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Exact and Approximate Algorithms for the Index
Selection Problem in Physical Database Design

Alberto Caprara, Matteo Fischetti, and Dario Maio, Member, IEFE

Abstract—The index selection problem (ISP) is an important
optimization problem in the physical design of databases. The aim
of this paper is to show that ISP, although NP-hard, can in prac-
tice be solved effectively through well-designed algorithms. We
formulate ISP as a 0-1 integer linear program and describe an
exact branch-and-bound algorithm based on the linear pro-
gramming relaxation of the model. The performance of the algo-
rithm is enhanced by means of procedures to reduce the size of
the candidate index set. We also describe heuristic algorithms
based on the solution of a suitably defined knapsack subproblem
and on Lagrangian decomposition. Finally, computational results
on several classes of test problems are given. We report the exact
solution of large-scale ISP instances involving several hundred
indexes and queries. We also evaluate one of the heuristic algo-
rithms we propose on very large-scale instances involving several
thousand indexes and queries and show thit it consistently pro-
duces very tight approximate (and sometimes provably optimal)
solutions. Finally, we discuss possible extensions and future di-
rections of research. ’

Index Terms-—Index selection problem, relational daiabase,
physical database design, 0-1 integer linear programming,
branch-and-hound algorithm, heuristic algorithm,

Re

T HE aim of physical database design (PDD) is to define an
appropriate set of access structures for a database (DB),
offering a good compromise between mass storage occupation
and time required for information retrieval and maintenance.
PDD is strictly dependent upon the database management
system (DBMS) target, so the designer has to take into ac-
count, among others, two basic aspects:

1. INTRODUCTION

» the access structures supported by the DBMS; e.g., hash
functions, links, inverted indexes, clustering of data, etc.;

s the strategies vsed in accessing the data; e.g., join algo-
rithms, index intersection methods, etc.

PDD is always a complex task due to the large number of pos-
sible choices, even if the DBMS offers only a limited set of
features.

The index selection problem (1SP) is a particularly important
phase of PDD and consists of choosing the DB indexes to be
created in order to globally minimize the response time for a
given DB workload. In some cases this choice is constrained by
the amount of memory available for storing the indexes. With
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appropriate assumptions, to be discussed later, ISP can be for-
mulated as follows. We are given m queries, say @y, ..., Q..

along with n candidate indexes, say ‘F, ..., .. Each index F;
has an associated maintenance cost, ¢;, and requires d; memory
units to be stored. Each query £; can access the DB data by
utilizing at most one index, the corresponding execution cost

being u; if no index is used, or ¥; if index F; is utilized. Let
gy = max{0, 1~ ¥} be the gain for using index F; for query 9,
ISP then consists of selecting a subset S < {1, ..., ﬁ} (where je S
means that index F; has to be constructed and stored) such that
z}_(s_ d; does not exceed a given bound D on the memory avail-

able for the indexes. The objective is the minimization of the
overall cost for answering all the gqueries, computed as

ZM minfe;, min g ¥} +2jw ¢; » of equivalently the maximi-

zation of the net gain Z:i] max{g;:j € S*} —ZH‘ € -

ISP is an NP-hard optimization problem [9]. It can be
viewed as a combinatorial optimization problem since its so-
lution has 1o be chosen from among a finite number of possible
configurations. Therefore, explicit and complete enumesation
of all the possible index subsets is, in principle, a possible way
to solve ISP. This method is however impractical in most
cases, since the computational effort grows exponentially with
the number of candidate indexes for selection.

Both heuristic and exact approaches for index selection in a
relational DB environment have heen proposed in the litera-
ture, see, .., [2], [3], {41, [5]. (12}, [13], [19], [21], and 122].
Solution methods and formalizations for the index selection
problem for files can be found in [1], [15], {16], [17], {18],
1271, [28), and [29].

Heuristic algorithms give an approximate solution to the
problem, in the sense that they do not guarantee that the index
subset they select is the one which minimizes the estimated
execution cost of the DB workload. As noted in [13], in practi-
cal applications one is not really interested in finding the opti-
mal solution to the problem, since its formulation is affected
by some approximation. On the other hand, the designer is
interested in finding a solution “not too far” from the optimum,
and none of the propesed heuristic algorithms provides an ef-
fective way to estimate the difference between the given solu-
tion and the optimal one.,

The exact approaches so far proposed in the literature suffer
from the fact that they consist of complete enumeration of the
possible index subsets, hence are very time consuming even
for small problem instances.

1041-4347/95804.00 © 1995 IEEE
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The aim of this paper is to show how our specific version of
ISP, although NP-hard, can be solved exactly through a well-
designed algorithm based on combinatorial optimization tech-
nigues. For another example of a combinatorial optimization
approach to PDD, see [11], where the unified problem of rec-
ord segmentation and access path selection is considered.

Experimental results prove that in practical cases the time
required for the solution is much smaller than that necessary
for complete enumeration of all the index combinations. In
addition, the algorithm we propose provides a heuristic solu-
tion and a bound on the optimal solution which are improved
during execution. Therefore, stopping the algorithm when the
difference between these two values becomes sufficiently
small ensures that the heuristically selected index set is a
“good” one. We report successful computation of our exact
algerithm on large-scale randomly-generated instances involv-
ing several hundreds of indexes and queries. These random
instances are generated so as to closely simulate the structure
and the workload of real-world DBs.

We also present a heuristic algorithm intended for very
large-scale instances and capable of dgtermining very tight
approximate solutions in short computing time. The perform-
ances of this heuristic are evaluated on random instances in-
volving several thousands of indexes and queries.

The paper is organized as follows. Section II gives the basic
assumptions and definitions used in the sequel. In Section III,
we give a mathematical formulation for ISP, and use it to de-
rive a branch-and-bound algorithm for its optimal solution. We
do not assume the reader is familiar with optimization tech-
niques, so this section is intended to give an outline of the
main ideas underlying the algorithm we have implemented.
For a comprehensive introduction to combinatorial optimiza-
tion the interested reader is addressed to, e.g., [25]. The
mathematical formulation of Section III is improved upon in
Section [V, where some numerical examples are also reported
to illustrate the tmprovements. We also discuss the way the
improved model, which contains a large number of constraints,
can be solved in practice. Heuristic algorithms and reduction
procedures are introduced in Section V. Section VI describes a
decomposition approach for computing approximate solutions
of very large-scale instances. In Section VII, extensive ex-
perimental results are reported. Finally, in Section VII, we
show how our approach can be generalized by relaxing some
of the assumptions on which the model is based.

II. BASIC ASSUMPTIONS AND DEFINITIONS

In the literature on index selection different assumptions as
to the form of queries in the workload, the execution tech-
niques for these queries, the cost functions, the physical
placement of data, etc., lead to different formulations of the
problem. In this respect the most general assumptions are
made in [13], even if the use of a single index per table in ac-
cessing the data is still assumed. In this paper we deal with
relational ISP on the following assumptions:

a) for each relation, the data allocation criterion is known:!

b} for every query, at most one index is used to retrieve the
tuples of each relation involved (the one leading to the
minimum cost);

¢) every join query is performed by using separable join
methods (for an exhaustive work on separability, see
[30D);

d) for a data modification query (i.e., “insert,” “delete,” or
“update”™ query), the cost for each index update does not
depend upon the access path selected.

Hypotheses a), ¢), and d) correspond to a widely-used ap-
proach to the problem, which allows practical use of analytical
formutas. Hypothesis b) is instead verified by particular
classes of DBMS as, for example, those derived from IBM
System R. As a consequence of b), our work differs from those
considering index intersection methods, see, e.g. [21, [31, [19],
and [30].

The mathematical model we propose in this paper has two
attractive properties, namely:

¢ It is applicable whatever the structure of the indexes to be
selected (for multiattribute indexes, the only requirement
is that each index spans a set of attributes over a single
relation);

* [t poses no restriction on the set of cost functions that can
be used to define the problem instance; therefore one can
take into account, e.g., attribute dependences or nonuni-
form value distributions.

Some of the assumptions a)-d) can be relaxed without af-
fecting the validity of the solution technique we propose. This
will be discussed in Section VIII.

Our next step is characterization of an ISP instance, requir-
ing the specification of DB statistics and workload. For every
query different costs have to be evaluated, each associated
with a possible access path. We introduce two definitions:

® execution cost of a single-table query: the global cost for
the following operations
— accessing the tuple identifiers (TIDs) of the index cho-
sen to answer the query, if any;

— accessing the tuples of the relation involved;
— updating the tuples of the same relation, if required;

* index maintenance (or update) cost in a query: the cost
for deleting, in an index, the TIDs corresponding to the
old tuples and/or for inserting in the same index the TIDs
corresponding to the new tuples,

Notice that also CPU costs can be considered, together with
/O costs, since no particular restriction on cost functions is
made.

The main consequences of assumptions a)-d) above are the
following:

a’) the physical placement of the data is known, hence it can
be taken into account in cost evaluation;

b’) for every single-table guery, the execution cost corre-
sponding to each index set can be obtained from the exe-

L. Usually, a primary attribute is chosen and the file storing the relation is
sorted according to the values of this attribute.
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cution costs of the configurations having at most one in-
dex for the same table (see [13]);

¢’) every join query can be substituted with an equivalent set
of single-table queries, one for each relation involved in
the join;

d’) the cost of each index update for a query can be com-
puted independently of the other indexes selected.

We next describe the notation used throughout. Let

* m = number of single-table queries in the workload, ob-

tained after substitution (c");

n = number of candidate indexes for selection;

M=|{1,. . ,m}

N=1{1,...,n}

Qi € M) = ith query;

J; (i € N) = jith candidate index;

g{i € M, je N)= gain for using index F; for query @,

with respect to the execution cost when no candidate in-

dex is selected; if this gain is negative, g; is set to 0

(notice that g; = 0 if F; and @, are associated with differ-

ent relations);

® c{j € N) = global maintenance cost of index T, i.e., the
weighted sum, involving every query &, of the mainte-
nance costs of ; in this sum the weights are equal to the
query frequencies {(c; can also take into account the cost
due to periodic reorganization of F));

* dfj € N)=secondary storage space required by index F;

¢ D = total amount of secondary memory available for the
indexes.

. ® » & @ @

To simplify notation, for f € M and j € N we will write “query
" and “index ;" instead of “query 9" and “index F,” respec-
tively.

We assume that dij € N) and D are positive integers, and
¢;> 0 (f € N). In addition, for each query i € M let

Ji={je N:g;>0}

contain the indexes j that are candidates to answer query i
Symmetrically, for each index j € N let

fi={ie M:g;>0}
contain the queries { which can take advantage of the avail-

ability of index j.
ISP can therefore be formulated as follows.

ISP: Find an index subset S — N such that

>4 =D

jes*

(n

7(§%) = Zmax{gij:jeS*}— ch 2)
ieM jes*

is a maximum (where maxiZ = 0 is assumed).

ISP generalizes two well-studied combinatorial optimization
problems: the krapsack problem (KP) and the uncapacitated
(or simple) plant location problem (UPLP).

KP is formally defined as follows. We are given a set of n

items, the jth of which has a weight d; and a profit m, je N =

957

{1, ..., n}. The problem, in its maximization form, consists of

selecting a subset of items §° < N whose overall weight
z _;»d; does not exceed a given capacity D, and such that
i

the overall profit Z T,

.y is maximized. Alternatively, KP
I

can be formulated in minimization form as follows. Each item
J € N has an associated cost (instead of profit) ¥ ;- The prob-

lem consists of selecting an item subset ScN with
Zjefd ;2 D, where D is an assigned threshold, such that the

overall cost 2 517 ; 15 minimized. The two formulations are
1E

d.—-D

equivalent, as one can easily see by defining D= 2 ey
1€ b

and ¥,=m, for j € N. This correspondence ensures
S=N\S* Fora comprehensive treatement of KP and re-
lated problems, see [24].

KP is a very special case of ISP, which arises when the sets
I{j € N) are pairwise disjoint, i.e., when every query has a
positive gain for one index only. Indeed, in this case the ob-
jective function (2} can be written, for any S ¢ N, as
(8 =Z jes i where the profits are defined as

Ei= Zielj 8-
UPLP is defined as follows. We are given a set M of m clients,
and a set N of n possible sites where plants can be located. Each

client i, i € M, can be served by at most one plant, whereas a plant
can serve different clients. When client 7 is served by plant j, a
profit g, is gained. Let ¢; be the fixed cost incurred if opening a
plant in site j. UPLP consists of choosing a subset S~ of sites in
which the plants have 10 be opencd, so as to maximize the differ-
ence between the overall gain and the fixed costs, i.e., the objective

function z(S5*) := E',EM max{g;:j € S*]_Z,Es*cf'
Clearly, UPLP ariges from ISP when the memory bound is
not imposed, or when it does not affect the optimal ISP solu-

tion, i.e., when D > Z,ngj , where S is an index set which
i

maximizes (2) in absence of constraint (1).

Both KP and UPLP are known to be NP-hard problems
[14]; hence so is ISP, even when the memory constraint (1) is
not imposed.

III. A BRANCH-AND-BOUND ALGORITHM FOR ISP

We next derive a mathematical formulation of the problem,
suitable for computation. A linear programming (LP) problem
is an optimization problem in which the objective function and
all the constraints are linear in the unknown variables. This
problem is known to be polynomiaily solvable [20]). A 0-1
integer linear programming (0-1 1LP) problem is an LP prob-
lem amended by the additional requirement that the unknown
variables must attain either the value O or 1. This problem is
NP-hard [14].

We have chosen the following 0-1 ILP model for ISP. Let
us define the decision variables:
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1, if index j is selected
Y= 0

otherwise, JjeN
1, if index j is used to query
X, =
Y |0, otherwise, ieM, jel,.

ISP then reads

2ISP) 1= ma’{Z DRFIEDY ijj] (3)

ieM jet, jeN
subject to
Ydy <D ' 4
JeN -
Sx;<lieM G)
Jel;
Sxslpien (6)
iel, .
x; {0, 1L ieM; jeJ, )
yie{o.1}jen. | (®)

Interpretation of the objective function (3) is immediate. Con-
straint (4) imposes the upper bound D on the total memory
available to store the selected indexes. Constraints (5) allow at
most one index to be used for each query, whereas the
“logical” constraints (6) impose selection of the indexes J that
are used for at least one query i (since x; = 1 for some query i
€ I, forces ¥; = 1). Finally, (7) and (8) require the decision
variables to be 0-1 valued.

The remaining part of the section is devoted to the descrip-
tion of an effective solution technique for the 0-1 ILP model
(3)-(8). Although any known technique for solving at optimal-
ity an NP-hard optimization problem such as ISP requires ex-
ponential computing time in the worst case, effective algo-
rithms can often be designed which allow the solution of large-
scale instances within short computing times. For example,
very large instances of the so-called traveling salesman prob-
{em, involving up to more than 2,000 cities, have recently been
solved to uptimality through specialized algorithms [26].

We propose a branch-and-bound algorithm for ISP, based
on the LP relaxation obtained from model (3)-(8) by weaken-
ing the binary constraints {7) and (8) into

0Sx;<l,ie M je J (7

0<y <1, je N &)

Let LPR be the resulting model, defined through (3)-(6) and
(7)-(8"). Since LPR is an LP problem, it can be solved effi-
ciently through, e.g., the Khachian algorithm [20]. In practice
the simplex algorithm is generally used, although it has a
worst-case exponential performance. Let (x7, y*) be an optimal
solution to LPR, and z(LPR) its value. Since any feasible solu-
tion to ISP is a feasible solution to LPR as well, Z(LPR)} is an
upper bound on z(ISP), the optimal ISP solution value.
Moreover, if (x°, ¥") happens to be 0-1 valued (i.e., if con-

straints (7) and (8), although not imposed, are satisfied) then it
defines a feasible ISP solution which is guaranteed to be opti-
mal since its value equals the upper bound. Assume now that
(x', ") is not 0-1 valued. If y; € {0, 1} for all j € N, then again
ISP has been solved” since one can always redefine the optimal
x-variables x‘; $0 as to attain 0-1 values only, without changing
the objective function value. This is obtained by setting x;, = 1
for all (i, j) pairs such that y;- =1and g; = max{g, :y; =1} (in
case more than one maximum exists, one is chosen arbitrarily),

Therefore, ISP is not solved only if fractional y-variables
exist in the optimal solution to LPR. In this case, we select one
such variable, say y;, and branch on it by fixing its value to ¢
or to 1, respectively. In this way we split the original ISP
problem into two ISP subproblems: in the first, we fix y, = 0,
L.e., index j is no longer a candidate for selection; in the second
we fix ¥;= 1 and hence force index j to be selected.

For each subproblem the procedure is then iterated by
solving the LPR defined by (3)-(6), (7). and (8}, and amended
by the variable-fixing constraints resulting from branching.

This divide and conguer solution strategy can be repre-
sented through a binary branch-decision tree in which every
node corresponds to an ISP subproblem, and the edges to the
variable-fixing constraints. For instance, in the example of
Fig. 1 the root node of the tree, node 1, represents the original
ISP problem. Assuming that y ;, 18 the chosen fractional y-

variable, one constructs the two ISP subproblems associated
with the son nodes 2 and 3 by fixing, respectively, y;, =0 and

¥; =L. The procedure is iterated on these two nodes. In the
figure, v i, 1s the fractional variable chosen after solving the

LPR relaxation of subproblem 2. Fixing its value to 0 or 1 then
produces subproblems 4 and 5, respectively. Note that sub-
problem 4 has both y ; and y, fixed to 0, whereas subproblem

5 has y; fixed to 0 and ¥, o L.

Fig. 1. A simple branch-decision tree.

2. This case can only arise when two or more selected indexes have the
same gain for a query.
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Let ¢ be any given node of the branch-decision tree, and let

ISP, and LPR, denote the ISP instance assoc1atcd with ¢ and
its LPR re]axanon respectively. Moreover, let Z be the value
of the best ISP solution available (initially, z = value of a heu-

ristic solution; see Section V). We say that node « is fathomed

when ISP, need not be further subdivided into smaller sub-
problems. This occurs in the following cases::

1) The optimal solution (=" y B of LPR_ has no fractional
v-variables. In this case (x ¥y ) defines an optimal selu-
tion for ISP, as well Therefore _we compare its value, say
HLPR), w1th 7" and update z" if an improved solution
has been tound

2yz(LPR ) < 2+ In this case the node is fathomed smce
there is no hope of finding an ISP solution better than z
by further subdividing node ¢ (recall that Z(LPR,) is an
upper bound on the value of each feasible solution to
ISP,).

The hranch-and-bound algorithm terminates when all the gen-
erated branch-decision nodes either produced son nodes, or
were tfathomed. Since there are at most 2" — | nodes, the al-
gorithm terminates in a finite number of iterations. In practice,
the number of branch-decision nedes that require to be gener-
ated is much smaller, since the fathoming criteria allow large
portions of the tree to be pruned (see the computational analy-
sis given in Section VIIL).

IV. IMPROVING THE BASIC MODEL

The effectiveness of the branch-and-bound algorithm
greatly depends upon the “quality” of LPR, the relaxation
solved at each branch-decision node. Indeed, one is interested
in finding 0-1 valued LPR solutions early in the branching
process, as well as in having tight upper bounds Z(LPR). In
this perspective we look for new valid constraints to be added
to the model (3)-(8), which are redundant as long as the binary
constraints (7) and (8) are imposed, but capable of enhancing
the “quality” of LPR. We will consider two classes of such
additional constraints.

The first class is derived from the substructure of ISP lead-
ing to the uncapacitated plant location problem, and contains
the valid constraints

x;<y,jeNiel (M

For each fixed index j, the || constraints (%) impose ¥; =

whenever there exists i € I; with x; = 1. In this respect, con-
straints (9) play a role analogous to constraints (6). Note, how-
ever, that constraints (9) forbid the occurrence of fractional
points which are not cut off by (6). Indeed, let x;- and y; be
the optimal decision variables in the LPR relaxation without
constraints (9) imposed. Because of the objective function (3)
and the memory constraint (4), the y-variables will attain the
minimum (nonnegative) value permitted by (6), ie.,
y; = mzseg x; On the other hand, when the additional con-

straints (9) are imposed, these values are no longer feasible,

and will be replaced by the higher values y; = max;, ,j{x:j}.

To illustrate this point, let us consider the following small nu-
merical instance of ISP proposed in [4], involving six queries
and five indexes:

P

490 0 0 0 0] m=6
(o 130 0 ¢ 0fn=5
o o 0 0 o L={12}
@)=| o o s00 o 40| 5={2}
0 0 280 380 80| L=1{4,5}
0 o0 0 o0 125] I,={s}
(c;} = [20 120 40 240 25 I ={4,56}

(¢,)=[10 5 10 8 6]
D=1

For this instance the optimal ISP solution can be found by in-
spection, and selects index 1 for queries 1 and 2. and index 5 for
queries 4, 5, and 6. The value of this solution is z(ISP) = 1,160.
Solving the LPR relaxation without constraints (9) produces
the upper bound z(LPR) = 1,376 on z(ISP), and the optimal
{fractional) solution

7 » . " * 1

¥ =1_6,J’2 =0.y3=l,y4=0,y5:—;

10

* * * *
q=Lay = iy =x3 =1 X =1,

4
10
and xi} =0 for all the remaining x-variables. Note that con-
straints (9) are violated by this solution for the (i, /) pairs (1, 1)
and (6, 5). Adding constraints (9) then leads to the tighter up-
per bound z(LPR) = 1,280, which corresponds to the (still
fractional) solution
= * * 3 * * l
=1, =0, =" =0, =
» ¥2 Y3 p) Y4 ¥s 2
Xy = 5o =1, Xy = X5 =3 Xpe = Xeg = Xg =1
1 21 = b a3 = X5y T Mas 55 = es =
and x;- = () for all the remaining x-variables.

The second class of additional constraints we consider de-
rives from the knapsack substructure of ISP, and contains the
following cover inequalities (see, e.g., [25], Chapter 11.2). Let

S c N be any index subset such that zjesdf » D. Because of

the memory bound, not all the indexes in S can be selected;
hence one has the valid constraint

Z)’j SiSI—l.

JES

(10)

Again, imposing these additional constraints results in a strength-
ened LPR relaxation. As an illustration, in the numerical instance
discussed above, the fractional solution available after imposing
(9) violates the cover inequality (10) for § = {1, 3}. Adding this
single constraint produces the new bound z(LPR) = 1,182, corre-
sponding to the solution
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. ] . 3 .
y;=lsy2=05y3=0'y4=§‘y5=1;

% * * 3 * 5 * *

X = Xy =1, Xgy =§= Xss =”8_-x45 = Xgs =1,

and x;; =0 for all the remaining x-variables. This new solu-

tion violates (10) for S = {1, 4, 5}. The addition of this new
constraint leads to z(LPR) = 1,160 and

. * . * Sk
NW=Ly=0y=0yy=0yy=1
X = Xy :1, Xg5 = Xg5 = Xgs =1,

and x; =0 for all the remaining x-variables, representing the

optimal solution to ISP. Notice that in this case no branching is
needed since the solution of LPR for the initial ISP instance is
0-1 valued.

The above two classes of additional constraints contain a

huge number of members, namely ZJ,E”‘I j} = O(nm) for class

(9) and Q2" for class (10). Therefore, embedding them all
explicitly in the model is impractical even for small values of
n. On the other hand, as shown in the previous example, only a
few of them are really needed when a given numerical instance
is considered. Thus one can use the following iterative scheme,
in which the additional constraints (9) and (10) are added at
run-time to the current LPR.

ALGORITHM ADDCUTS:

Set-up the initial LPR model with constraints
{4)-(6), (7}, and (B") only;
repeat
solve the current LPR madel, and let (x',y)
be its cptimal solution;
if there exist inequalities {9) which are
violated by (x .,y') then
add them all to the current LPR
alga
find, if any., a cover inequality (10} which
is violated by (x",¥'}), and add it to the
current LPR
end if
until no violated constraint has been found
end
In this way, at every iteration we add to the current LPR only
those constraints which are “active,” in the sense that they cut
off the current LPR optimal solution (x", ¥’} and hence
strengthen the current relaxation. At the end of the algorithm,
(¥, ¥) is guaranteed to be optimal for the overall model that
includes alf the additional constraints (9) and (10), even
though only a few of them have been explicitly added to the
initial LPR model. Note that, in the above algorithm, a se-
guence of LP problems has to be solved, each obtained from
the previous one by adding some new constraints. These LP
problems (except the first one) need not be solved from
scraich, but can take advantage from re-optimization tech-
niques such as the dual simplex algorithm; see, e.g., [25]. Re-
optimization is also of use during the branch-and-bound algo-
rithm, where each subproblem is obtained from its father in the
branch-decision tree, by adding a single variable-tixing con-
straint of the type y;=0or y,= 1.
The key point of the above scheme is the identification of
violated constraints belonging to classes (9) and (10). This is

an easy task for class (9), as it requires checking of x,;- > y;

for each i € [;, j € N. As to class (10), the exhaustive enu-
meration and check of all possible constraints is impractical
due to their exponential number. Therefore a more sophisti-
cated identification procedure for this class is needed, which
we briefly outline in the sequel (for more details, see [10], and
also [25], Chapter IL6).

We look for a subset §° of N with Zjes’dj > D, which

maximizes the degree of violation
5(5*):= ¥y, —{IsH-1):
jes*

if &5) <0, then all the constraints (10) are satisfied by the cur-
rent (x', ¥'); otherwise, we have found the most violated con-
straint (10} to be added to the current LPR problem. Determina-
tion of S” is itself an optimization problem, which can be formu-
lated as the following instance of the knapsack problem:

8(5%) = max{Zy}zf -2 H} =i-min 3'(1-¥;)z; (D)

JjEN JeN JEN
subject to
Y.d;z; 2 D+l (12)
JeN
z;e{0 1}, jeN (13)

where 7= 1 if j € 5, = 0 otherwise (j € N). Notice that, in
the above problem, each index j has a “cost” ¥ ; := 1~ y; >0,
and a “weight” d; > 0. Therefore one can fix the z-variables
associated with the 0-1 valued y-variables as follows:

1) fix z, = | for all indexes # with y; =1, since including A
in 8" does not change objective function (11) while it in-
creases the left-hand side of (12);

2) fix zz = 0 for all indexes i with y; = 0; indeed, one has

o(5*) =1~ 2 7}21' —Tats S1-Y 24,
jeN(n}
with 7, =1-y; =1, i.e., choosing z, = 1 cannot lead to
aset 5" with &5 > 0.

As a result of the above variable-fixing, one is allowed to
solve a “restricted” knapsack problem having the decision
variables z; associated with the indexes j with 0 < y; <1 only

{usually, a small fraction of n), with considerable saving in the
computing time required to determine S

V. HEURISTIC ALGORITHMS
AND REDUCTION PROCEDURES

We next describe a heuristic solution computation that we
apply at each node & of the branch-decision tree. This allows
earlier fathomings in the decision tree, since a “good” solution
to ISP is made available from the very beginning of the
branch-and-bound algorithm.
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Let (xa, _va) be the optimal LPR_ solution, as determined by
applying the algorithm ADDCUTS of Section IV. If this solu-
tion is 0-1 valued, no heuristic search is needed. Otherwise, we
construct a feasible (and hopefully almest optimal} solution to
ISP, by applying two heuristic algorithms: the best of the h*eu—
ristic solutions obtained is then compared with the value z of
the best available ISP solution, for possible updating of z".

Both heuristics we propose rely on the assumption that the
values y“,-" give a measure of the “likelihood” of having index j

selected in the optimal ISP solution, Let
J'= {j:yf = 1}
J = {j:yf =0}
JE :={j:0 <yf < 1}.
The first heuristic we propose, H1, selects all the indexes in

J', as well as those belonging to the subset K of J © that maxi-
mizes the “global likelihood” ziex ¥; . This calls for solving

of the following instance of the knapsack problem:

max ¥ %,

. _fEJF
o< D .
zdﬂu <D Zdj
jedf jest

z;€{0,1}, jed’,

where z; = 1 if and only if j € K. Since J ¥ typically contains
only a few indexes, the solution of this problem is not compu-
tationally heavy in practice.

In our second heuristic, H2, we start by sorting the index set
according to decreasing values of y;-x, breaking ties by ranking

the indexes with smaller & first. Let ji, ..., J, be the resulting
index permutation, with y = ¥ =...2 ). We determine
the smallest A such that

]
y.d, >D,
i=]

where j, plays the role of a “critical” index that cannot be
stored when the previous indexes (which are more likely to be
part of the optimal solution) are selected. Given a small integer
parameter v (e.g., v=13), we then construct a bucket B contain-
ing the 2v +1 indexes Jfy_y» fuvats -oor Jur Josls --or Jppy and
initialize a heuristic solution @ by taking all the indexes
Jir J2e oven Jooyy. @ 15 then enlarged by taking the subset B of

B with
Yd; <D-Yd

jeB* jeQ

(14)

that leads to the maximum objective function value, i.e., that

maximizes
Zmax{gfj:j € QUB*}— ch .

ieM Jje@t)B*

(15)

B" is determined by enumerating all the subsets of B and
evaluating, for each of them, {14) and (15). Notice that (15)

can equivalently be written as

_2C1+ Emax{g?, max{g,—j:j € B*}}- Zc] (16)

je@ ieM jeB*
where g7 1= max(g;:j € Q}. Therefore, for any given B'cB

one can evaluate (15) in O(m\B")) = O(m) time, plus O(m|Qh) =
O(mn) time for the initial computation of the gfs. Since there

are 22*1 — 1 possible subsets of B, the overall time complexity

of H2 is O(2%m + mn) time, plus O(n log n) for the initial
sorting.

We next address reduction procedures to reduce the number
of candidate indexes for selection. We will describe two sim-
ple criteria to determine whether, for any given index j, one
necessarily has y; = 0 in the optimal ISP solution. We define
the following quantities:

. GTE =

. omax . : :
j ZIE 1 86 =5 G is the maximum increasc in the

objective function due to the selection of index

. G;mn = ziel;(gjf -8 )—Cj . where

I; ={ieM:g; > g;} and g: ‘= max{g,: he N, h=jh
G_,'-"’}l gives the minimum increase in the objective func-

tion due to the selection of index j, since I;- contains the

queries for which j performs better than any other index.

The first criterion we use allows the fixing of y;= 0 for all in-
dexes j such that

G/ <0, o))

i.e., excluding from the selection all those indexes whose
maintenance ¢ost 1§ larger than the maximum gain they can
lead to.

The second criterion is based on the concept of dominance
between two indexes. We say that a given index j is dominated
by an index # = j when any solution including index j can be
improved by replacing j with & (or simply by removing j if h is
already selected). Clearly, the existence of such an index # is a
sufficient condition to set y; = 0 (a tie-break rule has to be used
in order to avoid “tautological” cycles arising when, e.g., j and
h are identical). A very simple way to check dominance has
been described in [5] and in [13], and consists of checking
whether the conditions

d;2d, (18)
C'J'Z Ck (19)
gi<8mieM (20)

hold. We propose a strengthening of conditions (18)-(20),
based on the following considerations. Let us consider any
given solution with y; = 1. Two cases can occur:

1} y, = 1: In this case the elimination of index j increases the
objective function by at least the amount

8 == (85— 8m)s

iel

21
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where 7 :={i e 1;:8; > gy Joontains the queries for which
index j performs better than & (notice that & depends upon
both j and k). Indeed, in the worst case, j is replaced by & as
the best selected index for all the queries in 7 .

2} ¥, = 0 : In this case,. and assuming d, < d,, one can first
select index h, with an increase in the objective function

value of at least G,’,""”, and then remove index j, with a

further increase of at least 5;.

Therefore, index j is dominated by 2 when both conditions
(18) and

min{87, Gr" +67} 2 0 (22)

hold. It is not hard to see that j is not dominated by # when
either G, < G, or when j and / belong to different DB

relations. These properties can be used to reduce the number
of index pairs (j, &) that need to be considered for possible
dominance,

A Pascal-like description of the overall reduction procedure
we propose follows. *

ALGORITHM REDUCTION

eliminate all the indexes 7 for which (l7) is
satisfied;

for each relation X in the DB do
sort the set of m (say} indexes associated
with relation k, according to decreasing val-

oy

ues of (a , and let 71, ..., Jnx be the result-

ing index permutation;

for each pair a, b e {1, ...
let h := j, and 7 := Fu;
if conditions {18) and {22) hold then

eliminate index j since it is dominated by h

end if

end for

end for
and

. Mx},a < b, de

VI. SOLVING VERY LARGE-SCALE INSTANCES

The branch-and-bound algorithm described in the previous
sections is intended for medium/large-scale ISP instances, in-
volving up to hundreds of queries and indexes. The algorithm
performance on these instances is quite satisfactory, as shown
through computational experiments in Section VTI.

We next discuss how our approach can be used to tackle
very large-scale instances, involving several hundreds of rela-
tions, i.e., thousands of queries and indexes. For these in-
stances relaxation LPR of Section III (even without the addi-
tional constraints (9) and (10)) cannot be solved effectively,
due to the excessive number of constraints and variables in-
volved. One has therefore to resort to some kind of decompo-
sition to “break” the overall ISP into a number of smaller sub-
problems to be solved independently of each other. Actually,
this kind of decomposition arises quite naturally for ISP with
no memory restriction imposed, each subproblem being asso-
ciated with a different DB relation. Indeed, for each query the
only candidate indexes correspond to artributes of the same
relation. For example, in the numerical instance of Section IV

two relations are involved, the first associated with queries 1,
2, and 3 and indexes 1 and 2, and the second with queries 4, 5,
and 6 and indexes 3, 4, and 5. Therefore all the entries g; not
contained in the “domain” of these two relations are equal to 0.

To be more specific, let p denote the number of relations in
the DB, P := {1, ..., p} their set, and M, and N, the set of que-
ries and the set of indexes associated with relation £, respec-
tively. The initial formulation (1) and (2) can then be rewritten
as follows:

ISP (with no memory restriction); Find p index subsets
Sy © N, (k € P) such that

Z(S;U...US;) = ZZ(S;) = Z Zmax{gij:j € S;}f ch

kel keP| ieM, JEeS,
is a maximum.

Since the sets S,: can clearly be determined independently of
cach other, the overall ISP can be sclved by applying, in turn,
our branch-and-bound algorithm to each subproblem, say ISP,,
to determine the optimal set S; . (Notice that every subproblem
defines an instance of the uncapacitated plant iocation prob-
lem, see Section II, hence it is still NP-hard.) Moreover, the
reduction procedure of Section V can be improved on when no
memory bound is imposed, as condition (18) is no longer
worth checking, whereas one can fix y, = 1 whenever the ad-
dition of index A improves the objective function value, i.e.,
when GI™ > 0.

Decomposition also arises when the memory bound D, al-
though present, is not “tight,” in that it does not affect the op-
timal ISP solution, This can happen in practice either because
D} is quite large, or because of large ¢, costs for the indexes.

When the memory restriction is active, decomposition can
still be obtained through Lagrangian relaxation, a technique to
deal with hard optimization problems in which the removal of
a small subset of constraints results in a much easier problem.
(For a comprehensive description on the use of Lagrangian
relaxation in combinatorial optimization see, e.g., [25].) In our
case the approach consists of dropping constraint (4) in formu-
lation (3)-(8), while modifying the objective function (3) so as
to “penalize” the solutions that do not satisfy the memory
constraint. This is obtained by adding the penalty term
D—Z d;y; 1o the objective function, weighted by a nonne-

jeN
gative parameter (Lagrangian multiplier) A. The resulting re-

laxed problem, say R,, then reads

Z(Rl) 1= max 2230151- —chyj +A D—Zdjyj

ieM jelf; JjeN jeN
=AD+max ¥ Y gyx;— 3 (c;+Ad,)y,
feM jel; JeN

subject to (5)-(8). For any fixed A 2 0, R, defines an instance
of ISP with no memory bound and with modificd maintenance
costs ¢;+ Ad;. As such, R, decompases into p smaller subprob-
lems (one for each relation).
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The main property of Lagrangian relaxation is that, for any
A 20, ZR,) gives an upper bound on the value z(ISP) of the

optimal ISP solution. Indeed, z(R,) is computed over an en-
larged domain, resulting from the removal of constraint (4),
and with respect to an objective function attaining a higher
value for all the feasible ISP solutians, since the added penalty

term A(D— ZjeNijyj) is nonnegative for these solutions.

For large values of A the moditied maintenance costs, ¢; + Ad,
become sufficiently large to ensure that the optimal solution to

14 . . ..
R, say (x', ¥). satisfies the memory constraint, thus defining
an appruximatc ISP solution of value

ZC i

= Y, 2, 8% 2

ieM jel;

Notice that LB(A) is only defined when D- 2 ;3’;

Since

{ISP) < z Ra] 3 guxi - ey} +,{

feM jed; jeN

z0.

Ed;y}-‘],

JEN
the approximation error z(ISP) — LB(A} cannot exceed

GAP(A) := [D Zdyj]

JjeN

24)

Therefore one is interested in choosing for A the smallest non-
negative value such that Z dm D, thus obtaining an

approximate solution that minimizes GAP(A}. This value, say
A", can be found in an effective way by using an iterative
technique akin to binary search: A" is first set to 0; then, itera-
tively, R j.is solved, and A" is increased or decreased depend-

ing upon the sign of the quantity D - z}wd ; y;'*. The proce-

dure is stopped when A" is known with a sufficient precision.
Typically, A’ is of the same order of magnitude as the ratio

Z(ISPYD; hence, fr()m (24), the estimated percentage gap

100 GAP(1¥) /z Rl. 18 of the same order of magnitude as

the percentage of unused defined  as

)»*
100-(D-3, _ diy//D.
In order to illustrate how the above heuristic works, let us
consider the sample instance reported in Section IV. Let

memory,

S, =(je ]\i:yjL = 1} denote the optimal index set for R,. The
heuristic then computes:

A5 «R;) LB(A) D-3 .4
o {135} 1420 - -7
100 & 190 0 19
so0 {15} 1310 1160 3
25 {13} 1295 - -1
38 {13} 1282 - -1
44 {1,5} 1292 1160 3
41 {15} 1283 1160 3
40 {5} 1280 L160 3
39 {13} 1281 - -1

and returns (for 1" = 40) the approximate solution S, = (L, 5}, of

value T.B(1") = 1,160, as well as the upper bound z(R,;,) = 1,280

on the optimal value z(ISP) = 1,160, In this small instance the es-
timated percentage gap is quite large (=~ 9.4%), since a large
portion of the available memory (== 16%) is not used by the
selected indexes. For more realistic instances the gap is how-
ever much smaller, see Section VIL

VII. EXPERIMENTAL RESULTS

The effectiveness of our branch-and-bound algorithm, as
well as that of the heuristics of Sections V and VI, have been
evaluated through computational experiments. All the pro-
posed aigorithms have been implemented in Fortran, and run
on a Sun SPARC-2 workstation. As to the solution of the lin-
ear programming relaxations, we used Marsten’s Fortran pack-
age XMP [23]. The solution of knapsack problems has been
carried-out by using the Fortran routines given in [24].

Since we had no access to real-world ISP instances with a
significantly large number of relations, we decided to validate
the performance of our algorithm on random instances. These
instances closely simulate the structure and the workload of
real-world DBs, with overall statistics very close to those re-
ported by [31] for a real-world relational DB. The random
generation procedure is outlined in the Appendix.

We first analyzed the behavior of our branch-and-bound al-
gorithm on instances involving up to 20 relations. Since each
relation has, on average, 15 indexes and 25 queries, these in-
stances involve up to approximately 300 indexes and 500 que-
ries. Memory bound D has been set to a fixed fraction, u, of
the overall memory required to store the DB relations. We
have considered three values for i (i = 10%, 20%, and 30%),
and three values for the number of relations p (p = 10, 15, 20).
For each of the nine resulting data sets, 10 random instances
have been generated and solved.

The corresponding average (and, in parentheses, worst) re-
sults are reported in Table I. The table gives:

» the average (maximum) computing time, in CPU sec-
onds, for the overall branch-and-bound algorithm;

® the average (maximum) number of explored nodes in the
branching tree;
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TABLE1
BRANCH-AND-BOUND ALGORITHM
1 B&R time | B&B nodes | Root time | Root gap %
10% (| 636.3 (1889.6} 318 (791)| 8.0 (10.9)10.262 (0.628)
10 [ 20% || 40.8 (50.8) 35 55y | 7.4 (10.3}0.002 (0.024)
30%f{ 1.3 3.3) 1 (1) 1.3 (3.3) 10.000 (0.000)
10% | 638.4 (14527} 225 (471)( 13.0 (18.5} 0.023 (0.083)
15| 20% | 182.6 (401.3y| 41 (87) | 12,5 (23.(h{ 0.001 (0.001)
30%0 312 953 17 (67 | 5.3 (12.00{ 0.000 (0.000)
10% |2482.9(3894.4)] 425 (807)| 29.9 (58.0)] 0.015 (0.038)
20 [ 20% ) 575.8 (1523.1) 127 (263)| 9.6 (15.4)10.001 (0.004)
30% ] 32.3 (148.0) 6 (25) | 3.8 (6.3)]10.000 (0.000)

vYOL. 7, NO. 6, DECEMBER 1995

Average (worst) results over 10 instances. Times are given in Sun SPARC-2 CPU seconds.

TABLEI1
SIMPLIFIED BRANCH-AND-BOUND ALGORITHM S-BAB
P 4 B&B time B&B nodes Root time Root gap %
10% {|>2106.5 (>2564.4)| =>10000 09 (1.1) | 13.80 (17.8%)
10 | 20% ||>198R8.5(>2195.3)| >10000 07 09 ] 317 G199
30% ||>2310.3 (>2495.1)] >10000 07 (0.8) ] L.76 (2.05)
10% [[>3070.9 (>3348.6){ >10000 1.5 (2.0) | 15.79 (19.30)
15| 209|>2719.3 (>3025. 7] >10000 1.0 (1.2) | 208 (3.29)
30% ||>3030.2 (>4465.8)] >10000 1.0 (LD ]| 1.07 (157
10% [>4429.8 (>4865.4)( >10000 28 (3D ] 1403 (16.88)
20 | 20% [|>3565.4 (>4107.3)| =>10000 1.5 (1.7 | 3.83 (4.68)
30% || >4397.0 (>5120.8)] >10000 14 (1.6) ]| 1.03 (l.64)

Average (worst) results over 10 instances. For all instances §-BAB ran out of memory dafter 10,000 branch-decision nodes.
Times are given in Sun SPARC-2 CPU seconds.

e the average (maximum}) time spent at the root node of the
branching tree, including that spent in the two heuristics
described in Section V;

¢ the average (maximum) percentage gap = 100 - (UB -
LB)/UB, computed at the root node, between the upper
bound UB = z(LPR) of Section IV and the value LB of
the best of the two heuristic solutions of Section V.

As expected, the algorithm exhibits better performance for
higher values of u, i.e., when the given memory bound is not
too tight. This case, on the other hand, appears to be the most
realistic one because allocating to the indexes less than 20% of
the data memory seems too restrictive a choice in the design of
a real-world DB. In all the cases, the CPU time spent to com-
pute the optimal ISP solution is acceptable in the context of
design. The reduction procedure of Section V was quite suc-
cessful, as it removed (on average) more than 30% of the can-
didate indexes. As to the approximate solution and the upper
bound computed at the root node, they are always very good,
and require small computing time. Notice that the gap reported
in the table is an upper bound on the percenrage error of the
approxtmate solution. Therefore, stopping the algorithm right
after the root-node computation results in a very effective
heuristic.

In order to evaluate the effect of the improvements to the
LPR relaxation described in Section IV, we implemented a
simplified branch-and-bound algorithm, S-BAB, obtained
from our original branch-and-bound code by inhibiting the
search for violated inequalities (9) and (10). Table II shows
the performance of 5-BAB on the same data-set as in Table I.

For all instances S-BAB did not succeed in finding a provably
optimal solution, and ran out of memory after having pener-
ated and solved more than 10,000 branch-decision nodes.
Comparison of Tables I and II clearly demonstrates the effec-
tiveness of having the additional constraints (9) and (10) pres-
ent in the model.

We next tackled very large-scale instances involving up to
1,000 relations (i.c., up to 15,000 indexes and 25,000 queries)
by using the heuristic approach of Section VI. Table III gives
the corresponding average (worst) results, computed over 10
random instances. As in Table 1, we report computing time, in
Sun SPARC-2 CPU seconds, and percentage gap computed as
IDOAGAP(}L*)/Z(RM), see (23) and (24). The table shows
that the performances of the heuristic are very good, since very
tight (and sometimes provably optimal) solutions are com-
puted in short computing time. The computing time decreases
when U increases. Moreaver, it grows almost linearly with the
number of relations. This is not surprising, since decomposi-
tion breaks a p-relations ISP instance into p 1-relation subin-
stances. Therefore, even larger ISP instances can be solved by
the heuristic within acceptable computing time.

VIII. EXTENSIONS AND CONCLUSIONS

In the previous sections we have derived a mathematical
model and resolution algorithms for index selection, on assump-
tions (a)-(d) of Section IL. In this section we briefly discuss the
basic concepts underlying possible extensions of our 0-1 ILP
model, that allow us to relax some of these assumptions.
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TABLE HI
LAGRANGIAN HEURISTIC
p i Time Gap%
0% 3.2 (6.3) | 0346 (0.680)
10 |20%[ 1.5 (2.6) | 0074 (0.28D)
0% 05 @.1) | 0001 (0.004)
10%| 3.9 6.2y | 0042  (0.165)
15 {20% || 2.3 4.7 | 0018 (0.045)
%[l 11 (1.9) | 0011  (0.044)
0% 60  (10.7) | 0.021 (0.041
20 | 20%( 3.0 @7 | 0007 (0.024)
30%| 17 (34) | 0017 (0.033)
10%[ 123 68 | 0086 (0.26%)
50 | 20% | 7.7 9.1) | 0.008 (0.0i6)
0% 29 7.0 | 0010 (0039
0% 278 (313 | 0033  (0.086)
100 20%) 164  (19.1) | 0.007 (0.027)
30%] 93 (155 | 0016 (0.027)
10%| 1497 (173,5)| 0.014 (0.039)
500 20%( 839 (905 | 0012 (0.028)
30%| 452  (74.5) | 0014 (0.024)
10%| 296.6 (352.8) [ 0.017 (0.061)
L00q 20% ] 1501 (159.7)| 0006 (0017
30%] 869  (139.5)] 0015 (0.027)

Average (worsr) resulis over 10 instances. Times are given in SUN SPARC-2
CPU seconds.

The simplifying assumption a) states that, in index selection,
the primary access has already been chosen. This allows us to
solve separately the two basic PDD problems, namely, data
allocation and index selection, which would be intrinsecally
mutually dependent {this so-called :wo-step approach has been
described in [8]). In order to make an optimal choice of the
primary access (e.g., hashing on an attribute, primary attribute
with primary index, etc.) for the DB relations together with the
secondary index set, the designer can operate as follows. First,
the quantities gy, ¢;, and 4; have to be computed also for every
primary access of interest. Notice that, for a primary access j,
¢; represents the additional global maintenance cost for the
relation, and d; represents the increase in the secondary storage
space required by the relation, both with respect to the case in
which no primary access is chosen. The (-1 ILP meodel can
then be generalized by introducing a y-variable (and the asso-
ciated x-variables) for each primary access and for each sec-
ondary index, and by adding to the formulation (3)-(10) the
additional constraints

Yy, <LkeP (25)

JENR,

where £ is the set of the DB relations, and NP, the set of the
considered primary accesses for relation k. These constraints
require us to choose, at most, one primary access for each re-
lation. The main limit of this formulation is that the physical
placement of data is unknown when a problem instance is
computed: this may resnlt in some approximations in evaluat-
ing the quantittes g; and ¢;.

Relaxing assumption b) allows us to deal with the use of
more than one index to access a relation during the execution
of a query (e.g., in TID intersection list methods). In this case,

when answering a query it is possible to use the index subset lead-
ing to the minimum execution cost. Relaxing assumption ¢), in-
stead, allows us to deal with the use of nonseparable join algo-
nthms (e.g., nested loop). In this case, when answering 2 join
query it is possible to use the indexes (one, at most, for every rela-
tion in the join) that minimize the global cost of the join, the order
of relation accesses depending upon all the indexes chosen. If both
assumptions b) and c) are relaxed. it is possible to consider join
queries performed by using more than one index per join relation,
and by fixing the order of relation accesses after choosing the
global set of indexes to be used. In each case above (b), c), or both,
relaxed), one has to consider the use of a subset of indexes for
answering a query, and the execution cost (or gain) of a query can-
not be expressed as a linear function of the y-variables associated
with the indexes (i.c., an index does not have a predefined gain for
each query). In order to obtain again a 0-1 TP formulation for the
problem, let us indicate with K; the family of the index subsets
usable in query /, and with g, the gain of its kth element. Moreo-
ver, let us indicate with J; the set of the queries { for which index j
belongs to at least one subset k € K, and with K;C K; the family of
the possible index subsets for query / containing the index j. We
associate a y-variable y; with every index j, and an x-variable x,
with every index subset k € K. The new model is obtained from
(3}-(10) by replacing sets J; with sets K;, and by substituting con-
straints (6) and (9) with the new constraints

Y s|rlyien (26)
iel, keKj;

and
dxus<y,jeNiel (27

kek;

respectively. In this formulation, the number of constraints is
the same as in the initial model (3)-(10), while a larger number
of x-variables is required.

In the cases in which assumption a) is eliminated together
with one of the assumptions b) and ¢) (or both), a correct 0-1
ILP model can be obtained immediately by combining the two
generalized models described above. We note that, in absence of
the memory constraint, the decomposition property described in
Section VI holds whenever separable join methods are used;
therefore our approach to very large scale problems is still us-
able when some of the assumptions a) and b) are relaxed.

The form of the models outlined above is similar to that of
the initial model, therefore the branch-and-bound algorithm we
propose in this paper is conceptually still valid for the exten-
sions. This proves the generality of the 0-1 ILP approach 10
ISP. However, the presence of new types of constraints and the
large number of variables in the new models require specific
algorithms for an effective resolution, either exact or heuristic.
Further research will follow two main directions:

* investigation of the possible extensions of the combina-
torial optimization approach to PDD for object-oriented
and knowledge base systems, whose importance for ad-
vanced application is increasing;

* new solution techniques for the extended mathematical
formulations outlined in this section.
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APPENDIX

We next outline the procedure we used to generate random
ISP instances that closely simulate the structure and the work-
load of real-world DBs (see Section VII).

We first set-up the structure of the DB. Basically, this calls
for defining;

« the number of relations, p (an input parameter);

« the number of tuples and attributes in each relation, de-
fined as uniformly random integer in range [10000,
100000] and [5, 25], respectively;

e for each attribute:

— the type (integer with probability 30%, and string with
probability 70%);

— the dimension in bytes (equal to 4 for integer attributes,
and uniformly random in range [5, 50] for strings);

~ the number of possible values attained in the tuples of the
relation (equal to the number of tuples with probability
30%, and uniformly random integer in range [1/10, 1/100]
times the number of tuples with probability 70%);

- the dimension d; (in 4-Kbyle memdry pages) of the cor-
responding index j. computed by assuming a B+-tree
structure, 4-byte TIDs, and a padding factor equal to 70%;

* the dimension (in 4-Kbyte memory pages) of each rela-
tion, computed by assuming a padding factor equal to
90%:;

We then specified the DB workload by defining, among others:

¢ the number of queries involved on each relation, defined
as a uniformly random integer in range [10. 20];

¢ for each query:
— the frequency, computed as a uniformly random integer
inrange [1, 10];
— the type: “select,” “update,” “delete,” and “insert” with
probability 50%, 30%, 10%, and 10%, respectively;
— for the “select” case, the number of the relations in the
query (a random integer belonging to an exponential dis-
tribution with expected value 2); we treat each k-relation
join as & single-table queries;
~ for the “update” case, the number of updated attributes
(a random integer belonging to an exponential distribu-
tion with expected value 2), and the corresponding in-
dexes (chosen among the indexes of the relation accord-
ing to an exponential distribution, the first indexes of the
relation being more likely to be chosen);
— the number of index-processable predicates (a random
integer belonging to an exponential distribution with ex-
pected value 5), and the corresponding indexes (chosen
among the indexes of the relation according to an expo-
nential distribution);
- the number of attribute values satisfying each predicate,
computed as a random integer bejonging to an exponen-
tial distribution with expected value 10.

The above probability distributions led to realistic instances,
with overall statistics very close to those reported by [31] for a
real-world relational DB.

After generating the above data, we computed the quantities

2 and ¢; that appear in the objective function of our optimiza-
tion problem. We made the following assumptions:

* The time required by a query only depends upon I/O op-
erations, hence can be expressed by the number of pages
transferred to/from the main memory;,

* The attribute values are independent of each other, and
uniformly distributed among the tuples of each relation;

* The number of pages containing T tuples in a relation
stored in P pages is given by the widely-used Cardenas’
formula {[6]):

oP.T) - P[I—(]—%)T}

¢ Each index maintenance cost in a query is computed as-
suming an unordered scan of the index (see [131]).

Moreover, two separable join methods for executing join que-
ries were considered: sort merge {see [30]) and nested loop
with a predefined nesting level for each join relation (see [5]).

Fuller details on the instance generation are given in [7].
We stress the fact that the assumptions we made in the instance
generation can be changed without affecting the validity of the
solution approach we propose (provided conditions a) to d) of
Section IT hold).
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