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Abstract. In the paper we address the Distance-Constrained Capacitated Vehicle Routing
Problem (DCVRP), where k minimum-cost routes through a central depot have to be con-
structed so as to cover all customers while satisfying, for each route, both a capacity and a
total-distance-travelled limit.

Our starting point is the following refinement procedure proposed in 1981 by Sarvanov and
Doroshko for the pure Travelling Salesman Problem (TSP): given a starting tour, (a) remove
all the nodes in even position, thus leaving an equal number of “empty holes” in the tour; (b)
optimally re-assign the removed nodes to the empty holes through the efficient solution of a
min-sum assignment (weighted bipartite matching) problem. We first extend the Sarvanov-
Doroshko method to DCVRP, and then generalize it. Our generalization involves a procedure
to generate a large number of new sequences through the extracted nodes, as well as a more
sophisticated ILP model for the reallocation of some of these sequences. An important feature
of our method is that it does not rely on any specialized ILP code, as any general-purpose ILP
solver can be used to solve the reallocation model.

We report computational results on a large set of capacitated VRP instances from the
literature (with symmetric/asymmetric costs and with/without distance constraints), along
with an analysis of the performance of the new method and of its features. Interestingly, in 12
cases the new method was able to improve the best-know solution available from the literature.

Keywords: Vehicle Routing Problems, Heuristics, Large Neighborhood Search,
Computational Analysis, Distance-Constrained Vehicle Routing Problem.

1. Introduction

In the paper we address the following NP-hard (in the strong sense) Distance-
Constrained Capacitated Vehicle Routing Problem (DCVRP). We are given a
central depot and a set of n− 1 customers, which are associated with the nodes
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of a complete undirected graph G = (V,E) (where |V | = n and node 1 represents
the depot). Each edge [i, j] ∈ E has an associated finite cost cij ≥ 0. Each node
j ∈ V has a request dj ≥ 0 (d1 = 0 for the depot node 1). Customers need to
be served by k cycles (routes) passing through the depot, where k is fixed in
advance. Each route must have a total duration (computed as the sum of the
edge costs in the route) not exceeding a given limit D, and can visit a subset S
of customers whose total request

∑
j∈S dj does not exceed a given capacity C.

The problem then consists of finding a feasible solution covering exactly once all
the nodes v ∈ V \ {1} and having a minimum overall cost; see, e.g., [7,42].

We propose a new refinement heuristic for the DCVRP. The method is
an elaboration of a refinement procedure originally proposed by Sarvanov and
Doroshko [39] (SD) for the pure Travelling Salesman Problem (TSP), i.e., for the
problem of finding a min-cost Hamiltonian cycle (tour) in a graph. (A similar
methodology has been proposed, independently, by Gutin [26].) Given a starting
TSP tour T to improve, the SD procedure is based on two simple steps: (1) all
the nodes in even position in T are removed,1 thus leaving an equal number of
“empty holes” in the tour; (2) the removed nodes are optimally re-assigned to the
empty holes through the efficient solution of a min-sum assignment (weighted
bipartite matching) problem. An important property of the method is that it
only requires polynomial time to implicitly enumerate an exponential number
of alternative tours, i.e., it belongs to the family of Large Neighborhood Search
(LNS) meta-heuristics (see, e.g., [1,2,4,10–13,25]). As such, it has has been in-
vestigated theoretically by several authors, including Deineko e Woeginger [8],
Weismantel [14], Punnen [35], Gutin [27] and Gutin, Yeo and Zverovitch [28].
We refer the reader to [5] for a thoughtful survey on recent VRP meta-heuristics.

Our approach goes far beyond the original SD scheme, and is based on a
more sophisticated node removal policy followed by a procedure to construct a
large number of new potential sequences through the extracted nodes. As a con-
sequence, our reallocation cannot be rephrased as just a min-sum assignment
problem, but it is based on the solution of a more sophisticated Integer Lin-
ear Programming (ILP) model. Our ILP has the structure of a set-partitioning
model asking for the reallocation of a subset of the generated sequences, with
the constraint that each extracted node has to belong to exactly one of the allo-
cated sequences. Moreover, for each VRP route the new allocation has to fulfill
the associated capacity and distance constraints. An important feature of our
method is that it does not require a specialized ILP code, as any general-purpose
ILP solver can be used to solve the allocation model.

As an extreme case, arising when extracting all the nodes and re-combining
them in all possible sequences, our method then yields the well-known set parti-
tioning VRP model (see, e.g., [42]). In this case, no matter the starting solution,
the method would guarantee to return (in one step) a provably optimal solution,
but it would require a typically unacceptable computing time for the construc-
tion of the sequences through the extracted nodes and for the exact solution of
the associated set-partitioning ILP.At the other extreme, we have the Sarvanov-

1 Of course, the role of the even- and odd-position nodes could be interchanged
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Doroshko approach where the nodes can only be extracted according to a rigid
even-position criterion, only singleton node sequences are considered, and the
ILP becomes essentially a min-sum assignment problem—plus the route con-
straints, in case the VRP instead of the TSP is addressed. The motivation of
the present paper was precisely to find a proper balancing between the exact
(yet too time consuming) set-partitioning model and the efficient (yet too rigid)
Sarvanov-Doroshko proposal.

The paper is organized as follows. In Section 2 we describe the original
method of Sarvanov and Doroshko. This basic method is extended in Section
3 and generalized to the DCVRP. Our generalization involves a procedure to
generate a large number of new sequences through the extracted nodes, as well
as a more sophisticated ILP model for the reallocation of some of these sequences.
The implementation of the resulting SERR (for Selection, Extraction, Recombi-
nation, and Reallocation) algorithm is given in Section 4. Computational results
on a large set of VRP instances from the literature (with symmetric/asymmetric
costs and with/without distance constraints) are reported in Section 5, with an
analysis of the performance of the method and of its positive features. Some
solutions found by our method and improving the best-know solutions from the
literature are finally illustrated in the Appendix.

2. The ASSIGN neighborhood for TSP

In their 1981 paper, Sarvanov and Doroshko [39] investigated the so-called As-
sign neighborhood for the TSP, defined as follows: Given a certain TSP solution
(viewed as node sequence < v1 = 1, v2, · · · , vn >), the neighborhood contains
all the bn/2c! TSP solutions that can be obtained by permuting, in any possible
way, the nodes in even position in the original sequence. In other words, any
solution (ψ1, ψ2, · · · , ψn) in the neighborhood is such that ψi = vi for all odd i.
An interesting feature of the neighborhood is that it can be explored exactly in
polynomial time, though it contains an exponential number of solutions. Indeed,
for any given starting solution the min-cost TSP solution in the corresponding
Assign neighborhood can be found efficiently by solving a min-cost assignment
problem on a bn/2c × bn/2c matrix; see e.g. [28]

Starting from a given solution, an improving heuristic then consists of ex-
ploring the Assign neighborhood according to the following two phases:

– node extraction, during which the nodes in even position (w.r.t. the current
solution) are removed from the tour, thus leaving an equal number of “free
holes” in the sequence;

– node re-insertion, during which the removed nodes are reallocated in the
available holes in an optimal way by solving a min-sum assignment problem.

The simple example in Figure 1 gives an illustration of the kind of“improving
moves” involved in the method. The figure draws a part of a tour, corresponding
to the node sequence 〈v1, v2, · · · , v9〉. In the node extraction phase, the nodes in
even position v2, v4, v6 e v8 are removed from the sequence, whereas all the other
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(a) original tour (b) selection of the node to be extracted

(c) node reallocation

Fig. 1. A simple example of node extraction and reallocation.

nodes retain their position. In Figure 1b the black nodes represent the fixed ones,
while the holes left by the extracted nodes are represented as white circles. If we
use symbol “−” to represent a free hole, the sequence corresponding to Figure 1b
is therefore 〈v1,−, v3,−, v5,−, v7,−, v9〉. The second step of the procedure, i.e.,
the optimal node reallocation, is illustrated in Figure 1c, where nodes v4 and v6
swap their position whereas v2 and v8 are reallocated as in the original sequence.
This produces the improved part of tour 〈v1, v2, v3, v6, v5, v4, v7, v8, v9〉.

In the example, the same final tour could have been constructed by a simple
2-opt move. However, for more realistic cases the number of possible reallocation
is exponential in the number of extracted nodes, hence the possible reallocation
patterns are much more complex and allow, e.g., for a controlled worsening of
some parts of the solution which are compensated by large improvement in other
parts.

Besides its important theoretical properties, the method suggests a frame-
work for designing more and more sophisticated extract-and-reassign heuristics
for TSP and related problems. A first step in this direction has been performed
by Punnen [35], who suggested some variants of the basic method where node-
sequences (as opposed to single nodes) are extracted and optimally reallocated
by still solving a min-sum assignment problem. The (unpublished) preliminary
results reported in [28], however, seem to suggest that this method is not very
successful in practice. In our view, this is manly due to the too-rigid extract-and-
reallocate paradigm, which is in turn a direct consequence of the requirement of
using a min-cost assignment method to find an optimal reallocation. Our work-
ing hypothesis here was that much better results could be obtained in practice
by replacing the (polynomially solvable) assignment problem by a more sophis-
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Fig. 2. The assignment of node v3 to route r1 is not optimal.

ticated set partitioning model (which is theoretically NP-hard, but effectively
solvable in practice).

3. From TSP to DCVRP

We conjectured that the Assign neighborhood would have been more useful
in practice if applied to VRP problems rather than to the “pure” TSP. Indeed,
due to the presence of several routes and of the associated route constraints, in
VRP problems the node sequence is not the only issue to be considered when
constructing a good solution: an equally-important aspect of the optimization is
to find a balanced distribution of the nodes between the routes. In this respect,
heuristic refinement procedures involving complex patterns of node reallocations
among the routes (akin to those in the span of the SD method) are likely to be
quite effective in practice.

We therefore decided to extend the SD method to DCVRP so as to allow for
more powerful move patterns, while generalizing its basic scheme so as to get
rid off the too simple min-sum assignment model for node reallocation in favor
of a more flexible reallocation model based on the (heuristic) solution of a more
complex ILP model. The resulting method will be introduced, step by step, with
the help of the examples reported in the sequel.

The first two very natural extensions we consider are akin to those proposed
by Punnen [35]. Let us consider Figure 2, where a non-optimal part of a (geo-
graphical) VRP solution is depicted. It is clear that the position of node v3 is
not very clever, in that inserting v3 between node v1 and v2 is likely to pro-
duce a better solution (assuming this new solution be feasible because of the
route constraints). This move is however beyond the possibility of the pure SD
method, where the extracted nodes can only be assigned to a hole left free by
the removal of another node—while no hole between v1 e v2 exists which could
accommodate v3. The example then suggests a first extension of the basic SD
method, consisting of removing the 1-1 correspondence between extracted nodes
and empty holes. We therefore consider the concept of insertion point : after hav-
ing extracted the selected nodes, we construct a restricted solution through the
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(a) Restricted solution

(b) Final solution

Fig. 3. Improving the solution depicted in Figure 2.

remaining nodes, obtained from the original one by short-cutting the removed
nodes. All the edges in the restricted solution are then viewed as potential in-
sertion points for the extracted nodes. In the example, removing v3 but not v1
and v2 would produce the restricted solution depicted in Figure 3a, where all
dashed edges are possible insertion points for the extracted nodes—this allows
the method to produce the solution in Figure 3b.

A second important extension is illustrated with the help of the example in
Figure 4, where nodes v3 and v4 could have been more conveniently assigned to
route r2 rather than route r1 (again, we are assuming the route constraints do
not prevent this exchange). However, this move cannot be performed if single
non-adjacent nodes are only extracted, in that it requires the extraction of two
consecutive nodes. Hence the need to exploit a more flexible node-extraction
criterion that allows for the removal of sequences of nodes (some of which possibly
involving a single node). In Figure 5a we show the restricted solution obtained
by extracting the two adjacent nodes v3 and v4, which are therefore viewed as
a 2-node sequence to be reallocated to some insertion point—as, e.g., in Figure
5b. It is worth noting that, in case of symmetric costs, the assignment of a given
sequence to a given insertion point can be done in two different ways depending
on the orientation of the sequence. E.g., in the example of Figure 5a one has to
consider the two possible sequences < v1, v3, v4, v2 > and < v1, v4, v3, v2 >. This
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Fig. 4. The position of nodes v3 and v4 is not optimal.

however is not an issue in practice, since one can just consider both orientations
when computing the reallocation cost γij , and keep the orientation producing
the smallest cost.

So far we have assumed that a single insertion point can accommodate, at
most, one of the extracted sequences. Unfortunately, it does not appear easy to
get rid of this limitation. Instead, we suggest the use of a heuristic procedure to
generate new sequences through the extracted nodes, to be allocated to the given
insertion points. To be more specific, starting from the extracted nodes sequences
one can create new derived sequences that combine the extracted nodes in a
different way. Of course, one never knows in advance which are the best sequences
to be used, so all the (original and derived) sequences should be available when
solving the reallocation problem.

The above considerations imply the use of a reallocation model which goes
far beyond the scope of the original one, which is based on the solution of an
easy min-cost assignment problem. Indeed, the new reallocation model becomes
a set-partitioning ILP that receives as input the set of insertion points along
with a (typically large) set of node sequences through the extracted nodes, and
provides an (almost) optimal allocation of at most one sequence to each insertion
point, with the constraint that each extracted node has to belong to one of the
allocated sequences, while fulfilling the additional constraints on the capacity
and distance constraints on the routes. This model will be described in more
detail in the next section.

4. The SERR algorithm

Here is our specific implementation of the ideas outlined in the previous section,
leading to the so-called Selection, Extraction, Recombination, and Reallocation
(SERR) method.

(i) (Initialization). Apply a fast heuristic method to find a first (possibly infea-
sible, see below) DCVRP solution.
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(a) restricted solution

(b) final solution

Fig. 5. Improving the solution depicted in Figure 4.

(ii) (Selection). Apply one of the available criteria (to be described later) to
determine the nodes to be extracted—the nodes need not be consecutive,
any node subset qualifies as a valid choice.

(iii) (Extraction). Extract the nodes selected in the previous step, and construct
the corresponding restricted DCVRP solution obtained by short-cutting the
extracted nodes. All edges in the restricted solution are put in the list I of
the available insertion points.

(iv) (Recombination). The node sequences extracted in the previous step (called
basic in the sequel) are initially stored in a sequence pool. Thereafter, heuris-
tic procedures (to be described later) are applied to derive new sequences
through the extracted nodes, which are added to the sequence pool. During
this phase, dual information derived from the LP relaxation of the realloca-
tion model can be used to find new profitable sequences—the so-called pricing
step. Each sequence s in the final pool is then associated with a (heuristi-
cally determined) subset Is of the available insertion points in I. For all basic
sequences s we assume that Is contains (among others) the pivot insertion
point associated to s in the original tour, so as to make it feasible to retrieve
the original solution by just reallocating each basic sequence to the associated
pivot insertion point.
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(v) (Reallocation). A suitable ILP (to be described later in greater details) is
set-up and solved heuristically through a general-purpose MIP solver. This
model has a binary variable xsi for each pair (s, i), where s is a sequence
in the pool and i ∈ Is, whose value 1 means that s has to be allocated to
i. The constraints in the ILP stipulate that each extracted node has to be
covered by exactly one of the selected sequences s, while each insertion point
i can be associated to at most one sequence. Further constraints impose the
capacity and distance constraints in each route. Once an (almost) optimal
ILP solution has been found, the corresponding solution is constructed and
the current best solution is possibly updated (in which case each route in the
new solution is processed by a 3-OPT [37] exchange heuristic in the attempt
of further improving it).

(vi) (Termination). If at least one improved solution has been found in the last
n iterations, we repeat from step (ii); otherwise the method terminates.

4.1. Finding a starting solution

Finding a DCVRP solution that is guaranteed to be feasible is an NP-hard
problem, hence we have to content ourselves with the construction of solutions
that, in some hard cases, may be infeasible—typically because the total-distance-
travelled constraint is violated for some routes. In this case, the overall infeasi-
bility of the starting solution can hopefully be driven to zero by a modification
of the SERR recombination model where the capacity and distance constraints
are treated in a soft way through the introduction of highly-penalized slack vari-
ables. (In addition, one could start with a partial solution, and use a modified
SERR method to allocate the uncovered nodes.)

As customary in VRP problems, we assume that each node is assigned a
coordinate pair (x, y) giving the geographical position of the corresponding cus-
tomer/depot in a 2-dimensional map.

One option for the initialization of the current solution required at step (i)
of the SERR method, is to apply the classical two-phase method of Fisher and
Jaikumar (FJ) [18]. This method can be implemented in a very natural way
in our context in that it is based on a (heuristic) solution of an ILP whose
structure is close to that of our reallocation model. In our implementation, the
Fisher-Jaikumar heuristic is run 15+n/k times with different choices of the seed
nodes (spots) that give the initial shape of the routes.

According to our computational experience, however, the solution provided
by the Fisher-Jaikumar heuristic is sometimes “too balanced”, in the sense that
the routes are filled so tightly that leave not enough freedom to the subsequent
steps of our SERR procedure. Better results are sometimes obtained starting
from a less-optimized solution whose costs exceed even by 20% the optimal cost,
as e.g. the one obtained by using the following simple sweep method akin to the
Gillett-Miller one [20]. We heuristically subdivide the customers in k clusters
according to the angle with the depot node, in such a way that the total request
in each cluster hopefully does not exceed the vehicle capacity—if this is not the
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case, we first try to repair the cluster by means of simple node exchanges among
the routes, and then resort to the Fisher-Jaikumar heuristic. Once the clusters
have been determined, for each of them we construct a route by applying a
TSP nearest-neighbor heuristic [37], followed by a 3-OPT phase—this typically
produces a route that satisfies the total-distance constraint.

A second possibility is instead to start from an extremely-good solution pro-
vided by highly-effective (and time consuming) heuristics or meta-heuristics, in
the attempt of improving this solution even further. In this context, one can
consider as a starting solution the best-known solution of some hard instances,
as reported in the literature.

4.2. Node selection criteria

At each execution of step (ii) we apply one of the following selection schemes.

– scheme Random-Alternate: This criterion is akin to the SD one, and
selects in some randomly-selected routes all the nodes in even position, while
in the remaining routes the extracted nodes are those in odd position—the
position parity being determined by visiting each route in a random direction.

– scheme Scattered: Each node had a uniform probability of 50% of being
extracted; this scheme allows for the removal of consecutive nodes, i.e., of
route subsequences.

– scheme Neighborhood: Here we concentrate on a seed node, say v∗, and
remove the nodes v with a probability that is inversely proportional to the
distance cvv∗ of v from v∗. To be more specific, once the seed node v∗ has
been located (according to a criterion described in the sequel), we construct
an ordered list containing the remaining nodes v sorted by increasing distance
cvv∗ from v∗. Node v∗ is extracted along with the first 4 nodes in the list. The
remaining part of the list is then subdivided into 5 sub-lists of equal size, and
the corresponding nodes are extracted with a probability of 80%, 60%, 30%,
20%, and 10% for the first, second, third, fourth and fifth sub-list, respec-
tively. The choice of the seed node v∗ is done with the aim of (a) improving
the chances that the first seed nodes lead to a significant improvement of the
incumbent solution, and (b) allowing each node to be selected with a certain
probability. This is obtained by assigning a score to each node v∗, which is
defined so as to be proportional to the number of nodes which are “close”
to v∗. A list of the potential seed nodes ordered by decreasing scores is then
initialized. At each application of the Neighborhood scheme, we select the
next node in the list (in a circular way) to play the role of the seed node v∗.

Schemes Random-Alternate and Scattered appear particularly suited
to improve the first solutions, whereas the Neighborhood scheme seems more
appropriate to deal with the solutions available after the first iterations. There-
fore, in our SERR implementation, the above schemes are alternated as follows:
we first apply 3 times the Random-Alternate scheme, then we apply 3 times
the Scattered scheme, and afterwards the Neighborhood scheme is used.
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Fig. 6. Definition of the sequence cost and of the allowed insertion points.

Each time the incumbent solution is updated, the schemes are re-applied from the
beginning: 3 times Random-Alternate, then 3 times Scattered, and there-
after Neighborhood. This implies that in the first iterations of the method,
where the incumbent solution is likely to be updated frequently, the Random-
Alternate and Scattered scheme are mainly used. In the last iterations, on
the other hand, the Neighborhood scheme is mainly used.

4.3. Reallocation model

Given the sequences stored in the pool and the associated insertion points (de-
fined through the heuristics outlined in the next subsection), our aim is to real-
locate the sequences so as to find a feasible solution of improved cost (if any).
To this end, we need to introduce some additional notation, as illustrated in the
example of Figure 6.

Let F denote the set of the extracted nodes, S the sequence pool, and R the
set of routes r in the restricted solution. For any sequence s ∈ S, let c(s) be the
sum of the costs of the edges in the sequence, and let d(s) be the sum of the
requests dj associated with the internal nodes of s; e.g., c(s) := ckl + clm and
d(s) := dl in the figure.

For each insertion point i ∈ I we then define extra-cost γsi for assigning se-
quence s (in its best possible orientation) to the insertion point i; in the example,
this cost is computed as γsi := c(s) + min{cak + cmb, cam + ckb} − cab. For each
route r ∈ R in the restricted solution, let I(r) denote the set of the insertion
points (i.e., edges) associated with r, while let d̃(r) and c̃(r) denote, respectively,
the total request and distance computed for route r—still in the restricted tour.

As already mentioned, our ILP model is based on the following decision
variables.

xsi =
{

1 if sequence s is allocated to the insertion point i ∈ Is

0 otherwise (1)

The model then reads: ∑
r∈R

c̃(r) + min
∑
s∈S

∑
i∈Is

γsixsi (2)
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subject to: ∑
s3v

∑
i∈Is

xsi = 1 ∀v ∈ F (3)

∑
s∈S:i∈Is

xsi ≤ 1 ∀i ∈ I (4)

d̃(r) +
∑
s∈S

∑
i∈Is∩I(r)

d(s)xsi ≤ C ∀r ∈ R (5)

c̃(r) +
∑
s∈S

∑
i∈Is∩I(r)

γsixsi ≤ D ∀s ∈ S, r ∈ R (6)

0 ≤ xsi ≤ 1 integer ∀s ∈ S, i ∈ Is (7)

The objective function, to be minimized, gives the cost of the final DCVRP so-
lution. Indeed, each coefficient gives the cost of an inserted sequence, including
the linking cost, minus the cost of the “saved” edge in the restricted solution.
Constraints (3) impose that each extracted node belongs to exactly one of the
selected sequences, i.e., that it is covered exactly once in the final solution. Note
that, in the case of triangular costs, one could replace = by ≥ in (3), thus obtain-
ing a typically easier-to-solve ILP having the structure of a set-covering (instead
of set-partitioning) problem with side constraints. Constraints (4) avoid a same
insertion point is used to allocated two or more sequences. Finally, constraints
(5) and (6) impose that each route in the final solution fulfills the capacity and
distance restriction, respectively.

In order to avoid to overload the model by an excessive number of variables,
a particular attention has to be paid to reduce the number of sequences and,
for each sequence, the number of the associated insertion points. As described
in the next subsection, this is obtained by first generating them in a clever
but conservative way, so as to produce a first set of variables for which the
LP relaxation of the reallocation model can be solved easily. Afterwards, we
enter a (pricing) loop where more and more (sequence, insertion point) pairs are
constructed by simple heuristics. For each pair, the reduced cost of the associated
variable in the LP relaxation is computed, and the pair is stored in case this cost
is below a certain threshold.

As soon as the pricing loop does not produce any new variable, we freeze
the current set of variables and invoke a general-purpose ILP solver to find an
almost-optimal integer solution of the model. In our experiments, we used the
commercial software ILOG Cplex 8.0 with a limit of 30,000 branching nodes,
emphasizing the search of integer solutions. Moreover, we provide on input to
the ILP solver the feasible solution that corresponds to the current incumbent
DCVRP solution, where each basic sequence is just reallocated to its correspond-
ing pivot insertion point. In this way the ILP solver can immediately initialize its
own incumbent solution, so every subsequent update (if any) will correspond to
an improved DCVRP solution—the run being interrupted as soon as the internal
ILP lower bound gives no hope to find such improvement.
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4.4. Node recombination and construction of derived sequences

This is a very crucial step in the SERR method, and is in fact one of the main
novelties of our method. It consists not just of generating new “good” sequences
through the extracted nodes, but also in associating each sequence to a clever set
of possible insertion points that can conveniently accommodate it. Therefore, we
have two complementary approaches to attack this problem: (a) we start from
the insertion points, and for each insertion point we try to construct a reasonable
number of new sequences which are likely to “fit well”; or (b) we start from the
extracted nodes, and try to construct new sequences of small cost, no matter the
position of the insertion points.

After extensive computational testing, we decided to implement the following
two-phase method.

In the first phase, we initialize the sequence pool by means of the original
(basic) sequences, and associate each of them to its corresponding (pivot) in-
sertion point. This choice guarantees that the current DCVRP solution can be
reconstructed by simply selecting all the basic sequences and putting them back
in their pivot insertion point. Moreover, when the Neighborhood selection
scheme is used a further set of sequences is generated as follows. Let v∗ be the
extracted seed node, and let N(v∗) contain v∗ plus the 4 closest nodes (which
have been extracted together with v∗). We apply a complete enumerative scheme
to generate all the sequences through N(v∗), of any cardinality, and add them
to the pool. This choice is intended to increase the chances of improving locally
the current solution, by exploiting appropriate sequences to reallocate the nodes
in N(v∗) in an optimal way.

The second phase is only applied for the Neighborhood and Scattered
selection schemes, and corresponds to a pricing loop based on the dual informa-
tion available after having solved the LP relaxation of the current reallocation
model.

At each iteration of the pricing loop, we consider, in turn, each insertion
point i ∈ I, and construct a number of new sequences that “fit well” with i. To
be more specific, given the insertion point i we apply the following steps.

(i) We initialize an iteration counter L = 0 along with a set S containing a
single dummy sequence s =<> of cardinality 0, i.e., covering no nodes. At
the generic iteration L, the set S will contain at most Nmax (say) sequences
of length L.

(ii) We set L := L+ 1 and generate new sequences of length L according to the
following scheme. For each s =< v1, v2, · · · , v|s| >∈ S and for each extracted
node v not in s, we generate all the sequences obtained from s by inserting,
in any possible way, node v into s, namely sequences < v, v1, v2, · · · , v|s| >,
< v1, v, v2 · · · , v|s| >, ..., < v1, v2, · · · , v, v|s| >, and < v1, v2, · · · , v|s|, v >.

(iii) For each sequence s obtained at step (ii), we consider the variable xsi associ-
ated with the allocation of s to the given insertion point i, and evaluate the
corresponding reduced cost rcsi.

(iv) We reset S = ∅, and then insert in S the Nmin sequences s with smallest
rcsi, along with the sequences s such that either rcsi ≤ max{RCmax, δ rc

∗},
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where rc∗ is the smallest reduced cost generated so far, and RCmax and δ are
given parameters. In any case, no more than Nmax sequences are inserted.
The corresponding variables xsi are then added to the current LP model, but
the LP is not re-optimized yet.

(vi) If the last sequences inserted in S have a length smaller than Lmax (say), we
repeat from step (ii); otherwise, the next insertion point i is considered.

When the last insertion point has been considered, the current LP is re-
optimized, and we repeat.

In our implementation, we defined Nmin = 5 (N (1)
min = 10 at the iteration

L = 1), Nmax = 10, Lmax = 5, δ = 3, and RCmax = 10.
In the very first application of steps (i)-(vi) above, when no LP has been

solved yet, all dual LP variables are set to zero, and RCmax = +∞. Moreover,
when L = 1 (i.e., in case of singleton sequences s =< v >), at step (ii) we
heuristically define rcsi = cav + cvb, where [a, b] is the edge in the restricted
solution that corresponds to insertion point i. This is because we noticed that
the LP reduced costs tend to give an unreliable estimate of the real effectiveness
of the variables associated with singleton sequences.

Still in the second phase, we construct the following additional sequences
s and add the corresponding variables xsi to the LP model, but only for the
insertion points i ∈ I (if any) such that the reduced cost rcsi ≤ RCmax.

(i) all the sequences s generated so far;
(ii) all possible sequences s of cardinality 2 through the extracted nodes;
(iii) all possible sequences s of cardinality 3 that can be obtained as an extension

of the sequences s′ considered at step (ii), but only in case the corresponding
variable xs′i has a reduced cost rcs′i ≤ RCmax for at least one i ∈ I.

Steps (i)-(iii) are iterated until no new variable is added to the model. Hashing
techniques are used in order to avoid the generation of duplicated variables.

5. Computational results

Algorithm SERR has been tested on an AMD Athlon XP 2400+ PC with 1
GByte RAM. The ILP solver used in the experiments is ILOG Cplex 8.0 [29]. The
algorithm has been coded in C++, and exploits the ILOG Concert Technology
1.2 interface [30]; the corresponding compiler is GNU gcc 3.0.4 with GNU GLIBC
2.2 libraries.

The performance of the algorithm was evaluated by considering two classes of
experiments, corresponding to two different possibilities for finding the starting
solution to be improved. In Class 1, the starting solution is obtained by means
of one of the two fast initialization procedures described in Section 4.1 (namely,
procedure FJ or procedure SWEEP), which are often quite far from optimality.
In Class 2, instead, we start from an extremely-good feasible solution (typically,
the best-known heuristic solution reported in the literature), with the aim of
evaluating the capability of our method to further improve it—this is of course
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possible only if the starting solution does not happen to be optimal, as it is likely
the case for several of them.

Our computational analysis considers several Euclidean CVRP and DCVRP
instances from the literature, that are generally used as a standard benchmark for
the considered problems. Both real cost and integer-rounded cost instances have
been considered. A group of CVRP instances with asymmetric costs (ACVRP)
has been addressed as well, after a minor modification of our code needed to
deal with directed (as opposed to undirected) graphs.

For the first class of experiments, CVRP, DCVRP and ACVRP instances
with up to 100 customers were solved. In particular, our benchmark includes all
the CVRP integer-rounded cost instances (with number of customers between
50 and 100) available at http://www.branchandcut.org/VRP, a site maintained
by T. Ralphs (Lehigh University, Bethlehem, PA). These instances are denoted
as X-nY-kZ, where “X”, “Y”, and“Z” represent, respectively, the instance “series”
(i.e., A, B, E, P), the number n of nodes of graph G, and the number k of routes.
In addition, we considered the integer-rounded cost instance F-n72-k4 as well as
the eight classical VRP and DVRP real cost instances with no more than 100
customers described in Christofides and Eilon [6] and Christofides, Mingozzi and
Toth [7]. These instances are denoted as WnY-Zu, where “W” is equal to “E” for
the CVRP instances and “D” for the DVRP ones, while “Y” and “Z” have the
meaning previously defined. For several instances, the optimal solution value
has been found very recently by the exact algorithms proposed by Lysgaard,
Letchford and Eglese [33], Fukasawa, Poggi de Aragão, Reis and Uchoa [19],
Wenger [44], and Baldacci, Hadjiconstantinou and Mingozzi [3]. As to ACVRP,
we considered the eight integer-rounded cost instances proposed (and solved to
proven optimality) by Fischetti, Toth and Vigo [16]; these instances are denoted
as A-nY-kZ.

Tables 1 and 2 report the results obtained by algorithm SERR with initializa-
tion procedures FJ and SWEEP, respectively, when applied to CVRP instances.
A time limit of 7,200 seconds (i.e., 2 hours) was imposed for each run. All the
computing times reported in the tables are expressed in AMD Athlon XP 2400+
CPU seconds. The columns in the tables have the following meaning:

- Best is the best known solution value from the literature (including the
improvements found in [19,44,3]; provable optimal values are marked by ∗);

- Start is the value of the initial solution;
- SERR is the value of the solution found by SERR;
- %err is the percentage error between the value found by SERR and the best

solution value;
- %imp is the percentage improvement of the value found by SERR with

respect to the initial solution value;
- Total is the total computing time required by SERR to obtain its final

solution;
- Cplex is the computing time required by Cplex to solve the ILP instances;
- Recomb. is the computing time required by SERR for the Recombination

phase.
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The last three columns of the two tables refer a simplified version of SERR
in which the recombination phase (see Section 4.4) is not performed. Columns
have the following meaning:

- Sol. is the solution value found by the algorithm;
- %imp is the percentage improvement of the value found by the algorithm

with respect to the initial solution value;
- Time is the total computing time required by the algorithm to obtain its

final solution.

The tables show that our refining algorithm is able to improve substantially
the initial solutions. The average improvement is about 3.5% and 24.4% for the
initialization procedures FJ and SWEEP, respectively. With respect to the best
known solutions available in the literature, algorithm SERR is able to find the
best solution for 12 instances by starting with procedures FJ or SWEEP. With
respect to the values given in [36] and corresponding to the best solutions found
by heuristic and metaheuristic algorithms, algorithm SERR delivers an improved
solution for instances A-n62-k8, P-n50-k8, P-n60-k10, P-n60-k15 (starting both
from FJ and SWEEP), and P-n70-k10 (starting with SWEEP), the values re-
ported in [36] for these instances being, respectively, 1290, 649, 756, 1033, 834.

Tables 3 and 4 address DCVRP instances, with a larger time-limit allowed;
columns have the same meaning as in the previous tables. In the tables, (*)
denotes instances for which the refining algorithm started from an infeasible
initial solution. The performance of SERR for these instances is very satisfactory,
in that the method is always able to recover the initial infeasibility (with a
single exception arising when starting with the FJ solution) and to approach
very closely the best-known solution. In one case, D101-11c, the method even
improves the best-known solution from the literature.

Table 5 gives the solution values and times for the ACVRP instances; for these
instances, only the FJ starting procedure is used—SWEEP heuristic requires
customer coordinates, that are not specified in the asymmetric instances. Again,
SERR proves quite effective in improving the initial (very poor) FJ solution,
and delivers solution that are (on average) 3.7 % worse than the best-known
(actually, provable optimal) ones.

For the second class of experiments, in which we start from an extremely-good
feasible solution taken from the literature, the following CVRP and DCVRP
instances have been considered:

- real cost instances: the 14 standard test problems proposed by Christofides
and Eilon [6] and Christofides, Mingozzi and Toth [7];

- rounded integer cost instances: the same 14 standard test problems as before,
plus instances E-n101-k14, M-n151-k12, M-n151-k12a, and D200-18c.

Problems M-n151-k12 and M-n151-k12a actually correspond to the same in-
stance, the only difference being the order in which the customers are given on
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Table 1. Complete method and no recombination method, with FJ initial solution. (∗) prov-
able optimal solution value.

input. The corresponding initial solutions are taken from Gendreau, Hertz and
Laporte [21] for the 14 standard instances, from Taillard’s web page [40] for in-
stances M-n151-k12 and D200-18c, and from Vigo’s VRPLIB web page [43] for
instances M-n151-k12a and E-n101-k14.

Table 6 reports the results obtained by algorithm SERR for the instances for
which it is able to improve the corresponding initial solution. The columns have
the same meaning as in the previous tables; a negative value for %err means that
the new solution is strictly better than the previous best-known solution from
the literature. For all the integer rounded cost DCVRP instances we assume
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Table 2. Complete method and no recombination method, with SWEEP initial solution. (∗)
provable optimal solution value.

that the starting solution, taken from [21], corresponds to the best known one—
unfortunately, for the integer-rounded-cost DCVRP instances we could not find
an explicit statement of this property in the literature. The table shows that
SERR delivers an improved solution in 22 out of the 32 cases, while obtains a
new best-known solution for 9 hard instances from the literature. Moreover, a
modified SERR implementation allowing for empty routes delivers a new best-
known solution for problem D200-18c. Finally, for both M-n151-k12 and M-n151-
k12a algorithm SERR is able to improve the previous-best heuristic solution–the
best solution value for both being 1015.
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Solution values
Problem Best Start Source SERR %err %imp Comp. time

E076-10e * 830 832 [22] 831 0.1 0.1 279.4
E101-10c * 820 824 [22] 820 0.0 0.5 18.3
E121-07c * 1034 1035 [22] 1034 0.0 0.1 88.7
E151-12c 1016 1024 [22] 1022 0.6 0.2 461.2
E200-17c 1316 1316 [22] 1307 -0.7 0.7 48487.7
D076-11c 907 907 [22] 905 -0.2 0.2 178.1
D101-11c 866 866 [22] 865 -0.1 0.1 1273.5
D121-11c 1529 1529 [22] 1526 -0.2 0.2 26622.1
D151-14c 1180 1180 [22] 1161 -1.6 1.6 44578.4
D200-18c 1404 1404 [22] 1398 -0.4 0.4 4074.8
E076-10e 835.26 836.37 [22] 835.26 0.0 0.1 380.7
E101-10c 819.56 822.85 [22] 819.56 0.0 0.4 20.0
E121-07c 1042.11 1043.94 [22] 1043.42 0.1 <0.1 114.8
E151-12c 1028.42 1034.90 [22] 1034.50 0.6 <0.1 396.5
E200-17b 1291.29 1311.35 [43] 1305.35 1.1 0.5 18386.0
D121-11c 1541.14 1551.63 [22] 1546.10 0.3 0.4 232465.9
D151-14c 1162.55 1189.79 [22] 1178.02 1.3 1.0 7431.4
D200-18c 1395.85 1421.88 [22] 1416.47 1.5 0.4 42261.9
E-n101-k14 1071 1076 [43] 1067 -0.4 0.8 2865.7
M-n151-k12 1016 1016 [40] 1015 -0.1 0.1 377.4
M-n151-k12a 1016 1023 [43] 1022 0.6 0.1 11090.2
D200-18c 1395.85 1395.85 [40] 1352.01 -3.2 3.1 79820.4
D200-18c 1395.85 1395.85 [40] # 1347.61 -3.6 3.5 113447.2

Table 6. Complete method: improvements from good CVRP/DCVRP solutions from the
literature. (∗) provable optimal solution value. (#) solution with one empty route.

Fig. 7. Time evolution of the SERR solution for various CVRP instances, with FJ initial
solution.
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Fig. 8. Time evolution of the SERR solution for various CVRP instances, with SWEEP initial
solution.

According to the previous table, the SERR method is very effective in improv-
ing the starting solution, even if it is of very-good quality. The computational
effort appears quite substantial in some cases. However, as shown in Figures 7
and 8, the quality of the incumbent SERR solution improves quickly at the very
beginning of the computation, so one could think of imposing a much shorter
time limit without a significant deterioration of the final solution. Moreover, our
computational experiments show that the no-recombination method often has
an acceptable performance, so a faster SERR implementation could be obtained
by applying the fast no-recombination method first, so as to quickly improve
the incumbent solution, and only afterwards the more time-consuming complete
method.

We finally addressed larger instances with more than 200 customers, in the
attempt of improving the corresponding best-known solution values reported in
the literature. In order to reduce the computational time required by our method,
in the node recombination phase described in Subsection 4.4 we inhibited the
generation of derived sequences of length larger than 2, and used the following
alternative parameter setting: RCmax = Lmax = 3, Nmin = 2, Nmax = 5, and
δ = 2. The following 8 instances have been considered: E241-22k, E253-27k,
E256-14k, E301-28k, E321-30k, E324-16k, and E361-33k from [24], and Tai385
from [40]. The SERR method was able to improve 3 solutions, namely, E324-
16k (from the previous best-known value 742.03 to 741.70, in 61661.9 seconds),
E361-33k (from 1366.8579 to 1366,8578, in 1032.0 seconds), and Tai385 (from
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24431.44 to 24422.50, in 152286.5 seconds).2 The new best-known solutions are
given in the appendix.

6. Conclusions and future research directions

We have proposed a new refinement heuristic for DCVRP. The method is an elab-
oration of a refinement procedure originally proposed by Sarvanov and Doroshko
[39] (SD) for the pure Travelling Salesman Problem (TSP).

Our approach goes far beyond the original SD scheme, and is based on a
more sophisticated node removal policy followed by a procedure to construct a
large number of new potential sequences through the extracted nodes.

Computational results on a large set of capacitated VRP instances from the
literature (with symmetric/asymmetric costs and with/without distance con-
straints) show that the SERR method is quite effective. In 12 cases, some of
which are reported in the Appendix, it was even able to improve the best-known
solution reported in the literature.

Future directions of work should address the possibility of extending the
SERR method to even more constrained VRP versions. An obvious extension is
to consider route-dependent limits on the capacity and/or on the total-distance
travelled. Also interesting is the adaptation of the SERR method to scheduling
problems (including the crew and vehicle scheduling problems addressed, e.g., in
[15], for which the method can be viewed as a generalization of the refinement
heuristic proposed in [9]), or to the VRP with backhauls [42]. An even more
intriguing extension is to consider the DCVRP with precedence constraints, and
important variant where a set of precedences among the nodes is specified. In
the SERR context, these additional constraints would lead to (a) removing some
variables xsi, in case the allocation of sequence s into insertion point i is im-
possible due to some precedences between a node covered in sequence s and one
of the nodes in the restricted route that are visited before the insertion point i,
and (b) introducing new constraints among the xsi variables corresponding to
the insertion points i belonging to a same route, stipulating incompatibility con-
ditions of the type xs′i′ + xsi ≤ 1 whenever there exists a precedence between
a node in s′ and a node s which is incompatible with the relative position of
the insertion points i and i′ in the route (these constraints possibly need to be
strengthened by lifting techniques).
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within 45.9 seconds, whereas for problem Tai385 we found a solution of value 24427.51 within
35842.1 seconds.
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8. Appendix: Improved solutions

We next present some improved solutions found by our SERR method.
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Fig. 9. New best-known solution for instance E-n101-k14, having cost 1067.

R1: 61, 16, 86, 38, 44, 91, 98
R2: 1, 51, 9, 81, 33, 79, 50
R3: 58, 2, 57, 42, 14, 43, 15, 41, 22, 74, 73
R4: 69, 70, 30, 32, 90, 63, 10, 31
R5: 80, 24, 29, 78, 34, 35, 71, 65, 66, 20
R6: 12, 68, 3, 77, 76, 28
R7: 82, 48, 47, 19, 7, 52
R8: 88, 62, 11, 64, 49, 36, 46, 8, 18
R9: 96, 99, 93, 85, 100, 37, 92
R10: 54, 55, 25, 39, 67, 23
R11: 6, 59, 5, 84, 17, 45, 83, 60, 89
R12: 40, 21, 72, 75, 56, 4, 26
R13: 94, 95, 97, 87, 13
R14: 53, 27
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Fig. 10. New best-known solution for instance M-n151-k12, having cost 1015.

R1: 69, 101, 70, 30, 20, 128, 66, 71, 65, 136, 35, 135, 34, 78, 129, 79
R2: 137, 2, 115, 145, 41, 22, 133, 23, 56, 75, 74, 72, 73, 21, 40
R3: 138, 109, 54, 130, 55, 25, 67, 39, 139, 4, 110, 149, 26
R4: 132, 1, 122, 51, 103, 9, 120, 81, 33, 102, 50, 111
R5: 27, 127, 31, 10, 108, 131, 32, 90, 63, 126, 62, 148, 88
R6: 18, 114, 46, 124, 47, 36, 143, 49, 64, 11, 107, 19, 123, 7, 146
R7: 89, 118, 60, 83, 125, 45, 8, 82, 48, 106, 52
R8: 147, 5, 84, 17, 113, 86, 140, 38, 43, 15, 57, 144, 58
R9: 112, 53, 105
R10: 28, 76, 116, 77, 3, 121, 29, 24, 134, 80, 150, 68, 12
R11: 6, 96, 104, 99, 61, 16, 141, 44, 119, 14, 142, 42, 87, 97, 117
R12: 94, 59, 93, 85, 91, 100, 37, 98, 92, 95, 13
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Fig. 11. New best known solution for instance D200-18c, having cost 1352.01.

R1: 110, 155, 4, 139, 187, 39, 186, 56, 197, 198, 180, 53
R2: 40, 73, 171, 74, 133, 22, 41, 145, 115, 178, 2, 58, 152
R3: 12, 109, 177, 80, 150, 163, 24, 134, 54, 195, 26, 105
R4: 27, 167, 127, 190, 88, 182, 194, 106, 52, 146
R5: 149, 179, 130, 165, 55, 25, 170, 67, 23, 75, 72, 21
R6: 156
R7: 37, 100, 192, 119, 14, 38, 140, 44, 141, 191, 91, 193, 59
R8: 6, 96, 104, 99, 93, 85, 98, 151, 92, 95, 94, 183
R9: 60, 118, 84, 17, 113, 86, 16, 61, 173, 5, 147
R10: 137, 144, 57, 15, 43, 142, 42, 172, 87, 97, 117, 13, 112
R11: 7, 123, 19, 49, 143, 36, 47, 168, 124, 48, 82, 153
R12: 89, 166, 83, 199, 125, 45, 46, 174, 8, 114, 18
R13: 154, 138, 184, 116, 196, 76, 28
R14: 68, 121, 29, 169, 34, 164, 78, 129, 79, 158, 3, 77
R15: 111, 50, 102, 157, 33, 9, 103, 66, 188, 20, 122, 1
R16: 31, 159, 126, 63, 181, 64, 11, 175, 107, 62, 148
R17: 132, 69, 101, 70, 30, 128, 160, 131, 32, 90, 108, 189, 10, 162
R18: 185, 81, 120, 135, 35, 136, 65, 71, 161, 51, 176
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Fig. 12. New best known solution for instance D200-18c, having cost 1347.61 (with one empty
route).

R1: 110, 155, 4, 139, 187, 39, 186, 56, 197, 198, 180, 53
R2: 40, 73, 171, 74, 133, 22, 41, 145, 115, 178, 2, 58, 152
R3: 12, 109, 177, 150, 80, 163, 24, 134, 54, 195, 26, 105
R4: 149, 179, 130, 165, 55, 25, 170, 67, 23, 75, 72, 21
R5: 27, 167, 127, 190, 88, 182, 194, 106, 52, 146
R6: 37, 100, 192, 119, 14, 38, 140, 44, 141, 191, 91, 193, 59
R7: 183, 94, 95, 92, 151, 98, 85, 93, 104, 99, 96, 6
R8: 60, 118, 84, 17, 113, 86, 16, 61, 173, 5, 147
R9: 137, 144, 57, 15, 43, 142, 42, 172, 87, 97, 117, 13, 112, 156
R10: 153, 82, 48, 124, 168, 47, 36, 143, 49, 19, 123, 7
R11: 89, 166, 83, 199, 125, 45, 46, 174, 8, 114, 18
R12: 138, 154, 184, 116, 196, 76, 28
R13: 77, 3, 158, 79, 129, 78, 164, 34, 169, 29, 121, 68
R14: 111, 50, 102, 157, 33, 9, 103, 66, 188, 20, 122, 1
R15: 31, 159, 126, 63, 181, 64, 11, 175, 107, 62, 148
R16: 132, 69, 101, 70, 30, 128, 160, 131, 32, 90, 108, 10, 189, 162
R17: 185, 81, 120, 135, 35, 136, 65, 71, 161, 51, 176
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Fig. 13. New best known solution for instance E324-16k, having cost 741.70.

R1: 129, 163, 181, 213, 228, 241, 254, 276, 285, 293, 300, 306, 311, 315, 318,
314, 309, 303, 297, 290, 281, 271, 261, 237, 224, 209, 194, 178, 143, 83
R2: 61, 85, 113, 145, 180, 197, 212, 227, 240, 253, 265, 275, 284, 274, 264, 252,
239, 226, 196, 162, 128, 98, 72
R3: 164, 182, 199, 215, 230, 243, 267, 278, 287, 295, 302, 308, 313, 317, 320,
322, 323, 321, 319, 316, 312, 307, 301, 294, 286, 277, 266, 255, 242, 229, 214,
198, 146, 99
R4: 127, 161, 195, 210, 238, 250, 262, 272, 282, 291, 298, 304, 310, 305, 299,
292, 283, 273, 263, 251, 225, 211, 179, 144, 112, 84
R5: 8, 9, 5, 2
R6: 4, 1
R7: 17, 23, 30, 39, 49, 60, 50, 40, 31, 24
R8: 13, 19, 14, 20, 26, 33, 25, 18, 12
R9: 32, 41, 51, 73, 86, 114, 130, 147, 165, 183, 200, 184, 166, 148, 131, 115,
100, 74, 62, 42
R10: 71, 97, 111, 126, 160, 177, 193, 208, 223, 236, 249, 260, 248, 235, 222,
207, 192, 176, 159, 142, 110, 96, 70, 59
R11: 95, 109, 124, 140, 157, 174, 190, 206, 220, 233, 246, 258, 269, 279, 288,
296, 289, 280, 270, 259, 247, 234, 221, 191, 175, 158, 141, 125, 82, 48
R12: 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 172, 188, 204, 219, 205, 189,
173, 156, 139, 123, 108, 94, 81, 69, 58
R13: 3, 6, 10, 15, 22, 16, 11, 7
R14: 52, 87, 101, 116, 132, 149, 167, 185, 202, 217, 201, 216, 231, 244, 256,
268, 257, 245, 232, 218, 203, 186, 168, 150, 133, 117, 102, 88, 75, 63
R15: 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 187, 169, 151, 134,
118, 103, 89, 76, 64, 53, 43, 34
R16: 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 154, 137, 121, 106,
92, 79, 67, 56, 46, 37, 29
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Fig. 14. New best known solution for instance E361-33k, having cost 1366.8578.

R1: 14, 23, 24, 25, 84, 85, 67, 80, 7, 20, 19
R2: 34, 35, 36, 9, 101, 69, 160, 100, 40, 39
R3: 41, 161, 221, 189, 276, 335, 334, 275, 216, 129, 156, 96
R4: 140, 200, 260, 247, 325, 307, 320, 319, 318, 259, 199
R5: 172, 232, 292, 251, 357, 311, 352, 351, 350, 291, 231
R6: 212, 213, 272, 331, 332, 273, 188, 208, 128, 153, 93
R7: 3, 63, 123, 142, 91, 82, 31, 22
R8: 207, 267, 268, 248, 333, 308, 328, 327, 326, 321, 266
R9: 287, 338, 347, 348, 349, 310, 344, 250, 289, 288, 228
R10: 43, 44, 10, 104, 70, 164, 163, 103, 102, 42, 37
R11: 109, 169, 130, 229, 190, 284, 343, 342, 283, 224, 223
R12: 1, 61, 121, 174, 75, 16, 15, 114, 54
R13: 79, 139, 198, 253, 258, 313, 301, 241, 294, 195, 136
R14: 51, 52, 11, 112, 71, 117, 116, 57, 56, 55, 46
R15: 38, 47, 98, 107, 158, 125, 65, 5
R16: 220, 280, 281, 249, 336, 309, 341, 340, 339, 330, 279
R17: 255, 354, 315, 316, 317, 312, 360, 252, 257, 256, 196
R18: 45, 50, 105, 110, 165, 170, 225, 185, 218, 167, 108, 49, 48
R19: 21, 26, 27, 28, 87, 147, 148, 68, 88, 8, 33
R20: 60, 120, 72, 180, 239, 298, 353, 306, 346, 295, 286, 235, 175
R21: 17, 12, 76, 135, 234, 181, 193, 138, 133, 78, 73, 18, 13
R22: 32, 151, 202, 183, 243, 269, 214, 209, 154, 149, 94, 89, 29
R23: 53, 58, 113, 118, 173, 126, 66, 6
R24: 4, 64, 124, 184, 210, 150, 90, 30
R25: 144, 204, 264, 323, 324, 265, 187, 205, 127, 145
R26: 177, 131, 237, 191, 297, 356, 355, 296, 236, 176
R27: 168, 227, 278, 245, 305, 345, 290, 285, 230, 171, 111
R28: 77, 137, 132, 197, 192, 300, 359, 358, 299, 240, 179
R29: 74, 83, 134, 143, 194, 203, 254, 263, 314, 302, 242, 261, 206, 146
R30: 92, 152, 211, 262, 271, 322, 303, 329, 274, 215, 155, 95
R31: 106, 115, 166, 226, 186, 246, 293, 238, 233, 178, 119, 59
R32: 99, 159, 219, 270, 244, 304, 337, 282, 277, 222, 217, 162, 157, 97
R33: 81, 86, 141, 201, 182, 122, 62, 2
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Fig. 15. New best known solution for instance Tai385, having cost 24422.50.

R1: 341, 342, 349, 346, 347, 348, 383, 375
R2: 336, 333, 334
R3: 246, 242, 228, 227
R4: 262, 261, 260, 259, 266, 276
R5: 139, 180, 179, 178, 190, 183, 182, 186, 185, 345, 378
R6: 193, 203, 205, 206, 213, 214, 216, 373, 217, 219, 32, 33, 34, 35, 5, 160,
161, 162, 163, 164
R7: 382, 358, 364
R8: 360, 357, 325
R9: 319, 281, 385, 49, 50, 57, 52
R10: 209, 210, 211, 212, 215, 365, 218, 220, 37, 39, 38, 40, 45, 384, 43, 42, 44,
48, 47, 46, 41, 36, 368, 192
R11: 300, 327, 359, 361, 362, 363, 323, 324
R12: 239, 238, 235, 233, 249, 250, 379
R13: 241, 236, 229, 230, 3, 223, 224, 231, 232, 234, 237, 240
R14: 314
R15: 351, 352, 221, 222
R16: 320, 279, 265, 254, 255, 380, 256, 251, 252, 248, 243, 244, 245, 247, 253,
374, 1
R17: 353, 354, 356, 355, 350, 225, 226
R18: 269, 338, 339, 340, 343, 208, 367, 202, 344, 189, 184, 181
R19: 308, 307
R20: 145, 121, 112, 113, 118, 115, 114, 146, 149, 151
R21: 142, 171, 381, 167, 165, 191, 199, 194, 176, 177, 175, 174, 173
R22: 302, 311
R23: 72, 69, 64, 65, 18, 19, 63, 62, 73, 81
R24: 88, 82, 80, 79, 78, 58, 59, 60, 61, 76, 77, 75, 74, 103, 90
R25: 275, 288, 294
R26: 310
R27: 136, 2, 140, 134, 133, 127, 128
R28: 305, 290, 289, 85, 54, 53, 283, 284, 291, 292, 321, 303, 309
R29: 96, 101, 102, 104, 105, 108, 130, 126, 97
R30: 188, 376, 124, 106, 71, 70, 107, 125, 98
R31: 304, 86, 84, 83, 56, 55, 187, 51, 282, 280, 257, 258, 286, 295
R32: 287, 263, 264, 277, 278, 285, 293
R33: 317
R34: 322, 301
R35: 274, 270, 332, 268
R36: 330, 331, 335
R37: 297, 267, 329
R38: 296, 273, 272, 298
R39: 138, 318
R40: 306, 87, 89, 100, 99, 312
R41: 94, 137, 132, 95, 93, 92, 91
R42: 315, 313
R43: 371, 110, 66, 68, 15, 17, 16, 29, 13, 24, 22, 23, 20, 21, 30, 31, 12, 11,
10, 9, 8, 7, 25, 26, 14, 370, 377, 67, 109, 122, 123, 129
R44: 135, 144, 152, 150, 155, 156, 157, 4, 158, 159, 366, 198, 201, 197, 200,
207, 204, 195, 196, 169, 172, 170
R45: 111, 119, 120, 28, 27, 6, 369, 117, 116, 147, 148, 154, 166, 153, 168, 143,
141, 131
R46: 299, 316, 372
R47: 326, 328, 337, 271
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