single coefficient to any value (we choose to
set aj+9+ := 0) to begin our rooted tree. This choice is arbitrary as the proof
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could start at any node. Once one coefficient is assigned, other coefficients
can be assigned by the following operation:

(1) Choose a tour using all six edges in Fy and six of the edges in E*~
whose values for x make the inequality ax < 3 tight. Note that for the
TTSP, a, = 0 for any e € Ey, and the values for a, for e € E*~ are
taken from the odd CAT inequality on the ATSP.

(2) Alter the tour with a 2-interchange move, swapping out two edges from
E*~ and adding two edges, one from E* and one from E~. One of these
two new edges should be an edge whose coefficient is already assigned,
and the other should be an edge whose coefficient is not yet assigned.
Since the new tour must satisfy the inequality ax < 3, the unassigned
coefficient, a., has a maximum allowable value, and that value will
make ar = 3. The objective of the proof is to find a sequence of
these operations where the maximum allowable values match the lifted
values in (5). A tree structure is used in place of the sequence, as
there are often several good choices for the next edge to be assigned
in the sequence, and the tree structure shows off the patterns in the
generalization more easily.

Using the tour 17172727474%57516-67373"1" (which is tight since a;+o-,
as+e-, and ag+1- are equal to 1), choose a 2-interchange move that removes
edges {17,27} and {2%,47}, and adds edges {1*,2%} and {27,47}. Note
that a;+o+ is already assigned to zero, and the new tour still uses variables
as+¢-, and az+1— which are 1. Thus, to make ax = 3, the variable ay—,— must
be set to 1. This matches the value in (5), so we can assign as-4- := 1 after
we assign aj+o+ = 0.

Not every possible 2-interchange move will create a useful assignment. For
example, if we start with the tour 171727273737474"575766"1~ (this is
tight since aj+9-, ag+4—, and az+g— are equal to 1), and choose a 2-interchange
move that replaces edges {1%,27} and {2%,37} with edges {1%,27} and
{27,37}, the maximum value allowed for as-3- would be 1, but our target
for this variable is 0. A different tour and different 2-interchange move later
in the process will create the upper bound of 0 we are looking for.

Figure 10 shows one possible tree diagram that can lead to the appropriate
assignments for each of the variables. Each dependency in the tree is asso-
ciated with a tour. Given the tour, there is only one possible 2-interchange
move in the tour that adds the two edges associated with the parent and
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child in the dependency. Therefore, the tree and list of tours constitute the
proof that, given the lifting from F(VT UV ™) to TTS(V*T UV ™) is valid, it
is also maximal. The labels on the arcs of the tree in Figure 10 refer to the
tours in the following list:

la:1717272%474757576767373T1~ 1b: 1717272767675 57474737371~
le:1717272%4747373767 615571~ 1d:171727276767373t474T5"571~
20 :1717474757576761373T272"1~ 2b: 1717474737376 675527211~
2¢:171767675 5747413312727 1~

3a:17174747373"57516767272"1~ 3b: 1717676737 3t5 574 41272%1~
4a :17173737474757576767272T1 4b:17175°574747373767 6127211~
4e: 1717373767675 57474727271~ 4d: 1717575766737 3474127271~
ba : 1717272737347 4155767671~ 5b:1717272757574747373767 611~

The above list of tours and the tree in Figure 10 prove that the 12-node
symCAT inequality is facet-defining on the TTSP.

For the general case, notice that even nodes greater than 2 are indistin-
guishable in the odd CAT and symCAT inequalities. The same is true for
odd nodes greater than 1. For this reason, the tour (5a above)

1-1+27273-3+ 4 4+5 5766+ 1-
could be represented by
171727 2%0dd " odd™ even™ even™ odd™ oddeven even™ 1.

Tour 5b would become the same generic tour. Also, note that tours la
through 1d would be the same, as would 2a through 2c, 3a and 3b, and
finally 4a through 4d. To generalize to a larger odd CAT, additional even-
odd pairs can be inserted into each general tour, giving a tree structure that
can be used for any size odd CAT (see Figure 11). Notice that when an
even node is used in both the parent node and child node of an arc in the
tree, they will always be referencing different even nodes in this tree. In the
previous example, one can note that the assignment of az-¢- was a child of
the assignment of ay+,+, while the assignment of as—,~ was a child of the
assignment of as+g+. This is not necessary, since there does exist a tour that
could be used to assign az-4— after as+4+, but avoiding these tours makes the
generalization simpler.

18



42+ =0

la 1b

A-4- =1 a-¢- =1

2a 4b

2b 2c 3a 4a

Q143+ =0 | | Q145+ =0 | | Q345+ =0| | Q146+ =0 | | Q346+ =0 | | 546+ =0

5a

- =1

2a 2b
3b 3a

Ap+3+ =0 | |44+ =0 | | Q46+ =0 | | Apss4 =0

1b la
Y

a3-6- =0 | | a5-6- =0 A4-=1| |a16-=1] |46 =1

5a 5h 1a 1c

a;-3- =0 | |a3-5- =0 |a3_4-=0]| | a4-5- =0 37 4e 4d

Q144+ =0 | | Q44+ =0 | | Q45+ =0

4/ 4d \13
Y

dp-3- =0 |ap5- =0 | az-s- =0

4c¢

Y
a4+6+ :0

Figure 10: A tree showing the order of lifted coefficients for n = 6.
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a4+ =0

1
y
a2-even—::]-

2 2 3
A1+0qd+ =0 Aodd+odd+ —0 a1+event =0 Aodd+evens =0

5 4

Y
a;p- =1 Bodd-odd-=0 87-odg- =0
3/ k 4
Y

Ap+even+t =0 Az+0qd+ =0 Aeven+even+ =0

5 1\
aodd—even— =0 a1—odd— =0 a1—even— =0 aeven—even— =0

20

Figure 11: A tree showing the order of lifted coefficients in the general case




: 1717272 even~eventodd odd™ (.. .)even~ even™odd odd™ 1~
: 1717 even~eventodd™ odd* (.. .)even~eventodd oddt2271~
: 171 even~even™odd ™ oddtodd~odd™ (. . .)even~ event27 211~
: 171 odd™ odd " even~eventodd~odd™ (. . .)even event27211~
: 171727 2% odd ™ odd " even~ even™odd~odd* (. . .)even~ event 1~

T W N~

Parentheses indicate where an arbitrary number of even-odd pairs may be
inserted.

This list of tours and the tree in Figure 11 prove that our class of symCAT
inequalities is facet-defining for TTS(V*T UV ™).

We will show that the class of symCAT inequalities is also facet-defining
for STS(V* U V™) using methods developed in the next section.

4 The Cloning Coefficient in A2S Lifting

In this section we analyze an important property of A2S lifting, with the aim
of establishing useful bounds on some of the lifting coefficients. We deal with
a generic facet-defining ATS(V') inequality

ar < ap,

and denote by
ay < Qo

the corresponding inequality for STS(V™ U V™). To simplify notation, we
define

Bt = {{it,j")ii<jeV)
E- = {{i,j}:i<jeV}
E° = {{it)i"}:ieV}

The variables in E° are initially set to 1 and the variables in B+ U E~
are initially set to 0 in F(V* U V™). Moreover, we assume without loss of
generality that @;+;- = 0 holds for each {i™,i"} € E° before lifting, which
implies @y = ag at the starting point where ay < @, is facet-defining for
F(V*UV™). Finally, we concentrate on the situation where one of the
variables fixed to 1, namely y;+;- for an {i",i~} € E°, is lifted first. This is
motivated by the fact that the lifting coefficient of such a variable can then
be computed easily.
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Given a (facet-defining) inequality ax < ao for ATS(V'), let the cloning
coefficient ayy, for each vertex k € V' be computed as

apr = max{a; +ag; —ay; 1 #j €V \{k}}

Balas and Fischetti [3] show that if we add a vertex i’ with a new coeffi-
cient vector a’ that satisfies

/ / .
Ay = iy, Ay = Gy Yv eV \{i}
/ / o
az‘z‘/, a’Z,Z — au
S .
a,, = Qu otherwise

then a’x < a, + a;; is valid and facet-defining for the ATSP. We now give the
main theorem of this section.

Theorem 2 Let ax < ag define a facet of ATS(V') and let ay < @y be its
A2S counterpart, and thus facet-defining for F(Vt UV ™). Leti € V. Then

ay + a;iYi+i- < ao + @i (7)
represents a maximal lifting of the coefficient of the variable y;+;,- if this
coefficient is lifted first in the lifting sequence from F(VTUV ™) to STS(V*TU
V).

Proof: We must establish that (7) is valid and that for any ¢ > 0, the
inequality

ay + (ai; — €)yi+i- < ap+ (a; —¢€) (8)

is not valid.

We first establish validity. Let y be a feasible tour for the current poly-
tope. If g+~ = 1, clearly (7) holds, so suppose g;+;~ = 0. With a two-
interchange on ¢, create a tour § where edges {i*,77} and {kT,i"} are
replaced by edges {i",i~} and {k*,j~}. From the definition of the cloning
coefficient, we have

E?J <ay+ i Y j+i— -

Since (7) holds for ¥ and g;+;- = 0, (7) holds for ¢. Since § was arbitrary,
(7) is valid.
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To show that (8) is invalid, we first choose an arc (k, j) from the ATSP,
such that a; = a;; + ar; — a;. Since the inequality is facet-defining for
the ATSP, there exists a tight tour on the ATSP using the arc (&, j), which
corresponds to a tight tour on F(V* U V™), which we will denote §. With
a two-interchange on ¢, create a tour ¥ where edges {i*,:"} and {k*,j "}
are replaced by edges {i",j~} and {k*,i"}. (This is the reverse of the two-
interchange done in the first part of the proof.) Because of the choice of
(k,7), ay = ay = ag + a;;. Since {i*,i~} is not an edge of 7, we have

ay + (ai; — €)Y+~ = Y = ag + @i > ao + (@i — €)
which proves that (8) is invalid. O

Theorem 3 The class of symCAT inequalities is facet-defining for STSP(V U
V).

Proof: The class of symCAT inequalities were shown in the previous section
to be facet-defining for TTSP(V ™ U V™). If the lifting of the EY coefficients
were maximal, our theorem would follow. If these EY edges were lifted first,
the maximal lifting would be given by the cloning coefficients of the corre-
sponding nodes. Maximally lifting these E° edges whose variables are fixed
to 1 later in the sequence can only result in larger values than the cloning
coefficients (if they change at all). Note that this relationship is larger, not
smaller, because variables fixed to 1 must be complemented before lifting and
restored after lifting. This also changes the right-hand side of the inequality.

Since using the cloning coefficients for the E° edges does not make the
symCAT inequalities invalid, but using smaller values clearly would make
our inequalities invalid, the E° edges have been maximally lifted as required.

O

5 Curtain Inequalities

The ATS class of curtain inequalities has a definition depending on how
many nodes are in the cycle of the cycle inequality that the curtain in-
equality is lifted from. We will treat only the case where the number of
nodes in this cycle is 4k for some integer x > 2. Let C be the cycle vis-
iting in sequence the nodes iy, 19, ...,1%4, Where 4x < n. For notational
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ease, we will relabel the nodes in our graph so that the nodes on this cy-
cle are 1,2,...,4k. Define Sy := {1,3,5,...,4x — 1} (the set of odd cycle
nodes), C1 :={(1,3),(3,5),...,(4x — 1, 1)}, and L; := {(3,4x — 1), (5,4K —
3),...,(4r — 1,3)} \ {(2k + 1,26 + 1)}. Then the curtain inequality is as
follows:

ar = z(C) + x(E(S1)) + 2(Ch) + x(L1) < 4k — 1. 9)

The curtain inequalities are facet-defining for ATS [1].

5.1 Deriving a new STS inequality class

We tried our lifting methods on an asymmetric curtain inequality whose
cycle has 12 nodes. We used 12 nodes because we believed it would be
more likely to reveal any generalities since the eight node case has only
one pair of anti-parallel arcs in L;. From this experiment, we were led to
hypothesize the following facet-defining STS class of inequalities which we
will call symCurtain inequalities. This class appears to be a new class of
STSP inequalities, similar to that of the inequality derived from the curtain
in [1]. The inequalities on 16 and 24 nodes are pictured in Figures 12 and
13, respectively.

ar <12k — 1, (10)
where
al'+j+ :ai_j_ = Z’j€{1,375,,4/{/—1},
al+(l+1)+ :al_(lfl)_ = 1 ’[/ 6 {173,57...,4I{/— ]-}7
Ty = 1 i€{2,4,6,...,4K},
ai+i7:3 26{1,3,5,,41‘@_1},
a, =0 otherwise.

In the definition above, and for the remainder of this section, nodes in the
cycle should be considered modulo 4x. For example, when ¢ = 1 node ¢ — 1
refers to node 4k and not the non-existent node 0. Note that @; ;- is defined
to be the cloning coefficient for node ¢ in the curtain inequality.

5.2 Proof that SymCurtains are valid
Theorem 4 The inequality (10) is valid for STS(VTUV ™).
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Figure 12: The symCurtain inequality on 16 nodes.
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All undrawn edges between odd—numbered
nodes have weight equal to 1.

Figure 13: The symCurtain inequality on 24 nodes.
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Proof: By contradiction, consider a tour & that violates our curtain
inequality, i.e.,
6:13260—1—1:: bo.
Define V; to be the set of odd labeled vertices and V5 to be the set of
even labeled vertices. Define V;" to be the subset of V; with a superscripted

plus. Similarly define V;~, V;", and V5 . Recall that ¢ is outside the cycle of
the curtain inequality. Define the edge sets

EO = E(‘/Q—F)UE(‘/Q_))
By = i G+ D)7} rieVipu{{in, (i —1)7} s i e Vi),
Q = E(VHUEV)\(EyUEr) Uiew ((6(i%)US(i7)) Nd(q)).

Consider a valid STS(V* U V™) inequality bx < by := ag + 1 derived by
adding up the following inequalities:

z(6(it)) < 2,
2(6(7)) < 2 VieW,
Liti— S 1 Vie ‘/,
—z(Q) < 0.

One can verify that @ < b. Hence,
by < az < bx < by,

and so the inequalities in the derivation of bx < by are all tight at .
We will now transform z into a tour T by a sequence

=22l a2 =2 =7

of 2-interchanges, for which

We first eliminate the m edges of F; that are used in the # tour. If z* uses,
say, the edges {i*,(i+1)"} and {v, (i +1)"} (v # (i+1)") for i € V4, then
form z**! by replacing these two edges with {v, (i +1)*} and {i*, (i +1)"}.
A similar operation is performed if 2* uses the edge {(i —1)~,i~} fori € V}.
We now eliminate the Fy edges. If 2™** uses an edge {i*,j"} in Fy, with
j > (or {i*,q},{q,j}) then there is a corresponding edge {i3,j; } in Ej
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also used in ™%, Form z™**! by replacing these two edges with the 2

edges in §(V*) N d(V ™) which keep 2™**! connected, and inserting ¢ into
one of these entering edges if necessary.
Now we satisfy

T(E(VH)UEWVT)) = 0,
Ti‘l’i* - ]. \V/Z € V

Because of our transformation from ATS(V) to STS(Vt UV ™), and the fact
that the curtain inequality is valid for ATS(V'), it follows that

Wﬁam

a contradiction. O

5.3 Proof that SymCurtains are Facets

Using the method introduced in section 3.3, we can arbitrarily choose to set
one coefficient, and show by a tree relationship how the remaining coefficients
for the TTS polytope can be assigned (see Figure 14). The tours used to
show the relationships in the tree are given in Figure 15. The tree, tours,
and the following theorem prove that our class of symCurtain inequalities
are facet-defining on the STSP.

Theorem 5 Inequality (10) is facet-defining for STS(VT UV ™).

Proof: From our last theorem, inequality (10) is valid for STS(VTU V™).
Note that (10) is uniquely determined by the bounds shown in the tree of
Figure 14, and (10) is also valid for TTS(V™ U V™). Thus, when the E°
edges are ignored, we have that (10) is facet-defining for TT'S(V*" U V™).
Since the E° coefficients can not be any smaller than the corresponding ATS
cloning coefficients, and these values are obtained tightly, the lifting to the
polytope ST'S(V*™ UV ™) is maximal, from which our theorem follows.
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a-1+c+ -

1

L

aeven—even— _0

w
I
ol

aeven+q+ =0 aodd+q+ =0 Aeven+even+ =0 Aodd-+odd+ =1 aq+q+ =0

7 8 9 10
11 _ ~ _ _
a-odd—q— =0 aeven—q—_0 Aodd-odd- =1 aq—q— =0
12
Aodd—even- =1 ifodd = even+1 Aoddsevens =1 ifodd = even-1
=0 otherwise =0 otherwise

Figure 14: A tree showing the order of lifted coefficients for the symCurtain
inequality:.
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x  refers to the pair of nodes z—, zt.

€;
qi
ee
qq

= an even node in the cycle. o; = an odd node in the cycle.
= a node outside the cycle.

= all unspecified even nodes in the cycle, in any order.

= all unspecified nodes outside the cycle, in any order.

L:ag+g+ t0 Gey—ey— (€1,€2 # 2)

1,e1,e6,q9q,¢q1,€2,2,3,5,7,...,n—1,1
(if e = 2 use tour 1,eq,€€,9q,¢1,2,3,5,7,...,n—1,1)

20—y 1O Qeytg+

e3,€1,qq,q1, €2, 2+ 1. ea+3,...,ea+n—1,ee, e;3

3¢ Gey—ey— 1O Gpy+gy+ (€1,€2 7# 01 + 1)

Olaelan7q1762766701+1a01+2701+4a"'701+n_2a01

4: e —ey— 1O Qegte,+

€3,€1, 64,62, + 1,60 +3,...,ea+n—1,qq,ee,e3

D Gey—eg— 0 Uptop+ (01 =€ — 1,00 = €9 + 1,01 # 02)

6:a

€1 ez

1,2,3,...,ea—1,ea+1,e9,qq,e0 +2,e0+3,...,n,1
toaq1+@+
q1,€1,q2, 62,62+ 1, ea +3,...,ea+n—1,ee,qq,q

T Qeytept tO Ag—g— (€1,62 # 01 — 1)

€1,01,01 +2,00 +4,...,00+n—2,00 —1,e2,q1,qq, ee, e

81 Qeytegt 1O Uey—g,—

er,es,es+1l,es+3,...,es+n—1,es,q1,qq, ee, er

9 Geytept 1O Gp—0y— (01 = €1 — 1,090 = €9 + 1)

1,2,3,...,e1 —2,q9q,e1,01,01 +2,e1 +2,e1+3,...,n,1

10 2 ey tept 1O GG —go

11a :

115 :

12a :

12b

e1,q1,€2,q2,9q9,ee,e1 + 1, e +3,e1+5,...,e1+n—1,¢e;
Qey+qy+ 10 Qoy—ey- (61, ey # 09 — 1)
€1,€2,€€,4q,q1,02,09 + 2,00 +4,...,00+n—2,00—1,€;
Qeytq,+ 10 Qo —e,— (1 =01 — 1)
1,2,3,...,e1 —1,9q,q1,e1,e1 +1,e1+2,...,n,1
Uey—gy— O Qoyte,+ (€1,62 7 09 + 1)
€s,€1,e€,00+1,004+2,00+4,...,00+n—2,00,q1,qq, €2

Doy —g— 10 Goyte+ (61 =01+ 1)

172737"'7617q17qQ7€1+1761+27"'7n71

Figure 15: The tours used to show the dependencies in the tree of Figure 14.
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