A Feasibility Pump heuristic for general
Mixed-Integer Problems

Livio Bertacco*!, Matteo Fischetti®, Andrea Lodi%

*Department of Pure & Applied Mathematics, University of Padova,
via Belzoni 7 - 35131 Padova (Italy) - 1ivio.bertacco@unipd.it

"Dash Optimization Ltd,
64 Trinity Street - Leamington Spa CV32 5YN (UK)

°Department of Information Engineering, University of Padova,
via Gradenigo 6/A - 35131 Padova (Italy) - matteo.fischetti@unipd.it

§ DEIS, University of Bologna,
viale Risorgimento 2, 40136 Bologna (Italy)

1IBM, T.J. Watson Research Center
PO Box 218, Yorktown Heights, NY 10598, USA - alodi@us.ibm.com

May 31, 2005; Revised November 3, 2005

Abstract

Finding a feasible solution of a given Mixed-Integer Programming
(MIP) model is a very important (AP-complete) problem that can be
extremely hard in practice. Very recently, Fischetti, Glover and Lodi
proposed a heuristic scheme for finding a feasible solution to general
MIPs, called Feasibility Pump (FP). According to the computational
analysis reported by these authors, FP is indeed quite effective in find-
ing feasible solutions of hard 0-1 MIPs. However, MIPs with general-
integer variables seem much more difficult to solve by using the FP
approach.

In this paper we elaborate on the Fischetti-Glover-Lodi approach
and extend it in two main directions, namely (i) handling as effec-
tively as possible MIP problems with both binary and general-integer
variables, and (ii) exploiting the FP information to drive a subsequent
enumeration phase.

Extensive computational results on large sets of test instances from
the literature are reported, showing the effectiveness of our improved
FP scheme for finding feasible solutions to hard MIPs with general-
integer variables.

Key words: Mixed-integer programming, Heuristics, Feasibility Problem,
Computational analysis.

1 Introduction

In this paper we address the problem of finding heuristic solutions of a
generic MIP problem of the form

(MIP) minc’z (1)
Az > b (2)
xj integer VjeT (3)

where A is an m X n matrix and Z is the nonempty index-set of the integer
variables. We assume without loss of generality that the MIP constraints
Az > b include the variable bounds

(possibly l; = —oo and/or u; = +oo for some j), where N denotes the set
of all (continuous and integer) variables.

Finding any feasible MIP solution is an A/P-complete problem that can
be extremely hard in practice. As a matter of fact, state-of-the-art MIP
solvers may spend a very large computational effort before initializing their
incumbent solution. Therefore, heuristic methods aimed at finding (and
then refining) any feasible solution for hard MIPs are very important in
practice; see [4], [5], [13], [14], [15], [16], [17], [19], [20], [22], [11], [9], and [6]
among others.

Very recently, Fischetti, Glover and Lodi [12] proposed a heuristic scheme
for finding a feasible solution to general MIPs, called Feasibility Pump (FP),
that works as follows. Let P := {z : Az > b} denote the polyhedron
associated with the LP relaxation of the given MIP. With a little abuse of
notation, we say that a point x is integer if z; is integer Vj € Z (no matter
the value of the other components). Analogously, the rounding Z of a given
x is obtained by setting &, := [z;] if j € 7 and &; := z; otherwise, where [-]
represents scalar rounding to the nearest integer. The (L;-norm) distance
between a generic point € P and a given integer T is defined as

Alw, &) =) |z; — &l

JjeT

Notice that = is assumed to be integer; moreover, the continuous vari-
ables z; with j ¢ Z, if any, do not contribute to the distance function

A(z,Z). For any given integer Z, the distance function can be written as':

A, @)=Y (-L)+ Y (w—z)+ >, dj (4

JEL:Z;=l; JEL:Zj=u; JET:1;<Tj<u;
where variables d;(= |x; — &;|) satisfy constraints
dein—.’i’j and djz:ij—xj \V/jGIllj<ij<Uj (5)

It then follows that the closest point z* € P to & can easily be determined
by solving the LP L
min{A(z,z) : Az > b} (6)

where Az > b is the original system Ax > b possibly amended by constraints
(5). If A(z*, %) = 0, then z} (= ;) is integer Vj € 7, so z* is a feasible MIP
solution. Conversely, given a point * € P, the integer point Z closest to z*
is easily determined by just rounding z*. The FP heuristic works with a pair
of points (z*, Z) with * € P and Z integer, that are iteratively updated with
the aim of reducing as much as possible their distance A(z*, Z). To be more
specific, one starts with any z* € P, and initializes a (typically infeasible)
integer Z as the rounding of z*. At each FP iteration, called pumping cycle,
T is fixed and one finds through linear programming the point z* € P which
is as close as possible to z. If A(z*,Z) = 0, then z* is a MIP feasible
solution, and the heuristic stops. Otherwise, Z is replaced by the rounding
of z* so as to further reduce A(z*,Z), and the process is iterated.

The FP scheme (as stated) tends to stop prematurely due to stalling is-
sues. This happens whenever A(z*,Z) > 0 is not reduced when replacing
Z by the rounding of z*, meaning that all the integer-constrained compo-
nents of £ would stay unchanged in this iteration. In this situation, a few
components Z; are heuristically chosen and modified, even if this operation
increases the current value of A(z*,z). The reader is referred to [12] for a
detailed description of this (and related) anti-stalling mechanisms.

According to the computational analysis reported in [12], FP is quite
effective in finding feasible solutions of hard 0-1 MIPs. However, as observed
in the conclusions of that paper, MIPs with general-integer variables are
much more difficult to solve by using the FP approach. This can be explained

IThis expression is slightly different from the one proposed in [12]; both definitions
assume an objective function that tends to minimize the value of the d; variables.

by observing that, for a general integer variable, one has to decide not just
the rounding direction (up or down), as for binary variables, but also the
new value of the variable; e.g., if a variable z; is between 0 and 10 and
takes value 6.7 (say) in the LP relaxation, the decision of “moving up” its
value still leaves four values (7, 8, 9, and 10) to choose from. The same
difficulty arises in case of stalling: in the binary case, one only needs to
choose the variables to flip (from 0 to 1 or viceversa), whereas for general
integer variables one also has to decide their new value.

In this paper we build on the ideas presented in [12] for 0-1 MIPs and
extend them in two main directions. The first one is to handle effectively
MIP problems with both binary and general integer variables. The second
is to exploit the information obtained from the feasibility pump to drive an
enumeration stage.

The paper is organized as follows. In Section 2 we propose an FP ex-
tension to deal with MIPs with general-integer variables. Computational
results are presented in Section 3, where we compare the FP performance
with that of the commercial solvers Xpress Optimizer 16.01.05 and ILOG
Cplex 9.1 on a set of hard general MIPs taken from MIPLIB 2003 library [3]
and other sources. Section 4 considers the important issue of improving the
quality of the first solution found by FP. Finally, we draw some conclusions
in Section 5.

2 The Feasibility Pump for general-integer MIPs

The basic scheme of our FP implementation for general MIPs is illustrated
in Figure 1. As already stated, the method generates two (hopefully con-
vergent) trajectories of points z* and & that satisfy feasibility in a comple-
mentary but partial way—one satisfies the linear constraints, the other the
integer requirement. The current pair (z*, Z) is initialized at steps 1-2. The
while-do loop at step 4 is executed until the distance A(z*, Z) becomes zero
(in which case, * is a feasible MIP solution), or the current iteration counter
nlter reaches a given limit (maxIter). At each pumping cycle, at step 6
we fix Z and re-define z* as the closest point in P, so as to hopefully reduce
the current distance A(x*,%). At step 7 we check whether A(z*,) = 0,
in which case z* is feasible and we stop. Otherwise, at step 9 we replace
Z by [z*] (the rounding of z*), and repeat. In case the components of the
new T indexed by Z would coincide with the previous ones, however, a more
involved computation is needed to avoid entering a loop. We first compute,
at step 11, a score 0 =]a:;k — |, j € 7, giving the likelihood of component

The Feasibility Pump for general MIPs (basic scheme):
1. initialize x* := argmin{c’z : Az > b}

2. &:=[2*] (:= rounding of z*)

3. nlter := 0

4. while (A(z*,Z) >0 and nIter < maxIter) do

5. nlter := nIter+l

6. a*:=argmin{A(z,7): Az > b}

7. if A(z*,Z) >0 then

8. if [2]] # &; for at least one j €I then

9. update 7 := [z¥]

10. else

11. for each j € 7 define the score o; := |z} —]

12. move the TT=rand(T/2, 3T/2) components Z; with largest o;
13. if cycling is detected, perform a restart operation
14. endif

15. endif

16. enddo

Figure 1: The basic FP scheme for general-integer MIPs

I; to move, i.e., to change its current value from Z; to Z; + 1 (if 27 > ;) or
to z; — 1 (if xj < &j). Then, at step 12 we update Z by performing the TT
(say) moves with largest score, where TT is generated as a uniformly-random
integer in range (T/2, 3T/2), and T is a given parameter.

In order to avoid cycling, at step 13 we check whether one of the following
situations occurs:

e the current point Z is equal (in its components indexed by Z) to the
one found in a previous iteration;

e distance A(z*,Z) did not decrease by at least 10% in the last KK (say)
iterations.

If this is the case, we perform a restart operation (to be detailed later),
consisting in a random perturbation of some entries of Z.

As a further step to reduce the likelihood of cycling, we found it useful
to also perturb the rounding function used at step 2 of Figure 1. Indeed,
the rounded components are typically computed as [z;] := |z; + 7] with 7
fixed at 0.5. However, in our tests we obtained better results by taking a

random 7 defined as follows:

. 2wl —w) fw<
7(w) ‘_{ 1-2w(l —w) ifw>

DO DO

where w is a uniform random variable in [0,1). Using the definition above,
threshold 7 can take any value between 0 and 1, but values close to 0.5 are
more likely than those near 0 or 1; see Figure 2 for an illustration of the
probability distribution and density for 7(w).

1

©

0.8

=)

0.6

IS

0.4

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 2: Probability distribution and density of the rounding threshold

2.1 Binary and general-integer stages

Difficult MIPs often involve both binary and general-integer variables play-
ing a quite different role in the model. A commonly-used rule in MIP solvers
is to branch first on binary variables, then on general integers. This cor-
responds to the “smallest domain first” rule in constraint programming:
branching on a variable with a large domain (e.g., a general integer vari-
able) will not enforce as powerful constraints as branching on a variable
with a small domain (e.g., a binary variable), therefore it is postponed to
the bottom of the tree. Following this approach, we found useful to split the
FP execution in two stages.

At Stage 1 (binary stage), we concentrate on the binary variables z;
with j € B (say), defined as the integer variables z; with u; —{; = 1, and
relax the integrality condition on all other z;, j € 7\ B. This produces
an easier MIP, with a distance function A(z,z) that does not involve any
additional variable d;. The purpose of the binary stage is to reach as soon
as possible a solution that is feasible with respect to the binary variables,
with the hope that the general-integer ones are also “almost integer” and
only a few of them will require the introduction of the additional variables
d; and of the associated constraints (5).

At Stage 2, instead, the integrality condition on all (binary and non-
binary) variables x;, j € Z, is restored, and the FP method continues by
taking into account all the integrality requirements (this requires the intro-
duction, at each iteration, of the additional variables d; needed to express
the distance function with respect to the current point z).

During Stage 1, the restart operation at step 13 is only performed in
case of cycling (i.e., when the same Z is found in different iterations), and
consists in a random flip of the binary variables that did not change in the
last iteration, with probability |z} —[z7]|+ p, where p = 0.03 is an hardwired
parameter.

The algorithm exits Stage 1 and moves to Stage 2 when: (a) a “feasible”
(with respect to the binary variables only) solution z* has been found, or
(b) the incumbent minimum A(z*,) has not been updated in the last KK
= 70 iterations, or (c) an iteration limit has been reached. The point Z that
produced the smallest A(z*, Z) during Stage 1 is stored and passed to Stage
2 as the initial Z.

2.2 Enumeration stage

For some difficult instances, FP (as stated) turns out to be unable to find a
feasible solution within acceptable computing time. In this case, instead of
insisting with the classical FP scheme one can think of resorting to a sort of
“enumeration stage” based on the information provided by the previous FP
execution. Following this idea, we have implemented the following simple
scheme.

Let 2 (B for best) be the LP point z* computed at step 6 of the
algorithm of Figure 1 which is as close as possible to its rounding . Even
in case 2P is not feasible, we typically have that the infeasibility measure
A(xB,%) is small. Therefore it seems reasonable to concentrate on Z and
use a (possibly heuristic) enumerative MIP method in the attempt of finding
a feasible integer solution which is close to Z. In our implementation, this
is obtained by applying a general-purpose (truncated) MIP solver to the
original problem (1), after having replaced the original objective function
c’'z by the distance function (4), where Z := [25] is the “almost feasible”
solution available after Stage 2. The idea here is to exploit the full power of
the MIP solver, but with an objective function that penalizes the solutions
that are far from the available “almost feasible” FP solution Z.

As the enumeration phase above is applied at the end of Step 2, it will
be referred to as the Stage 3 of the overall FP method.

3 Computational experiments

In this section we report computational results comparing the performance
of the proposed FP method with that of the two state-of-the-art commercial
solvers, namely, Xpress Optimizer 16.01.05 [8] and ILOG Cplex 9.1 [18].
Of course, the heuristic performance of a MIP solver depends heavily on the
branching rule (as discussed, e.g., in [7]), on the tree-exploration strategy
[9], and on the tuning of specific parameters of the MIP solver at hand. In
our experiments, however, we decided to use as much as possible the default
parameter values of the codes under comparison. To be specific, in our FP
implementation we used the following parameters:

e iteration limit set to 10000 and 2000 for Stage 1 and 2, respectively;
e parameter TT set to 20;
e parameter KK set to 70 for stage 1 and 600 for Stage 2;

e in the perturbation phase of steps 11-12 of Figure 1, we consider only
variables with fractional value (defined as |z; —[z;]|) greater than 0.02,
and always leave the other variables unmodified.

In order to have a fair comparison, the LP/MIP functions used within FP
are the same used by the method under comparison. To be more specific,
we ran Xpress Optimizer against an FP implementation based on Xpress
Optimizer procedures (called FP-xpress in the sequel), and ILOG Cplex
against an FP implementation based on ILOG Cplex procedures (called FP-cplex
in the sequel). Within our FP code, we used the ILOG Cplex function
CPXoptimize and Xpress Optimizer function XPRSminim to solve the ini-
tial LP (thus leaving to the solver the choice of the actual LP algorithm
to invoke), with the default parameter setting except for disabling the pre-
solver. For the subsequent LPs with the modified objective function, we
forced the use of the primal simplex algorithm. The reason for this choice is
that, from iteration to iteration, the feasibility of the current basis is always
preserved during stage 1 and, quite often, also during stage 2 (according to
our computational tests, using the primal simplex yields to better comput-
ing times on 31 out of 35 instances and, on average, to a 25% performance
improvement). Finally, within the enumeration Stage 3 we set the ILOG
Cplex parameter MIP emphasis to 4 (i.e., Emphasize hidden feasible solu-
tions, so as to activate the RINS heuristic [9]), in order to bias the search
towards feasibility rather than optimality. All other solver parameters were
left at their default values.

The MIP solvers compared against FP have been run in their default
settings (with presolver enabled), except the ILOG Cplex parameter MIP
mphasis (set to 1, i.e., Emphasize integer feasibility) and the Xpress Optimizer
parameter XPRScutstrategy (set to 3, i.e., Aggressive cut strategy). Accord-
ing to our computational experience, these settings gave the best average
results, for the respective solvers, on the instances we considered.

Our testbed is made by general-integer MIP instances drawn from four
sources:

1. instances from MIPLIB 2003 [3];
2. instances from MILPIib [21];
3. the periodic scheduling instances described in [23];

4. the network design and multicommodity routing instances described
in [9].

Pure 0-1 instances from all sets have been excluded from the comparison,
as they have been addressed in [12].

Table 1 reports the instance name, the corresponding number of variables
(n), of 0-1 variables (|B|), of general-integer variables (|G| = |Z| — |B|) and
of constraints (m).

The results of our experiments are reported in Table 2 (Xpress Optimizer
vs FP-xpress) and in Table 3 (ILOG Cplex vs FP-cplex). The focus was
to evaluate the capability of the compared methods to converge to an initial
feasible solution, hence all methods were stopped as soon as the first feasible
solution was found. For the MIP solvers, the tables report the computing
time to get the first feasible solution (time) and the corresponding number
of branching nodes (nodes).

As to FP, we report the computing time to get the first feasible solution
(time), the stage where this solution was found (stage), the overall number
of FP iterations (iter) and of restarts (restarts) in stages 1 and 2. The
last column of the tables gives the computing time speedup of FP over the
compared methods (a value greater than 1 meaning that FP was faster).
Finally, the last rows of the tables report the total computing time needed to
process the whole testbed, and the average speedup of FP over the compared
method.

Computing times are expressed in CPU seconds, and refer to an Intel
Pentium IV 2.4GHz personal computer with 512 Mbyte of main memory. A
time limit of 1 hour of CPU time was imposed for all methods.

Name n |B| |G| m source
arkiool 1388 415 123 1048 3]
atlanta-ip 48738 46667 106 21732 [3]
gesa2 1224 240 168 1392 [3]
gesa2-o 1224 384 336 1248 (3]
mannagl 3321 18 3303 6480 [3]
momentum?2 3732 1808 1 24237 [3]
momentum3 13532 6598 1 56822 3]
msc98-ip 21143 20237 53 15850 [3]
mzzv1l 10240 9989 251 9499 [3]
mzzv42z 11717 11482 235 10460 3]
noswot 128 75 25 182 [3]
rol13000 1166 246 492 2295 [3]
rout 556 300 15 291 3]
timtabl 397 64 107 171 [3]
timtab2 675 113 181 204 3]
neos10 23480 23484 5 46793 |21
neos16 377 33 41 1018 [21]
neos20 1165 937 30 2446 [21]
neos7 1556 434 20 1994 [21]
neos8 23228 23224 4 46324 [21]
ic97_potential 728 450 73 1046 [23]
ic97_tension 703 176 4 319 [23]
icir97_potential 2112 1235 422 3314 [23]
icir97_tension 2494 262 573 1203 [23]
rococoB10-011000 4456 4320 136 1667 [9]
rococoB10-011001 | 4456 4320 136 1677 [9]
rococoB11-010000 | 12376 12210 166 3792 9]
rococoB11-110001 | 12431 12265 166 8148 [9]
rococoB12-111111 | 9109 8910 199 8978 9]
rococoC10-001000 3117 2993 124 1293 9]
rococoC10-100001 5864 5740 124 7596 [9]
rococoC11-010100 | 12321 12155 166 4010 [9]
rococoC11-011100 6491 6325 166 2367 9]
rococoC12-100000 | 17299 17112 187 21550 [9]
rococoC12-111100 | 8619 8432 187 10842 [9]

Table 1: Our test bed of MIPs with general integer variables

10

Xpress Optimizer FP-xpress
name time nodes time stage iter restarts| speedup
arki001 7.03 1 66.70 3 1132 100 0.11
atlanta-ip 962.36 220 191.83 1 53 12 5.02
gesa2 0.05 1 0.06 2 5 0 0.75
gesa2-0 0.07 1 0.14 2 25 5 0.50
manna81 0.16 1 3.78 2 3 0 0.04
momentum?2 1996.14 295> 3600.00 3 442 123|< 0.55
momentum3 > 3600.00 1 1479.75 3 350 128> 2.43
msc98-ip 303.23 334 23.91 1 30 6 12.68
mzzv1l 251.56 194 26.66 1 1 0 9.44
mzzv42z 8.45 1 19.52 1 2 0 0.43
noswot 0.02 1 0.00 2 4 0 5.21
roll3000 12.45 72 0.84 2 7 0 14.80
rout 0.06 1 0.05 1 25 9 1.33
timtabl 3.75 1819 0.77 2 293 31 4.90
timtab2 124.58 65387 6.97 3 806 60 17.88
neos10 19.41 1 13.31 1 2 0 1.46
neos16 > 3600.00 1154567|> 3600.00 3 726 70 1.00
neos20 12.11 634 9.95 3 685 82 1.22
neos7 0.20 1 0.17 2 3 0 1.21
neos8 19.30 1 45.08 1 1 0 0.43
ic97_potential 0.05 1 4.75 3 991 35 0.01
ic97_tension 2.92 1325 2.13 2 659 47 1.38
icir97_potential > 3600.00 99765 13.75 3 767 17|> 261.82
icir97_tension 10.20 714 22.74 3 775 116 0.45
rococoB10-011000 0.69 1 1.13 1 18 1 0.61
rococoB10-011001 0.66 1 0.83 1 27 2 0.79
rococoB11-010000 2.03 1 2.33 1 25 1 0.87
rococoB11-110001 5.47 1 4.95 1 14 0 1.10
rococoB12-111111 1520.30 2376|> 3600.00 3 736 102| < 0.42
rococoC10-001000 0.20 1 0.75 1 63 13 0.27
rococoC10-100001 0.95 1 3.44 1 63 10 0.28
rococoC11-010100 2.08 1 2.45 1 19 1 0.85
rococoC11-011100 1.03 1 1.82 1 20 1 0.57
rococoC12-100000 8.39 1 8.08 1 14 0 1.04
rococoC12-111100 3.06 1 2.02 1 13 0 1.52
Total times 16078.96 12760.64 Geometric mean 1.14

Table 2: Convergence to a first feasible solution using Xpress Optimizer

11

ILOG Cplex FP-cplex
name time nodes time stage iter restarts| speedup
arki001 2.83 474 46.53 3 937 74 0.06
atlanta-ip 1562.58 230 113.64 1 5 0 13.75
gesa2 0.05 0 0.02 2 4 0 3.00
gesa2-0 0.25 90 0.03 2 6 0 8.00
manna81 0.22 0 0.34 2 3 0 0.64
momentum2 > 3600.00 0> 3600.00 3 585 131 1.00
momentuma3 > 3600.00 0 1248.13 3 393 125 2.88
msc98-ip 1330.23 120 97.09 1 37 4 13.70
mzzvll 243.34 80 214.83 1 3 0 1.13
mzzv42z 46.58 50 68.56 1 2 0 0.68
noswot 0.00 0 0.00 2 3 0 1.00
roll3000 7.05 300 0.83 2 6 0 8.51
rout 0.34 90 0.05 1 29 5 7.33
timtabl 0.88 752 0.08 2 37 3 11.20
timtab2 129.31 49264 2.14 2 631 64 60.41
neos10 6.88 0 8.28 1 2 0 0.83
neosl6 1272.05 400000 1660.88 3 755 99 0.77
neos20 2.17 194 7.41 3 696 93 0.29
neos7 0.64 50 1.84 3 296 139 0.35
neos8 6.80 0 5.00 1 1 0 1.36
ic97_potential 0.52 40 2.98 3 775 18 0.17
ic97_tension 5.11 4730 2.67 3 1110 99 1.91
icir97_potential 3.48 120 61.09 3 787 7 0.06
icir97_tension 2380.35 464527 4.38 2 344 54 544.08
rococoB10-011000 1.14 0 141 1 23 1 0.81
rococoB10-011001 8.06 70 0.89 1 23 1 9.05
rococoB11-010000 1.86 0 3.20 1 22 0 0.58
rococoB11-110001 5.75 0 7.80 1 22 0 0.74
rococoB12-111111 1808.09 3590 718.55 3 899 101 2.52
rococoC10-001000 0.28 0 0.50 1 53 11 0.56
rococoC10-100001 558.73 1520 2.03 1 58 8 275.07
rococoC11-010100 1.48 0 3.34 1 27 1 0.44
rococoC11-011100 2.13 0 2.39 1 26 1 0.89
rococoC12-100000 51.72 20 7.13 1 21 0 7.26
rococoC12-111100 2.00 0 3.30 1 13 0 0.61
Total times 16642.90 7897.33 Geometric mean 2.00

Table 3: Convergence to a first feasible solution using ILOG Cplex

12

According to the tables, FP compares favorably with both MIP solvers.
Indeed, both FP-xpress and Xpress Optimizer found a feasible solution
for all but 3 instances, but FP-xpress was 14% (in geometric mean) faster
than Xpress Optimizer in finding its first solution. As to the ILOG Cplex
implementation, FP-cplex found a feasible solution to all but one instance,
thus solving one instance more than ILOG Cplex and was 2.00 times (geo-
metric mean) faster than ILOG Cplex. Also to be noted is that 25 out of
the 35 instances have been solved by FP-cplex either in Stage 1 or 2, i.e.,
without the enumeration of Stage 3.

To test the effectiveness of the binary stage, we also ran FP-cplex with
its Stage 1 disabled. The results are reported in Table 4 and show that the
binary stage has a really big impact on the overall performance: without
Stage 1, 4 more instances could not be solved by FP-cplex, whose computing
time was on average 9 times worse due to the increased number of iterations
and of auxiliary variables (the latter reported in column auz var) required.

Table 5 reports the total time and percent time spent by FP-cplex in
each individual stage.

Finally, in order to validate the effectiveness of our approach we com-
pared these results with the performance of the original FP algorithm [12].
Since this method can only handle 0-1 MIPs, we converted each model in
our testbed to a 0-1 problem by replacing each general-integer variable
with a set of binary variables representing the binary encoding of the in-
teger values. More precisely, we replaced each general-integer variable x;,
where 0 < z; < wu;, with n; := [logy(u; + 1)] binary variables x;; such
that x; = Zi:_ol 2Fx;. The original FP applied to the resulting 0-1 MIPs
turned out to be faster in reaching its first feasible solution on just 3 in-
stances (namely, arki001, neos10, and rococoC11-011100), whereas, on all
other instances, it took much longer or could not find any solution at all.

4 Improving feasible solutions

As already mentioned, in the previous experiments our main attention was
on the computing time spent to find a first feasible solution. In this respect,
the FP results were very satisfactory. However, the quality of the solution de-
livered by FP is often considerably worse than that computed (in a typically
longer time) by ILOG Cplex or Xpress Optimizer. This can be explained
by noting that the FP method uses the original objective function only at
step 1, when the solution of the LP relaxation is used to initialize z*, while
the original costs are completely disregarded during the next iterations. As

13

FP with binary stage FP without binary stage

aux iter aux var

Name time iter vars time ratio iter diff vars diff
arki001 46.53 937 96 30.33 0.652 685 -252 95 -1
atlanta-ip 113.64 5 0 168.47 1.482 223 218 68 68
gesa2 0.02 4 35 0.09 6.000 13 9 26 -9
gesa2-o 0.03 6 25 0.08 2.500 11 5 27 2
manna81 0.34 3 2497 0.44 1.273 3 0 2504 7
momentum?2 > 3600.00 585 1| > 3600.00 1.000 616 31 1 0
momentum3 1248.13 393 1| > 3600.00 2.884 441 48 1 0
msc98-ip 97.09 37 0 105.50 1.087 72 35 49 49
mzzv1l 214.83 3 0 873.75 4.067 638 635 131 131
mzzv42z 68.56 2 0 488.70 7.128 662 660 141 141
noswot 0.00 3 4 0.02 19 16 12 8
rol13000 0.83 6 27 64.20 77.528 900 894 466 439
rout 0.05 29 0 0.11 2.333 41 12 7 7
timtabl 0.08 37 88 0.17 2.200 67 30 91 3
timtab2 2.14 631 163 1.72 0.803 421 -210 160 -3
neos10 8.28 2 0 7.31 0.883 1 -1 0 0
neos16 1660.88 755 41 874.41 0.526 978 223 41 0
neos20 7.41 696 30 9.67 1.306 978 282 30 0
neos7 1.84 296 20 1.91 1.034 197 -99 20 0
neos8 5.00 1 0 5.66 1.131 1 0 0 0
ic97_potential 2.98 775 68 4.81 1.613 1183 408 73 5
ic97_tension 2.67 1110 4 1.95 0.731 938 -172 4 0
icir97_potential 61.09 787 291 96.58 1.581 713 -74 292 1
icir97_tension 4.38 344 556 11.31 2.586 431 87 573 17
rococoB10-011000 1.41 23 0 629.59 447.711 633 610 134 134
rococoB10-011001 0.89 23 0 91.72 102.982 632 609 134 134
rococoB11-010000 3.20 22 0 2146.19 670.029 632 610 166 166
rococoB11-110001 7.80 22 0|> 3600.00 461.723 636 614 166 166
rococoB12-111111 718.55 899 173 |> 3600.00 5.010 612 -287 193 20
rococoC10-001000 0.50 53 0 22.59 45.188 456 403 124 124
rococoC10-100001 2.03 58 0 2012.59 990.815 416 358 122 122
rococoC11-010100 3.34 27 0 1234.38 369.159 524 497 165 165
rococoC11-011100 2.39 26 0 527.63 220.706 621 595 163 163
rococoC12-100000 7.13 21 0|> 3600.00 505.263 574 553 187 187
rococoC12-111100 3.30 13 0|> 3600.00 1091.943 518 505 186 186
mean 8.986 224 69

Table 4: Comparison of FP with and without binary stage

14

times percentages
Name stage 1 stage 2 stage 3 stage 1 stage 2 stage 3
arkiO01 0.17 39.30 8.31 0.36% 82.24% 17.40%
atlanta-ip 8.73 100.00%
gesa2 0.00 0.02 0.00% 100.00%
gesa2-o 0.00 0.03 0.00% 100.00%
manna&1 0.00 0.27 0.00% 100.00%
momentum?2 175.77 224.83 3199.41 4.88% 6.25% 88.87%
momentuma3 160.08 432.44 160.77 21.25% 57.41% 21.34%
msc98-ip 7.81 100.00%
mzzvll 2.13 100.00%
mzzv42z 1.09 100.00%
noswot 0.00 0.00
roll3000 0.52 0.06 89.19% 10.81%
rout 0.06 100.00%
timtabl 0.02 0.08 16.67% 83.33%
timtab2 0.14 2.02 6.52% 93.48%
neos10 4.72 100.00%
neosl6 0.55 1.94 1713.63 0.03% 0.11% 99.86%
neos20 0.45 4.17 2.95 5.98% 55.05% 38.97%
neos7 0.28 1.52 0.08 15.00% 80.83% 4.17%
neos8 1.67 100.00%
ic97_potential 0.52 2.47 0.13 16.58% 79.40% 4.02%
ic97_tension 0.19 2.00 0.52 6.94% 73.99% 19.08%
icir97_potential 1.73 8.98 52.67 2.74% 14.17% 83.09%
icir97_tension 0.95 3.47 21.55% 78.45%
rococoB10-011000 0.30 100.00%
rococoB10-011001 0.33 100.00%
rococoB11-010000 0.94 100.00%
rococoB11-110001 1.28 100.00%
rococoB12-111111 45.13 79.66 608.11 6.16% 10.87% 82.97%
rococoC10-001000 0.39 100.00%
rococoC10-100001 1.42 100.00%
rococoC11-010100 1.02 100.00%
rococoC11-011100 0.66 100.00%
rococoC12-100000 1.55 100.00%
rococoC12-111100 0.53 100.00%
mean over all instances 54.68% 29.33% 13.14%
mean over instances performing the stage 54.68% 57.02% 93.31%

Table 5: Time spent in each stage

15

a consequence, the quality of * and T tends to deteriorate rapidly with the
number of iterations and of restarts performed. This explains why the same
behavior is much less pronounced in the binary case studied in [12], where
driving the pair (z*, Z) towards feasibility turns out to be much easier than
in the general-integer case and requires a considerably smaller number of
iterations and of restarts.

In this section we investigate three simple FP strategies aimed at improv-
ing the quality of the solutions found by the method.

The first strategy is based on the idea of adding an artificial upper bound
constraint ¢/z < UB to the LP solved at step 6, where UB is updated
dynamically each time an improved feasible solution is found. To be more
specific, right after step 1 we initialize 27 p = c’'z* (= LP relaxation value)
and UB = +4o00. Each time an improved feasible MIP solution z* of value
M = cTz* is found at step 6, we update UB = azip + (1 —)z for
a certain a € (0,1), and continue the while-do loop. We observed that,
due to the additional constraint ¢fz < U B, it is often the case that the
integer components of & computed at step 9 define a feasible point of the
original system Ax > b, but not of the current one. In order to improve
the chances of updating the incumbent solution, we therefore apply (right
after step 9) a simple post-processing of Z consisting in solving the LP
min{c’z : Az > b, xj = Z; Vj € T} and comparing the corresponding
solution Z (if any) with the incumbent one-solution T being guaranteed to
be feasible for the original problem, as all the integer-constrained variables
have been fixed at their corresponding value in Z.

In the other two strategies, we stop FP as soon as it finds a feasible
solution, and pass this solution either to a Local Branching heuristic [11],
or to a MIP solver using RINS strategy [9].

Table 6 compares the quality of the best solution returned by ILOG
Cplex with that of the solution found (within a 3600-second time limit) by
FP-cplex and then improved by means of one of the three strategies above.
In the table, the first four columns report the instance name (name), the
value of the LP relaxation (LP relax) and of best feasible solutions found
within the 3600-second time limit by ILOG Cplex (Cplex) with two different
settings of its MIP emphasis parameter, namely “emp=1” for integer feasi-
bility and “emp=4" for hidden feasible solutions (i.e., RINS heuristic). As to
FP-cplex with the artificial upper bound, it was run with the same settings
described earlier, by requiring a 20% (respectively, 30%) improvement at
each main iteration (i.e., with a € {0.2,0.3}); see columns FP-XX%. Tests
with @ = 0.1 and o = 0.4 led to slightly worse solutions (with an average
quality ratio of about 1.26) and are not shown in the table.

16

(Ref) Cplex Cplex

name emp=1 |emp=4 FP-20% FP-30% FP-lb FP-rins
arki001 7.581E+06 1.0000 1.0007 1.0006 0.9999 1.0000
atlanta-ip 1.000E+02 N/A 0.9600 0.9800 0.9600 0.9500 *
gesa2 2.578E407 *| 1.0000 * 1.0004 1.0004 1.0000 1.0000 *
gesa2-o 2.578E407 *| 1.0000 * 1.0011 1.0013 1.0000 * 1.0000 *
manna81 -1.316E+04 1.0000 * 1.0000 1.0005 1.0000 * 1.0000 *
msc98-ip 2.250E+07 N/A 0.8993 0.8984 * 0.9529 0.9699
mzzv1l -2.172E404 *| 1.0000 * 1.2209 1.0950 1.1144 1.0018
mzzv42z -2.054E+04 *| 1.0000 1.0235 1.0188 1.0118 1.0000
noswot -4.100E+01 1.0000 * 1.0000 1.0000 * 1.0000 1.0000 *
roll3000 1.343E+04 | 0.9596 * 1.0708 1.1188 0.9800 0.9657
rout 1.078E+03 1.0000 1.0151 1.0061 1.0000 1.0000 *
timtabl 7.927TE405 | 0.9647 * 1.3123 1.1528 1.0034 1.6313
timtab2 1.232E4-06 0.8990 * 1.3245 1.1675 1.0224 0.9648
neos10 -1.135E+03 1.0000 * 4.4862 2.9481 1.0000 1.0000 *
neosl6 4.510E+4-02 N/A 1.0067 1.0067 1.0067 0.9978 *
neos20 -4.340E+02 *| 1.0000 * 4.1731 4.1731 1.0383 1.0000
neos7 7.219E+05 1.0000 1.0582 1.0028 1.0000 1.0000
neos8 -3.719E+03 1.0000 1.0005 3.1570 1.0000 1.0000 *
ic97_potential 3.961E403 | 0.9965 * 1.0106 1.0155 0.9970 0.9965 *
ic97_tension 3.942E+03 1.0003 1.0018 1.0032 1.0000 1.0000 *
icir97_potential 6.410E+03 0.9964 1.0264 1.0434 1.0034 0.9945 *
icir97_tension 6.418E+03 | 0.9949 0.9948 0.9996 0.9956 0.9938 *
rococoB10-011000| 1.951E4-04 0.9967 * 1.1947 1.0873 1.0365 1.0593
rococoB10-011001| 2.131E4-04 1.0501 1.2451 1.2443 1.0037 1.1349
rococoB11-010000| 3.348E+04 | 0.9901 * 1.1968 1.0978 1.0138 1.1833
rococoB11-110001| 4.947E+-04 0.9738 * 1.5647 1.2136 1.0573 1.2941
rococoB12-111111| 4.623E+04 | 0.8589 * 2.0923 2.0923 1.0035 1.0372
rococoC10-001000| 1.146E+-04 1.0004 1.1645 1.0883 1.0013 1.0013
rococoC10-100001| 1.943E4-04 0.9336 * 1.5803 1.7790 0.9377 1.0649
rococoC11-010100| 2.163E4-04 1.0189 1.1680 1.0668 1.0389 1.3361
rococoC11-011100| 2.192E+-04 0.9561 * 1.1306 1.2290 1.0410 1.1887
rococoC12-100000| 3.753E4-04 1.0177 1.6447 1.4960 1.0742 1.0775
rococoC12-111100| 4.097E+04 | 0.9138 * 1.0858 1.0176 0.9794 0.9448

Geometric means | 0.9833 (+) 1.2352 1.2292 1.0078 1.0469

(+) not counting the 3 cases of failure

Table 6: Solution quality with respect to ILOG Cplex (emp=1); 3600-second

time limit

17

Column F'P-Ib refers to the Local Branching implementation available in
ILOG Cplex 9.1 by activating its local branching flag, whereas column FP-
rins refers to ILOG Cplex with MIP emphasis 4 (that activates the internal
RINS improvement heuristics). For both FP-lb and F'P-rins, the incumbent
solution is initialized, via an MST file, by taking the first FP-cplex solution.

For all strategies, the table gives the solution ratio with respect to the
best solution found by ILOG Cplex (emp=1). Ratios were computed as the
value of the best solution found by the various methods over the value of
the solution found by ILOG Cplex (emp=1); if the values were negative, the
problem was viewed as a maximization one and the ratio was inverted, hence
a ratio smaller than 1.0 always indicates an improvement over ILOG Cplex.
In the last line of the table, the average ratio (geometric mean) is reported;
the average does not take into account the instances where FP succeeded in
finding a solution, while ILOG Cplex did not. For each instance, we marked
with an asterisk the method that produced the best feasible solution.

According to the table, all the FP methods are able to improve sig-
nificantly the quality of their incumbent solution. The most effective FP
strategies seem to be FP-lb and FP-rins, that produced the best solutions
in 8 and 13 cases, respectively.

ILOG Cplex (emp=1) ranked first 14 times. As to ILOG Cplex (emp=4),
it produced the best solution in 18 cases but failed in 3 cases to find any
solution within the 3600-second time limit. Moreover, pure ILOG Cplex
methods seem to be particularly suited for exploiting the structure of ro-
coco* instances—if these 11 instances were removed from the testbed, FP-
rins would have ranked first 13 times, thus outperforming both ILOG Cplex
(emp=1, that ranked first 10 times) and ILOG Cplex (emp=4, first 11 times
but with 3 failures).

Among the compared FP-XX% methods, the one requiring 30% im-
provement at each main iteration is the more effective one, though its per-
formance is still inferior to the one of the LB/RINS local search methods.

Finally, Figures 3, 4 and 5 plot the value of the best feasible solution
over time, for the three instances atlanta-ip, msc98-ip and icir97_tension.

5 Conclusions

In this paper we addressed the problem of finding a feasible solution of a
given MIP model, which is a very important (NP-complete) problem that
can be extremely hard in practice.

We elaborated the Feasibility Pump (FP) heuristic presented in [12], and

18

atlanta-ip (best known obj=95.01; LB=83.16)

FP-20%

|
l FP-30% -
‘ FP-lb -
i FP-rins -~
105 | | Cplex emp=1 ~———]|
|
I
I
l
100 e
95 -
0 E
85 | .
1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Figure 3: Incumbent solution over time (instance atlanta-ip)

extended it in two main directions, namely (i) handling as effectively as
possible MIP problems with both binary and general-integer variables, and
(ii) exploiting the FP information to drive an effective enumeration phase.

We presented extensive computational results on large sets of test in-
stances from the literature, showing the effectiveness of our improved FP
scheme for finding feasible solutions to hard MIPs with general-integer vari-
ables.

As to the solution quality, it appears to be rather poor when the very first
feasible solution is found, but it can be improved considerably by integrating
FP with improvement tools such as Local Branching or RINS.

Future directions of work include extending the FP idea by using a non-
linear (quadratic) distance function, to be applied to linear and (even more
interestingly) to nonlinear problems with integer variables. Also interesting
is the incorporation of the original objective function (through an adaptive
scaling multiplier) in the definition of the FP distance function; interesting
results in this directions have been recently reported by Achterberg and
Berthold [2] and used in the non-commercial MIP solver SCIP [1].

19

3e+07

2.8e+07

2.6e+07

2.4e+07

2.2e+07

2e+07

msc98-ip (best known obj=1.984e+07; LB=1.970e+07)

' ' FP-20%
FP-30%
FP-Ib

FP-ring -

Cplex emp=1

500 1000 1500

2000 2500 3000

3500

Figure 4: Incumbent solution over time (instance msc98-ip)

Finally, a topic to be investigated is the integration of FP within an
overall enumerative solution scheme. In this context, the FP heuristic can
of course be applied at the root node, so as to hopefully initialize the in-
cumbent solution. But one can also think of running FP (possibly without
its time-consuming stage 3) from the LP relaxation of different nodes in the
branch-and-cut tree, thus increasing the chances of finding improved feasible

solutions.

Acknowledgements

Work supported by MIUR, Italy, and by the EU project ADONET. Thanks
are due to two anonymous referees for their helpful comments.

20

icir97_tension (best known obj=6378; LB=6348)

7000 = T T T T T
s i FP-20%
| FP-30% -------
s i FP-Ib --------
b I FP-rins i
6900 i i Cplex emp=1 ———-
1 Cplex emp=4 -------
: i
v I
6800 : : —
I
I
6700 i
6600 —
6500 R
6400 e T o **** :;7t'::‘;'::';':;'::';';t;1:';';';'»Lr::—,”;r:; rrrrrrrrrrrrrrrrrrrrr 7:
1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Figure 5: Incumbent solution over time (instance icir97_tension)

References
[1] T. Achterberg. SCIP - a framework to integrate Con-
straint and Mixed Integer Programming, Technical Re-

port 04-19, Zuse Institute Berlin, 2004 (available at
http://www.zib.de/Publications/abstracts/ZR-04-19/).

T. Achterberg, T. Berthold, Improving the feasibility pump, Technical
Report Zuse Institute Berlin, September 2005.

T. Achterberg, T. Koch, A. Martin. MIPLIB 2003. Tech-
nical Report 05-28, Zuse Institute Berlin, 2005 (available at
http://www.zib.de/PaperWeb/abstracts/ZR-05-28/).

E. Balas, S. Ceria, M. Dawande, F. Margot, G. Pataki. OCTANE: A
New Heuristic For Pure 0-1 Programs. Operations Research 49, 207—
225, 2001.

21

[5]

[6]

[13]

[14]

[15]

[16]

[17]

E. Balas, C.H. Martin. Pivot-And-Complement: A Heuristic For 0-1
Programming. Management Science 26, 8696, 1980.

E. Balas, S. Schmieta, C. Wallace. Pivot and Shift-A Mixed Integer
Programming Heuristic. Discrete Optimization 1, 3—12, 2004.

J.W. Chinneck, J. Patel. Faster MIP Solutions Through Better Variable
Ordering, ISMP 2003, Copenhagen, August 2003.

Dash Xpress-Optimizer 16.01.05: Getting Started and Reference Man-
ual, Dash Optimization Ltd, http://www.dashoptimization.com/,
2004.

E. Danna, E. Rothberg, C. Le Pape. Exploring relaxation induced
neighborhoods to improve MIP solutions. Mathematical Programming
102, 71-90, 2005.

DIMACS Second Challenge. http://mat.gsia.cmu.edu/challenge.html.

M. Fischetti, A. Lodi. Local Branching. Mathematical Programming
98, 23-47, 2003.

M. Fischetti, F. Glover, A. Lodi, The Feasibility Pump. Mathematical
Programming 104, 91-104, 2005.

F. Glover, M. Laguna. General Purpose Heuristics For Integer Pro-
gramming: Part I. Journal of Heuristics 2, 343—-358, 1997.

F. Glover, M. Laguna. General Purpose Heuristics For Integer Pro-
gramming: Part II. Journal of Heuristics 3, 161-179, 1997.

F. Glover, M. Laguna. Tabu Search. Kluwer Academic Publisher,
Boston, Dordrecht, London, 1997.

F.S. Hillier. Effcient Heuristic Procedures For Integer Linear Program-
ming With An Interior. Operations Research 17, 600-637, 1969.

T. Ibaraki, T. Ohashi, H. Mine. A Heuristic Algorithm For Mixed-
Integer Programming Problems. Mathematical Programming Study 2,
115-136, 1974.

ILOG Cplex 9.1: User’s Manual and Reference Manuals, ILOG, S.A.,
http://www.ilog.com/, 2004.

22

[19]

[20]

[21]

[22]

[23]

A. Lgkketangen. Heuristics for 0-1 Mixed-Integer Programming. In
P.M. Pardalos and M.G.C. Resende (ed.s) Handbook of Applied Opti-
mization, Oxford University Press, 474-477, 2002.

A. Lokketangen, F. Glover. Solving Zero/One Mixed Integer Program-
ming Problems Using Tabu Search. FEuropean Journal of Operational
Research 106, 624-658, 1998.

H. D. Mittelmann. Benchmarks for Optimization Software: Testcases.
http://plato.asu.edu/topics/testcases.html.

M. Nediak, J. Eckstein. Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed
Integer Programming. Research Report RRR 53-2001, RUTCOR, Rut-
gers University, October 2001.

L. Peeters. Cyclic Railway Timetable Optimization. ERIM PhD Series,
Erasmus University Rotterdam, June, 2003.

23

