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Abstract

Support Vector Machines (SVM’s) are ubiquitous and attracted a
huge interest in the last years. Their training involves the definition
of a suitable optimization model with two main features: (1) its op-
timal solution estimates the a-posteriori optimal SVM parameters in
a reliable way, and (2) it can be solved efficiently. Hinge-loss mod-
els, among others, have been used with remarkable success together
with cross validation—the latter being instrumental to the success of
the overall training, though it can become very time consuming. In
this paper we propose a different model for SVM training, that seems
particularly suited when the Gaussian kernel is adopted (as it is often
the case). Our approach is to model the overall training problem as
a whole, thus avoiding the need of cross validation. Though our basic
model is an NP-hard Mixed-Integer Linear Program, some variants
can be solved very efficiently by simple sorting algorithms. Computa-
tional results on test cases from the literature are presented, showing
that our training method can lead to a classification accuracy com-
parable (or even slightly better) than the classical hinge-loss model,
with a speedup of 2-3 orders of magnitude.

Keywords: support vector machine, classification, mixed-integer program-
ming.
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1 Introduction

Data classification is a very important task in machine learning. Supervised
learning for data classification tries to infer a function from a given set of
training examples. A supervised learning algorithm then analyzes the train-
ing data and produces a function to be used for the (as accurate as possible)
classification of new examples.

In this paper we address Vapnik’s [6] Support Vector Machine (SVM),
and in particular its training when the so-called Gaussian kernel is adopted
[1]. We assume the reader has some familiarity with the basic ingredients
of classification methods; see, e.g., Carrizosa and Romero Morales [3] for a
recent review on mathematical optimization for supervised classification, and
the book of Hastie, Tibshirani, and Friedman [4] for a more general treatment
of statistical learning.

SVM training is typically done by solving an optimization problem whose
objective function gives a tradeoff between classification margin (i.e., norm
of the training parameters) and misclassification over the training set. By
fixing some parameters—notably, the tradeoff weight in the objective func-
tion and the constant(s) appearing in the kernel definition—the problem
becomes convex and can therefore be solved efficiently. The fixed parameters
can instead be tuned through an outer-loop optimization where candidate
values are tested through cross validation over the training set. The overall
approach is quite time consuming, as a series of convex optimization prob-
lems need to be solved. E.g., if the outer loop has just 2 parameters, each
of which has 5 alternative values, and 5-fold cross validation is used, then
5*5*5+1=126 convex problems need be solved for a single SVM training.

In the present paper we propose a new model that avoids (or, at least,
greatly reduces) the need on the outer-loop optimization, by incorporating
cross validation into the model. To be more specific, we propose a new
Mixed-Integer Linear Programming (MILP) model that aims at minimizing
the so-called leave-one-out estimate of misclassification probability—leave-
one-out being the name of the most time-consuming k-fold validation arising
where k is equal to the number of training points. Though NP-hard, we
show that this model can heuristically be solved in a practically satisfactory
way through a clever approach that applies a general-purpose MILP refining
tool to an ad-hoc warm-start solution. Even more importantly for practical
applications, we show how the model can be simplified to be solvable very
efficiently while retaining (or even improving) its accuracy on the test set.
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In our view, the main contributions of our work are as follows:

1. We use a new interpretation of SVM’s with Gaussian kernels in terms
of telecommunication systems.

2. We present a new MILP model that uses a leave-one-out objective
function to train the SVM, without the need of a time consuming outer-
loop optimization through cross validation.

3. We investigate the overfitting phenomenon associated with our model,
and introduce a new way to contrast it: instead of introducing quadratic
penalty terms in the objective, we introduce a-priori constraints in
the model that limit the degree of freedom of the solutions and hence
overfitting.

4. We present very fast algorithms for solving the constrained versions
of our model, and computationally show that they allow for a SVM
accuracy (on the test set) at least as good as a standard hinge-loss
model, but run orders of magnitude faster.

The present paper is organized as follows. The basic SVM approach is
outlined in Section 2, together with some basic optimization models used for
its training. Our leave-one-out MILP model is introduced and discussed in
Section 3, where we also illustrate the overfitting phenomenon on a sample
case. Computational results on test cases from the literature are presented
in Section 5. Conclusions and possible directions of research are finally illus-
trated in Section 6.

2 SVM training

In supervised classification, we are given a training set consisting of p pairs
(x1, y1), · · · , (xp, yp) with xi ∈ Rn and yi ∈ {−1,+1}. The n components
of each point xi are called features and represent some known attributes
of the point, whereas the corresponding yi gives the known classification of
the point as belonging to one of two given classes encoded by +1 and -1,
respectively.

Given a point x ∈ Rn not in the training set with an (existing but)
unknown classification yx ∈ {−1,+1}, we want to estimate yx with some
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degree of accuracy. A SVM is a function that estimates yx by computing

y(x) := sign(

p∑
i=1

αiyiK(x, xi) + β0) (1)

where K(x, xi) is a given scalar kernel function, and α1, · · · , αp ≥ 0 and
β0 (the latter unconstrained in sign) are parameters of the SVM that do not
depend on x but can preliminary be tuned by using the points in the training
set.

The kernel function K(x, xi) is intended to measure the “similarity” be-
tween x and xi (the larger the more similar). The two most widely-used such
functions are

• linear kernel: K(x, xi) :=< x, xi > (inner product between x and xi)

• Gaussian kernel: K(x, xi) := e−γ‖x−xi‖
2

(for a given parameter γ > 0)

The linear kernel gives a signed measure of the similarity between x and xi,
in the sense that the angle between the two points plays a role in determining
how similar they are, and can lead to negative values of K. On the contrary,
the Gaussian kernel only depends on the Euclidean distance between x and xi,
and is based on the assumption that similar points are close one to each other
in the feature space (in terms of Euclidean distance). This latter assumption
is very reasonable in many cases, hence the Gaussian kernel is often used in
practice.

In what follows we will make use of the following “telecommunication”
interpretation of (1), that we proposed together with Lucia Petterle in her
master’s thesis [5]. Each point xi in the training set broadcasts its value yi
with an amplification level αi, and the transmitted signal decay in the feature
space with an exponential law e−γd

2
depending on the Euclidean distance d

and on the power-decay parameter γ. A receiver sitting at the given measure
point x computes the total signal received, namely

∑p
i=1 αiyie

−γ‖x−xi‖2 , com-
pares it with a threshold −β0, and decides whether the signal in x is likely
to be +1 or -1 according to the sign of the result.

The situation is illustrated in Figure 1 for the classification of points in
the plane that belong to a given spiralis. The +1 training points belong to
the spiralis, whereas the -1 points are random samples on the plane. If all
points xj transmit with the same amplification level αj = 1, a careful choice
of the power-decay parameter γ and of the threshold −β0 defines a “narrow
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tube” around the spiralis where the received signal exceeds the threshold,
thus allowing for a reliable classification of the points in the plane.

Figure 1: Telecommunication interpretation of SVM with Gaussian ker-
nel: the region where the received signal exceeds a sufficiently-large positive
threshold defines a “narrow tube” around the spiralis.

As already mentioned, the SVM parameters α = (α1, · · · , αp) and β0
(and γ in case of Gaussian kernel) have to be determined in a preliminary
training phase. To this end, the SVM parameters are viewed as variables
of a suitable mathematical model based on the training set data, and the
optimal solution of the model determines the actual SVM parameters to be
used to classify new points. The choice of the mathematical model is of
course crucial, as being “too clever” on the training set almost invariably
leads to an overfitting phenomenon. A widely-used model is the following
convex quadratic problem:

(HINGE) minα,β0,ξ
1
2

∑p
i=1

∑p
j=1 αiαjyiyjK(xi, xj) + C

∑p
j=1 ξj (2)

yj(
∑p

i=1 αiyiK(xj, xi) + β0) ≥ 1− ξj ∀j = 1, · · · , p (3)

αj ≥ 0, ∀j = 1, · · · , p (4)

ξj ≥ 0, ∀j = 1, · · · , p (5)

where C > 0 is a parameter to be tuned (together with γ in case of Gaussian
kernel) through an external cross validation procedure; see [4, 3] for details.
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3 Leave-one-out training models

At first glance, one would expect that the best choice for α and β0 (and γ
for Gaussian kernel) would be the one that minimizes the average number
of misclassified points in the training set, computed by solving the following
MILP:

(NAIVE) minα,β0,z
1
p

∑p
j=1 zj (6)

yj(
∑p

i=1 αiyiK(xj, xi) + β0) ≥ ε−Mzj ∀j = 1, · · · , p (7)

0 ≤ αi ≤ 1, ∀i = 1, · · · , p (8)

zi ∈ {0, 1}, ∀i = 1, · · · , p (9)

where ε > 0 is a very small tolerance value used to make the null solution
(α, β0, z) = (0, 0, 0) infeasible, M is a very large “big-M” positive value, and
zj = 1 iff xj is misclassified, i.e., iff yj and

∑p
i=1 αiyiK(xj, xi) + β0 do not

have the same sign. The normalization condition αi ≤ 1 is also imposed for
all i.

Training model NAIVE turns out to be very unsatisfactory in practice, as
it tends to overfit the training points and typically leads to a high misclassifi-
cation probability for the points x not belonging to the training set. In other
words, the NAIVE objective function can be a very poor approximation of
the real misclassification probability of the resulting SVM when applied to
points x not in the training set.

In our view, a main modeling error is that NAIVE includes the contri-
bution of xj in its summation (7). By taking our telecommunication inter-
pretation, this means that the model assumes that a transmitter is always
present in the same place where we want to make a signal measure, which is
of course unrealistic. For example, for a Gaussian kernel the NAIVE model
would tend to choose a very large value for γ (so as to have an “almost
impulsive” kernel with K(x, xj) ≈ 1 if x = xj, K(x, xj) ≈ 0 otherwise), as
setting α1 = · · · = αp = 1 and β0 = −0.5 gives no misclassification at all in
the training set—but this choice is completely useless as no significant signal
is received outside the training set.

To avoid the above drawback, we propose a modified leave-one-out (loo)
model where each point xj is “left out” as a transmitter when the total signal
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seen at xj is measured, namely:

(LOO MILP) minα,β0,z
1
p

∑p
j=1 zj (10)

yj(
∑

i:i 6=j αiyiK(xj, xi) + β0) ≥ ε−Mzj ∀j = 1, · · · , p(11)

0 ≤ αi ≤ 1, ∀i = 1, · · · , p (12)

zi ∈ {0, 1}, ∀i = 1, · · · , p (13)

where the quantity

νj(α) :=
∑
i:i 6=j

αiyiK(xj, xi) (14)

appearing in (11) will be called net signal measured at xj, and does not take
the signal transmitted by xj into account as the total signal

∑p
i=1 αiyiK(xj, xi)

in (7) does.
The “leave-one-out” name needs some clarifications. In statistical theory,

term leave-one-out refers to a cross validation procedure that works as fol-
lows. Suppose to use a deterministic training methodM(T ) to define the op-
timal SVM parameters on a set T of training points. Let ALL := {1, · · · , p}
correspond to the overall training set. For each j = 1, · · · , p: (i) tem-
porarily remove xj from the training set; (ii) train the SVM by applying
M(ALL \ {j}), and (iii) define zj = 1 if xj is misclassified by the trained
SVM, zj = 0 otherwise. At the end, the quantity

∑p
j=1 zj/p is the leave-

one-out estimate of the probability that a SVM trained through M(ALL)
will misclassify a new point x ∈ Rn. It is known that this estimate is quite
reliable (both in theory and in practice), provided that the training method
M(T ) is completely “blind” with respect to the points not in T ; see e.g.
[4]. However, the leave-one-out method can be very time consuming, hence
it is seldom used in practice—k-fold cross validation with k = 5, 10 being
typically preferred for the choice of some model parameters such as C and γ.

In our LOO MILP model (10)-(13), the objective function—because of
(11)—plays the role of the leave-one-out estimate of the misclassification
probability. However, the model (as stated) involves all training points for
the optimal determination of the SVM parameters αi’s and β0, so the blind-
ness hypothesis fails and the method is still prone to overfitting. To contrast
this drawback, we propose to limit a priori the valid choices for the SVM
parameters, e.g., by imposing exactly one of the following additional sets of
constraints:

α1 = α2 = · · · = αp = 1 and β0 = 0 (15)
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α1 = α2 = · · · = αp = 1, β0 free (16)

αi =

{
α+ ≥ 0, ∀i : yi = +1
α− ≥ 0, ∀i : yi = −1

, β0 free (17)

Model LOO 1, i.e., model LOO MILP amended by restriction (15), rep-
resents our extreme case where all SVM parameters αi’s and β0 are fixed,
so there is no degree of freedom and no optimization at all is needed—just
set zj = 0 if yj(

∑
i 6=j yiK(xj, xi)) ≥ ε, and zj = 1 otherwise. In this case,

the objective function models leave-one-out accuracy in an exact way, as no
overtuning is (of course) incurred. Although apparently trivial, it was shown
in Petterle [5] that the resulting SVM can perform reasonably well, mainly
when the Gaussian kernel is considered. The explanation is that the Gaus-
sian kernel itself often acts as a good classifier, even without any tuning of α
and β0—whose “too clever” determination can actually be counterproductive
because of overfitting.

Model LOO 2, i.e., model LOO MILP plus (16), represents a compromise
where all αi’s are fixed a priori, and the training model has only one degree
of freedom as it can decide the remaining variable β0. Our intuition (con-
firmed by the computational tests) is that optimizing β0 can significantly
improve the optimal value of the objective function, that on the other hand
remains a reliable approximation of the true leave-one-out estimate of the
misclassification probability.

Model LOO 3, i.e., model LOO MILP plus (17), has more degrees of
freedom as it can optimize the three scalar variables α+, α−, and β0. This
is of course beneficial because a better optimal value than in the previous
two models can be achieved, but the objective function itself can become
a less reliable approximate of the true leave-one-out figure. Note that the
αi’s (together with β0) in model (10)-(13) can always be scaled, so we can
without loss of generality impose the normalization condition α+ + α− = 1.
Hence LOO 3 actually has only two degrees of freedom, as the only variables
to optimize are α+ ∈ [0, 1] and β0.

An important feature of models LOO 1 and LOO 2 is that they allow for
a very fast SVM training related to the leave-one-out estimate. In particular,
model LOO 1 allows one to compute the exact leave-one-out estimate in just
O(p2) time, assuming the kernel function required O(1) time, while model
LOO 2 can also be implemented to run in O(p2) time—as shown in the
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next section—and produces a quite tight approximation of the corresponding
leave-one-out estimate.

As to model LOO 3, in principle it can be solved as a MILP problem.
In practice, however, one can just fix some guess values for α+, e.g., α+ ∈
{0, 1

10
, 2
10
, · · · , 1}, define α− = 1−α+, optimize β0 through the fast procedure

of the next section, and choose the option that gives the minimum objective
function value. Besides its computational advantage over the MILP option,
this procedure is beneficial in terms of overfitting in that it reduces the
degrees of freedom of the training method.

The behavior of models LOO MILP, LOO 1, LOO 2 and LOO 3 is il-
lustrated in Figure 2 on a sample case (instance Australian [2]). For each
model, we plot two graphs in the corresponding subfigure, namely:

a) the graph of the optimal value of the model, computed on the training
set (called “loo estimate” in the figure)

b) the graph of the a-posteriori misclassification rate on the test set (called
“true misclassification” in the figure), computed by the SVM corre-
sponding to the optimal solution (α∗, β∗0) of the model.

On the horizontal axis we consider different values for γ, ranging from 0 to
0.25.

There two conflicting requirements in the choice of the “best” training
model.

On one hand, the “loo estimate” of the model should give a reliable
approximation of the “true misclassification” over the test set, for all values
of γ. If this is the case, it makes sense to choose the values (α∗, β∗0) and γ∗

that minimize the “loo estimate” on the test bed, and use them in the final
SVM for the classification of unknown points. From this point of view, the
fewer degrees of freedom in the model the better.

On the other hand, one is interested in attaining a small misclassification
probability, i.e., a small value of both the “true misclassification” and “loo
estimate” values. As the latter is in fact the optimal value of an optimization
problem, one is tempted to favor models with a larger degree of freedom.

In this respect, model LOO 1 exhibits a very good similarity between the
“loo estimate” and and “true misclassification” graphs, which is not surpris-
ing as the optimal LOO 1 value coincides with the leave-one-out estimate—
due to the very restrictive assumptions (10). However, the lack of any degree
of optimization (besides γ) leads to an optimal LOO 1 value (i.e., estimated
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misclassification rate) that can hopefully be reduced. This is in fact what
happens for models LOO 2 and LOO 3, where graph similarity is still very
good—meaning that the model is still reliable—and the “loo estimate” values
are smaller. The behavior of the LOO MILP model (where no restrictions
on α and β0 are imposed) is quite interesting: the much larger degree of free-
dom leads to significantly better values of the “loo estimate”, but overfitting
becomes large and makes this improvement useless as it does not translate
into a better misclassification rate on the test set.

Figure 2: Optimal model values (“loo estimate”, in dashed blue) and “true
misclassification” rate on the test set (in red) as a function of γ, for instance
Australian.

We finally observe that the nice similarity seen in Figure 2 would be
completely lost if the NAIVE model were used, i.e., if the net signal appearing
in (11) were replaced by the standard total signal appearing in (7). Indeed, as
already observed and clearly illustrated in Figure 3, in this case the training
objective function would favor an “impulsive” kernel and hence would lead
to a very large γ value. This confirms the importance of the apparently
minor change of using the net (as opposed to total) signal when counting
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misclassifications over the training set. In this respect, it is very important
that training models such as NAIVE (and, to some extent, HINGE) do not
pretend to optimize γ with the same model used for α and β0, but resort to
an external cross validation procedure.

Figure 3: Wrong LOO 2 optimal value with total instead of net signal (dashed
blue) and “true” misclassification rate on the test set (red) as a function of
γ, for instance Australian.

4 Optimizing β0 and γ

In this section we show how to optimize β0 in the LOO models, assuming
that all αi’s (as well as γ for Gaussian kernel) are fixed. The idea is very
simple: according to (11) and by assuming a very small threshold ε, a point
xj is classified correctly if and only if

yj(νj(α) + β0) > 0

We start with β0 = −∞, for which only the -1 points in the training set
are classified correctly, and initialize the number nok of correctly-classified
points accordingly. Then we iteratively increase β0, update nok and store the
value of β0 that maximizes nok. Of course, only the values −νj(α) need to
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be considered explicitly when varying β0: when β0 meets −νj(α), point xj
flips it classification status, and nok is increased (if yj = +1) or decreased
(if yj = −1) by one unit. Therefore, to find the best β0 it is enough to
initially compute all νj(α)’s in O(p2) time, sort them in nondecreasing order
in O(p log p) time, and then scan the νj(α) values in O(p) time. A pseudo-
code of the whole procedure is given in Algorithm 1.

Algorithm 1: Fast leave-one-out optimization of β0
input : the p training points (x1, y1), · · · , (xp, yp) along with the

associated αi’s, and the kernel function K(·, ·)
output: the best parameter β∗0 and the associated (approx.)

leave-one-out estimate of the misclassification probability

1 nok := 0;
2 for j := 1 to p do
3 if yj = −1 then nok := nok + 1;
4 νj := 0;
5 for i := 1 to p do
6 if i 6= j then νj := νj + αiyiK(xj, xi);
7 end

8 end
9 Sort all νj’s to get νσ(1) ≤ νσ(2) ≤ · · · ≤ νσ(p);

10 β∗0 := −∞; n∗ok := nok;
11 for k := 1 to p do
12 j := σ(k);
13 if yj = −1 then
14 nok := nok − 1;
15 else
16 nok := nok + 1;
17 if nok > n∗ok then
18 n∗ok := nok;
19 β∗0 := −νj;
20 end

21 end

22 end
23 return β∗0 and (p− n∗ok)/p ;

In case the Gaussian kernel is used, parameter γ needs to be carefully
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chosen as it affects the SVM in very significant way. When the HINGE model
is used, γ is not considered as a decision variable “inside the model” but it
is chosen (together with C) by using an external k-fold validation procedure.
When the LOO models are used, instead, one can think of optimizing γ by
using the same LOO objective function, thus bringing γ inside the model
itself.

In particular, we have observed that the optimal value of the LOO 1–
LOO 3 models typically behaves as an almost unimodal function of γ, i.e.,
this value is (almost) monotonically decreasing in the interval (0, γmin), and
(almost) monotonically increasing in (γmin,+∞); see the dashed-blue graphs
in Figure 2 for an illustration. Therefore we can approximately minimize it
through a simple (well known) bisection method that works as follows.

Let V (γ) be the optimal LOO value for a given γ ≥ 0, computed as ex-
plained in the previous section, and assumes it is exactly unimodal in the
interval [0,+∞). At each iteration, we know the value of V for three points
γL < γC < γR (L-C-R for left-center-right), where V (γC) < min{V (γL), V (γR)}
which ensures that the optimal γ belongs to the “uncertainty interval” (γL, γR).
Then we choose the largest subinterval between [γL, γC ] and [γC , γR], and
compute V (γM) for its middle point γM (say). Depending on the value of
V (γM) and because of the unimodal assumption, we can then exclude either
γL or γR, rename the three remaining points, and repeat. The algorithm
terminates when the uncertainty degree γR−γL is sufficiently small, and the
final γC is returned as an approximation of the optimal γ.

According to our computational experience, the above bisection method
performs reasonably well even when the function is only approximately uni-
modal, provided that the first interval [γL, γR] is sufficiently narrow and
V (γC) is significantly smaller that min{V (γL), V (γR)}.

5 Computational tests

The methods presented in previous sections were implemented in C and run
on a notebook with Intel Core i7@2.7GHz with 8GB RAM (single thread).
The state-of-the-art IBM ILOG CPLEX 12.5 commercial solver (single thread)
was used for solving our benchmark models HINGE and LOO MILP, while
all other codes are completely self-contained and do not need any external
optimization tool.

Our test methodology followed closely that used in Brooks [2]. In par-
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ticular, we addressed the same standard testbed. To be fair, we omitted
instance Adult as it contains a very large number of points (30,157) and
would be impossible to handle by our benchmark methods (HINGE and
LOO MILP) without using specific sampling techniques, as well as other ar-
tificial datasets. The main characteristics of the instances in our testbed are
reported in Table 1. All instances can be downloaded in a unified format
from http://www.dei.unipd.it/∼fisch/datasetSVM.tar.gz

Table 1: Characteristics of the instances in our testbed.

Instance n. points n. features

Australian 690 43
Breast 683 9
Bupa 345 6
German 1,000 24
Heart 270 23
Ionosphere 351 34
Pima 768 8
Sonar 208 60
Wdbc 568 30
Wpbc 194 33

For each instance in our testbed, 10 subinstances were constructed whose
points were randomly assigned to the training set (with uniform probability
of 70%) or to the test set (30% probability). As in [2], for each subinstance
we applied the following normalization step: the average avgf and standard
deviation sdf of each feature f ∈ {1, · · · , n} were computed over the training
set, and all points xi were normalized by replacing xif by (xif − avgf )/sdf ;
features f with sdf = 0 are instead removed from all points (both in the
training and test sets).

Table 2 (top) reports the outcome of our experiments for the Gaussian
kernel, and compares the performance of the HINGE and of our four “LOO
models” (namely, LOO 1, LOO 2, LOO 3, and LOO MILP) in terms of mis-
classification rates over the test set (in boldface to ease comparison) and
computing times on our hardware.

HINGE misclassification figures are from Table 5.5 in Petterle [5]; note
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that the results in Table 3 of [2] are not comparable because they exploit
four different kernels (linear, degree-2 polynomial, degree-9 polynomial, and
Gaussian). As to HINGE computing times, they refer to the IBM ILOG
CPLEX 12.5 barrier solver, and include time spent for choosing the best
(γ, C) pair (out of 5*5 options) through a 5-fold cross validation procedure—
meaning that 5*5*5+1=126 quadratic problems need be solved for each
subinstance, as in [2]. We note here that specialized codes exist for solving
HINGE (in its dual form), so the speedups reported have to be considered
as just informative.

Columns LOO 1 to LOO MILP refer to the models defined in Section 3.
For all models, the choice of γ was performed through the bisection procedure
of Section 4, starting from γL = 0.01, γR = 1, and γC = (γL + γR)/2, and
ending when γR−γL < 0.01 (this typically required about 10 iterations). For
LOO 2 and LOO 3, the best β0 parameter was found through the efficient
procedure of Section 4.

Model LOO MILP was solved through the CPLEX’s general-purpose
MILP solver with a time limit of 30 sec.s for each call, with default pa-
rameters except cut generation (all cuts were deactivated) and numerical
tolerances CPX PARAM EPINT and CPX PARAM EPRHS set to 0.0 and 1e-9, re-
spectively. The LOO 2 solution was provided on input to the solver as a
warm start, switching to the so-called polishing refining heuristic after 10
sec.s. In the LOO MILP model, we set ε = 10−5 (which is 10 times larger
than the numerical tolerance of 10−6 used for counting misclassifications in
the test set) and M = 10, 000. We stress again that model LOO MILP was
considered in our experiments mainly for benchmark purposes, as its perfor-
mance (in terms of both speed and quality) is not competitive with the other
LOO models.

For each instance and for each LOO model, five entries are reported in
Table 2, each corresponding to averages over the 10 subsinstances. The first
two entries (loo and sd) give the percentage average and standard deviation
of the optimal value of the LOO model (called “loo estimate” in Figure 2),
that we see as an estimate of the misclassification rate over the test set.
The next two entries (mis and sd) give the percentage average and standard
deviation of the misclassification rate over the test set (called “true misclas-
sification” in Figure 2). The 5-th entry (t.) reports the average computing
time for the overall training, in CPU sec.s on our hardware.

The last two rows of the table report percentage averages over the en-
tire testbed (Average) and the percentage estimation error computed as
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100*(loo-mis)/mis (Estim. err.), negative as loo tends to be a lower bound
on mis.

Comparing the four loo columns confirms that having more degrees of
freedom is beneficial in terms of optimal LOO value: on average, for LOO 1,
LOO 2, LOO 3, and LOO MILP the loo value is 19.03%, 16.75%, 15.59%,
and 4.20%, respectively. However, these figures estimate the “true” misclas-
sification rate with an increasing error of 3%, 8%, 10%, and 79%, so the
improved loo values do not necessarily translate into better misclassications
rates, that in fact are 19.74%, 18.22%, 17.45%, and 20.80%, respectively.

Comparing “true” misclassification rates on the test set (in boldface)
shows that the LOO models are competitive with HINGE, with the exception
of LOO 1 that is heavily penalized by its bad performance on Ionosphere,
and of LOO MILP because of its very large overfitting. In particular, LOO 2
has a slightly better average misclassification rate than HINGE (18.22% vs
18.33%), while LOO 3 with its 17.45% average misclassification rate qualifies
as the best classifier.

The advantage of the LOO 1-LOO 3 models in terms of speed is quite im-
pressive: on average, HINGE training required about 600 sec.s, while LOO 1,
LOO 2, and LOO 3 required just 0.3, 0.6, and 7.1 sec.s, respectively, meaning
a speedup of 2-3 orders of magnitude (at least, with respect to the general-
purpose CPLEX solver) to achieve a comparable or better classification ac-
curacy. The full LOO MILP model, instead, appears less attractive also in
terms of computing time, as it required 216.6 sec.s on average.
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Table 2: Percentage value and standard deviation (sd) of optimal LOO value (loo) and misclassification on
the test set (mis, in boldface), and CPU time in sec.s (t.); averages over 10 runs for each instance. For each
instance, the best mis entry is underlined.

HINGE LOO 1 LOO 2 LOO 3 LOO MILP
Instance mis t. loo sd mis sd t. loo sd mis sd t. loo sd mis sd t. loo sd mis sd t.

Australian 18.20 728.3 16.04 1.13 16.28 2.22 0.4 14.74 1.15 15.31 2.78 0.8 14.64 1.17 15.68 2.59 10.6 2.51 0.88 22.68 2.94 435.1
Breast 3.20 627.5 3.22 0.45 3.61 0.99 0.4 2.97 0.29 4.00 0.98 0.8 2.41 0.35 3.50 1.04 9.8 0.04 0.08 6.18 1.80 41.4
Bupa 32.70 88.2 36.67 2.31 38.68 4.39 0.0 33.98 1.93 39.00 2.43 0.1 33.20 1.37 39.61 3.47 1.7 4.41 1.85 39.08 3.19 429.6
German 27.97 2453.2 27.19 0.95 26.52 3.18 1.0 26.57 1.20 26.45 3.16 2.2 24.09 0.84 25.74 3.27 22.9 19.81 2.14 29.22 3.21 462.8
Heart 23.00 47.9 17.88 1.02 19.05 3.26 0.0 17.12 0.84 19.11 3.19 0.1 16.47 0.98 18.77 2.21 1.0 1.29 0.43 23.22 6.17 141.9
Ionosphere 6.30 123.5 19.73 1.67 23.38 2.97 0.0 4.93 0.26 6.66 1.19 0.1 4.23 0.35 6.34 1.50 1.8 0.00 0.00 6.41 1.59 5.4
Pima 25.70 1231.0 25.24 1.42 25.59 2.52 0.6 24.39 1.23 25.76 2.76 1.2 23.37 1.01 25.68 2.95 14.8 11.82 4.10 28.20 3.20 450.4
Sonar 18.00 25.2 16.49 0.97 17.03 3.64 0.0 15.88 1.54 17.93 2.86 0.0 12.91 0.83 11.44 3.39 0.6 0.00 0.00 15.56 3.62 6.3
Wdbc 4.50 646.4 5.15 0.60 5.66 1.43 0.2 4.65 0.73 5.29 1.70 0.5 3.58 0.57 4.63 1.44 6.9 0.02 0.07 4.82 1.46 8.7
Wpbc 23.70 29.0 22.72 1.92 21.59 4.78 0.0 22.28 2.13 22.67 3.90 0.0 21.03 1.92 23.14 2.71 0.6 2.05 0.84 32.66 5.40 184.5

Average 18.33 600.0 19.03 1.24 19.74 2.94 0.3 16.75 1.13 18.22 2.50 0.6 15.59 0.94 17.45 2.46 7.1 4.20 1.04 20.80 3.26 216.6
Estim. err. -3% -8% -10% -79%
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6 Conclusions

We have addressed how to effectively train a Support Vector Machine with
Gaussian kernel. We started with a naive Mixed-Integer Linear Programming
model, and elaborated it to reduce its overfitting behavior. The resulting
model aims at minimizing the leave-one-out estimate of the misclassification
probability—a figure that we explicitly use as objective function—and does
not require an external (time consuming) cross validation procedure. A main
idea of our approach is to reduce overfitting on the training set by imposing
additional constraints on the model—rather than penalizing risky solutions
through the objective function, as it is done customary. For Gaussian kernel,
a natural approach is to force all parameters αi’s to be equal, or to only
depend on the +1/-1 class of the corresponding point.

Efficient algorithms based on sorting have been proposed for simplified
versions of our model, that do not require any external optimization tool.
According to our computational results, our method is competitive with clas-
sical hinge-loss training in terms of accuracy (at least, on our testbed and by
using the Gaussian kernel), but runs much faster.

Future research should address how to allow for a controlled increase
of the degrees of freedom in the training phase, that does not imply an
unacceptable increase of overfitting. Indeed we conjecture that, at least for
specific classes of problems, one could easily guess some a-priori properties
of the SVM parameters in a good classifier, and impose them as constraints
in our training model. The adaptation of this approach to the linear kernel
case is also an interesting research topic.
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