
Just MIP it!

Matteo Fischetti∗, Andrea Lodi+, and Domenico Salvagnin◦

∗ DEI, Università di Padova, Italy - e-mail: matteo.fischetti@unipd.it
+ DEIS, Università di Bologna, Italy - e-mail: andrea.lodi@unibo.it
◦ DMPA, Università di Padova, Italy - e-mail: dominiqs@gmail.com

Abstract

Modern Mixed-Integer Programming (MIP) solvers exploit a rich arsenal of tools to
attack hard problems. It is widely accepted by the OR community that the solution
of very hard MIPs can take advantage from the solution of a series of time-consuming
auxiliary Linear Programs (LPs) intended to enhance the performance of the overall MIP
solver. E.g., auxiliary LPs may be solved to generate powerful disjunctive cuts, or to
implement a strong branching policy.

Also well established is the fact that finding good-quality heuristic MIP solutions
often requires a computing time that is just comparable to that needed to solve the LP
relaxations.

So, it makes sense to think of a new generation of MIP solvers where auxiliary MIPs
(as opposed to LPs) are heuristically solved on the fly, with the aim of bringing the MIP
technology under the chest of the MIP solver itself. This leads to the idea of “translating
into a MIP model” (MIPping) some crucial decisions to be taken within a MIP algorithm
(How to cut? How to improve the incumbent solution? Is the current node dominated?).

In this paper we survey a number of successful applications of the above approach.

Key words:
Mixed integer programming, cutting planes, primal heuristics, dominance procedures,

computational analysis.

1 Introduction

Modern Mixed-Integer Programming (MIP) solvers exploit a rich arsenal of tools to attack
hard problems. Some successful examples involve the solution of LP models to control the
branching strategy (strong branching), the cut generation (lift-and-project), and the heuristics
(reduced costs). As a matter of fact, it is well known by the OR community that the solution
of very hard MIPs can take advantage of the solution of a series of auxiliary LPs intended to
guide the main steps of the MIP solver.

Also well known is the fact that finding good-quality heuristic MIP solutions often requires
a computing time that is just comparable to that needed to solve the LP relaxation of the
problem at hand. This leads to the idea of “translating into a MIP model” (MIPping) some
crucial decisions to be taken within a MIP algorithm (in particular: How to cut? How to
improve the incumbent solution? Is the current node dominated?), with the aim of bringing
the MIP technology well inside the MIP solver.

The present paper gives a survey of three successful applications of the MIPping approach.
In Section 2 we address the generation of strong cutting planes. In this context, the MIPping
approach has been extensively applied to modeling and solving (possibly in a heuristic way)
the NP-hard separation problems of famous classes of valid inequalities for mixed integer
linear programs. Besides the theoretical interest in evaluating the strength of these classes

1

of cuts computationally, the approach proved successful also in practice, and allowed the
solution of very hard MIPLIB instances [2] that could not be solved before.

In Section 3 we address enhanced (primal) heuristic approaches for the solution of hard
MIP models. An example of the benefits deriving from the use of a black-box MIP solver to
produce heuristic primal solutions for a generic MIP is the recently-proposed local branching
paradigm that uses a general-purpose MIP solver to explore large solution neighborhoods
defined through the introduction in the MIP model of invalid linear inequalities called local
branching cuts [25]. More recently, a different heuristic approach called Feasibility Pump has
been proposed to address the problem of finding an initial feasible solution and of improving
it. In Section 3 we describe a hybrid algorithm that uses the feasibility pump method to
provide, at very low computational cost, an initial (possibly infeasible) solution to the local
branching procedure.

In Section 4 we finally address the general-purpose dominance procedure proposed in the
late 80’s by Fischetti and Toth [30], that overcomes some of the drawbacks of the classical
dominance definition. Given the current node α of the search tree, let Jα be the set of
variables fixed to some value. Following the MIPping paradigm, we construct an auxiliary
problem XPα that looks for a new partial assignment involving the variables in Jα and such
that (i) the objective function value is not worse than the one associated with the original
assignment, and (ii) every completion of the old partial assignment is also a valid completion
of the new one. If such a new partial assignment is found (and a certain tie-break rule is
satisfied), one is allowed to fathom node α.

The present survey is based on previous published work; in particular, sections 2, 3 and 4
are largely based on [26], [28] and [54], respectively.

2 MIPping cut separation

In the present section we first introduce our basic notation and definitions and review some
classical results on cutting planes for pure and mixed integer problems. Then, we discuss
in Section 2.1 the separation of pure integer cuts, i.e., those cuts in which (i) all coefficients
are integer and (ii) continuous variables (if any) have null coefficients. In Section 2.2 we
address the more general (and powerful) family of split cuts which are instead mixed integer
inequalities because the two conditions above do not apply. Finally, in Subsection 2.3 we
discuss computational aspects of these models and we report results on the strength of the
addressed cuts.

Consider first the pure integer linear programming problem min{cTx : Ax ≤ b, x ≥
0, x integral} where A is an m × n rational matrix, b ∈ Qm, and c ∈ Qn, along with the
two associated polyhedra P := {x ∈ Rn

+ : Ax ≤ b} and PI := conv{x ∈ Zn+ : Ax ≤ b} =
conv(P ∩ Zn).

A Chvátal-Gomory (CG) cut (also known as Gomory fractional cut) [13,35] is an inequal-
ity of the form buTAcx ≤ buT bc where u ∈ Rm

+ is a vector of multipliers, and b·c denotes the
lower integer part. Chvátal-Gomory cuts are valid inequalities for PI . The Chvátal closure of
P is defined as

P 1 := {x ≥ 0 : Ax ≤ b, buTAcx ≤ buT bc for all u ∈ Rm
+}. (1)

Thus PI ⊆ P 1 ⊆ P . By the well-known equivalence between optimization and separation

2

[37], optimizing over the first Chvátal closure is equivalent to solving the CG separation
problem where we are given a point x∗ ∈ Rn and are asked to find a hyperplane separating x∗

from P 1 (if any). Without loss of generality we can assume that x∗ ∈ P , since all other points
can be cut by simply enumerating the members of the original inequality system Ax ≤ b,
x ≥ 0. Therefore, the separation problem we are actually interested in reads:

CG-SEP: Given any point x∗ ∈ P find (if any) a CG cut that is violated by x∗, i.e.,
find u ∈ Rm

+ such that buTAcx∗ > buT bc, or prove that no such u exists.

It was proved by Eisenbrand [23] that CG-SEP is NP-hard, so optimizing over P 1 also is.
Moreover, Gomory [36] proposed a stronger family of cuts, the so-called Gomory Mixed

Integer (GMI) cuts, that apply to both the pure integer and the mixed integer case. Such a
family of inequalities has been proved to be equivalent to two other families, the so-called split
cuts defined by Cook, Kannan and Schrijver [15], and the Mixed Integer Rounding (MIR) cuts
introduced by Nemhauser and Wolsey [50]. The reader is referred to Cornuéjols and Li [17]
for formal proofs of the correspondence among those families, and to Cornuéjols [16] for a
very recent survey on valid inequalities for mixed integer linear programs. Let us consider a
generic MIP of the form:

min{cTx+ fT y : Ax+ Cy ≤ b, x ≥ 0, x integral, y ≥ 0} (2)

where A and C are m × n and m × r rational matrices respectively, b ∈ Qm, c ∈ Qn, and
f ∈ Qr. We also consider the two following polyhedra in the (x, y)-space:

P (x, y) := {(x, y) ∈ Rn
+ × Rr

+ : Ax+ Cy ≤ b}, (3)
PI(x, y) := conv({(x, y) ∈ P (x, y) : x integral}). (4)

Split cuts were introduced by Cook, Kannan and Schrijver [15]. They are obtained as
follows. For any π ∈ Zn and π0 ∈ Z, the disjunction πTx ≤ π0 or πTx ≥ π0 + 1 is of course
valid for PI(x, y), i.e., PI(x, y) ⊆ conv(Π0 ∪Π1) where

Π0 := P (x, y) ∩ {(x, y) : πTx ≤ π0}, (5)
Π1 := P (x, y) ∩ {(x, y) : πTx ≥ π0 + 1}. (6)

A valid inequality for conv(Π0 ∪ Π1) is called a split cut. The convex set obtained by inter-
secting P (x, y) with all the split cuts is called the split closure of P (x, y). Cook, Kannan and
Schrijver proved that the split closure of P (x, y) is a polyhedron.

Nemhauser and Wolsey [50] introduced the family of MIR cuts, whose basic (2-dimensional)
version can be obtained in the following way. Let 1 < b̂ < 0 and b̄ ∈ Z, and consider the
two-variable mixed integer program T = {(x, y) : x+ y ≥ b̂+ b̄, y ≥ 0}. Then, it is easily seen
that the points in T with x ∈ Z satisfy the basic MIR inequality:

b̂x+ y ≥ b̂(b̄+ 1), (7)

that turns out to be a split cut derived from the disjunction x ≤ b̄ and x ≥ b̄+ 1.
The hardness of separation of split cuts (and hence of MIR inequalities) has been established
by Caprara and Letchford [11].

While Chvátal-Gomory cuts are by definition integer inequalities, split/GMI/MIR in-
equalities are instead mixed integer cuts in the sense that the coefficients are generally not
integer and the continuous variables (if any) might have nonzero coefficients.

3

2.1 Pure Integer Cuts

As just mentioned, Chvátal-Gomory cuts are of course pure integer inequalities because of the
rounding mechanism and since they do apply only to the pure integer case. In the following
section we discuss their separation through a MIP model while in Section 2.1.2 we show that
a closely related model has been used to separate a new class of pure integer cuts for mixed
integer problems.

2.1.1 Chvátal-Gomory cuts

Fischetti and Lodi [27] addressed the issue of evaluating the practical strength of P 1 in
approximating PI . The approach was to model the CG separation problem as a MIP, which
is then solved through a general-purpose MIP solver. To be more specific, given an input
point x∗ ∈ P to be separated1, CG-SEP calls for a CG cut αTx ≤ α0 which is (maximally)
violated by x∗, where α = buTAc and α0 = buT bc for some u ∈ Rm

+ . Hence, if Aj denotes the
jth column of A, CG-SEP can be modeled as:

max αTx∗ − α0 (8)
αj ≤ uTAj ∀j = 1, . . . , n (9)
α0 + 1− ε ≥ uT b (10)
ui ≥ 0 ∀i = 1, . . . ,m (11)
αj integer ∀j = 0, . . . , n, (12)

where ε is a small positive value. In the model above, the integer variables αj (j = 1, . . . , n)
and α0 play the role of coefficients buTAjc and buT bc in the CG cut, respectively. Hence
the objective function (8) gives the amount of violation of the CG cut evaluated for x = x∗,
that is what has to be maximized. Because of the sign of the objective function coefficients,
the rounding conditions αj = buTAjc can be imposed through upper bound conditions on
variables αj (j = 1, . . . , n), as in (9), and with a lower bound condition on α0, as in (10).
Note that this latter constraint requires the introduction of a small value ε so as to prevent
an integer uT b being rounded to uT b− 1.

Model (8)-(12) can also be explained by observing that αTx ≤ α0 is a CG cut if and only
if (α, α0) is an integral vector, as stated in (12), and αTx ≤ α0 + 1 − ε is a valid inequality
for P , as stated in (9)-(11) by using the well-known characterization of valid inequalities for
a polyhedron due to Farkas.

2.1.2 Projected Chvátal-Gomory cuts

Bonami et al. [10] extended the concept of Chvátal-Gomory cuts to the mixed integer case.
Such an extension is interesting in itself and has the advantage of identifying a large class
of cutting planes whose resulting separation problem retains the simple structure of model
(8)-(12) above. One can define the projection of P (x, y) onto the space of the x variables as:

P (x) := {x ∈ Rn
+ : there exists y ∈ Rr

+ s.t. Ax+ Cy ≤ b} (13)

= {x ∈ Rn
+ : ukA ≤ ukb, k = 1, . . . ,K} (14)

=: {x ∈ Rn
+ : Āx ≤ b̄}, (15)

1Recall that Gomory’s work [35] implies that CG-SEP is easy when x∗ is an extreme point of P .

4

where u1, . . . , uK are the (finitely many) extreme rays of the projection cone {u ∈ Rm
+ : uTC ≥

0T }. Note that the rows of the linear system Āx ≤ b̄ are of Chvátal rank 0 with respect to
P (x, y), i.e, no rounding argument is needed to prove their validity.

We define a projected Chvátal-Gomory (pro-CG) cut as a CG cut derived from the system
Āx ≤ b̄, x ≥ 0, i.e., an inequality of the form bwT Ācx ≤ bwT b̄c for some w ≥ 0. Since any
row of Āx ≤ b̄ can be obtained as a linear combination of the rows of Ax ≤ b with multipliers
ū ≥ 0 such that ūTC ≥ 0T , it follows that a pro-CG cut can equivalently (and more directly)
be defined as an inequality of the form:

buTAcx ≤ buT bc for any u ≥ 0 such that uTC ≥ 0T . (16)

As such, its associated separation problem can be modeled as a simple extension of the system
(8)-(12) by amending it through the following set of inequalities:

uTCj ≥ 0 ∀j = 1, . . . , r. (17)

Projected Chvátal-Gomory cuts are dominated by split cuts, and therefore P 1(x, y) con-
tains the split closure of P (x, y). More precisely, P 1(x, y) is the intersection of P (x, y) with
all the split cuts where one of the sets Π0, Π1 defined in (5) and (6) is empty (see, [10]).

2.2 Mixed Integer Cuts

The computational results reported in [27] and [10] showed that P 1 often gives a surprisingly
tight approximation of P , thus triggering research in the attempt of extending the approach
to (more powerful) mixed integer cuts.

Unfortunately, model (8)-(12) does not extend immediately to the mixed integer case
if one wants to concentrate on split/MIR/GMI cuts where coefficients are not necessarily
integer and the continuous variables might assume nonzero coefficients in the cut. A natural
mixed integer nonlinear model has been suggested in [11]. Variants of such a model have been
solved with two different approaches: by solving either a parametric mixed integer problem [7]
(Section 2.2.1) or a nonlinear mixed integer problem [19,20] (Section 2.2.2).

Finally, it is not difficult to see that one can use the multipliers u computed as in (8)-(12)
or (8)-(12),(17) and write a GMI inequality instead of a CG or pro-CG cut. However, such
an a posteriori strengthening did not result very effective (see [10]).

2.2.1 Split cuts solving a parametric MIP

Balas and Saxena [7] directly addressed the separation problem of the most violated split
cut of the form αTx + γT y ≥ β by looking at the union of the two polyhedra (5) and (6).In
particular, they addressed a generic MIP of the form:

min{cTx+ fT y : Ax+ Cy ≥ b, x integral}, (18)

5

where the variable bounds are included among the explicit constraints, and wrote a first
nonlinear separation model for split cuts as follows:

min αTx∗ + γT y∗ − β (19)
αj = uTAj − u0πj ∀j = 1, . . . , n (20)
γj = uTCj ∀j = 1, . . . , r (21)
αj = vTAj + v0πj ∀j = 1, . . . , n (22)
γj = vTCj ∀j = 1, . . . , r (23)
β = uT b− u0π0 (24)
β = vT b+ v0(π0 + 1) (25)
1 = u0 + v0 (26)

u, v, u0, v0 ≥ 0 (27)
π, π0 integer. (28)

Normalization constraint (26) allows one to simplify the model to the form below:

minuT (Ax∗ + Cy∗ − b) − u0(πTx∗ − π0) (29)
uTAj − vTAj − πj = 0 ∀j = 1, . . . , n (30)

uTCj − vTCj = 0 ∀j = 1, . . . , r (31)
−uT b+ vT b+ π0 = u0 − 1 (32)

0 < u0 < 1 , u, v ≥ 0 (33)
π, π0 integer, (34)

where v0 has been removed by using constraint (26), and one explicitly uses the fact that
any nontrivial cut has u0 < 1 and v0 < 1 (see, Balas and Perregaard [6]). Note that the
nonlinearity only arises in the objective function. Moreover, for any fixed value of parameter
u0 the model becomes a regular MIP.

The continuous relaxation of the above model yields a parametric linear program which
can be solved by a variant of the simplex algorithm (see, e.g., Nazareth [49]). Balas and Sax-
ena [7] however avoided solving the parametric mixed integer program through a specialized
algorithm, and considered a grid of possible values for parameter u0, say u1

0 < u2
0 < · · · < uk0.

The grid is initialized by means of the set {0.05, 0.1, 0.2, 0.3, 0.4, 0.5} and then is enriched, on
the fly, by bisecting a certain interval [ut0, u

t+1
0] through the insertion of the new grid point

u′0 := (ut0 + ut+1
0)/2.

2.2.2 Split cuts solving a nonlinear MIP

Dash, Günlük and Lodi [19,20] addressed the optimization over the split closure by looking at
the corresponding MIR inequalities and, more precisely, developed a mixed integer nonlinear
model and linearized it in an effective way.

For the ease of writing the model, we slightly change the definition of polyhedron P (x, y)
by putting the constraints in equality form as:

P (x, y) = {(x, y) ∈ Rn+ ×Rr+ : Ax+ Cy + Is = b, s ≥ 0}, (35)

through the addition of nonnegative slack variables s.

6

One is looking for an MIR inequality in the form:

u+s+ γ̂T y + (α̂T + β̂ᾱT)x ≥ β̂(β̄ + 1), (36)

where ᾱ and β̄ are vectors of integer variables, u+, α̂ and γ̂ are vectors of nonnegative
variables, and 0 < β̂ < 1.

Let
∑

k∈K εk < 1 (e.g., εk = 2−k). We approximate β̂ with
∑

k∈K̄ εk for some K̄ ⊂ K and
write the RHS of the MIR inequality as

∑
k∈K̄ εk∆ where ∆ = (dβe − ᾱx∗). Using the fact

that there is a violated MIR inequality if and only if there is one with ∆ < 1, we have the
following formulation for the separation of the most violated MIR inequality, where for each
k ∈ K we set πk = 1 if k ∈ K̄, = 0 otherwise.

minu+s∗ − εTΦ + γ̂T y∗ + α̂Tx∗ (37)
γ̂j ≥ uTCj ∀j = 1, . . . , r (38)

α̂j + ᾱj ≥ uTAj ∀j = 1, . . . , n (39)

β̂ + β̄ ≤ uT b (40)

β̂ =
∑
k∈K

εkπk (41)

∆ = (β̄ + 1)− ᾱTx∗ (42)
Φk ≤ ∆ ∀k ∈ K (43)
Φk ≤ πk ∀k ∈ K (44)
u+
i ≥ ui ∀i = 1, . . . ,M (45)

u+, α̂, β̂, γ̂ ≥ 0 (46)
ᾱ, β̄ integer, π ∈ {0, 1}|K| (47)

where u+
i = max{ui, 0} and M := {i : s∗i > 0, i = 1, . . . ,m}, i.e., we define a variable u+

i only
if the corresponding constraint i written in ‘less or equal form’ is not tight.

The validity of inequality (36) can be easily shown. Inequality uT s+ (ᾱT + α̂T)x+ γ̂T y ≥
uT b is valid by Farkas derivation. It remains of course valid by replacing ui,∀i ∈M with u+

i

and then one can use the basic MIR inequality (7) to obtain the MIR form (36) by having as
a continuous (nonnegative) part the term u+s+ α̂Tx+ γ̂T y.

The approximate model (37)–(47) turns out to be an exact model if K is chosen appro-
priately (see, [19, 20]).

2.3 A Computational Overview

In this section we discuss some simple issues that turn out to be crucial to make the presented
models solvable and the MIPping approach successful. Moreover, we show their strength by
reporting computational results on MIPs included in the MIPLIB 3.0 [9].

2.3.1 Making the models solvable

All papers discussed in the previous sections implement pure cutting plane approaches in
which (as usual) the following steps are iteratively repeated:

1. the continuous relaxation of the mixed integer program at hand is solved;

7

2. the separation problem is (heuristically) solved and a set of violated constraints is
eventually found;

3. the constraints are added to the original formulation.

Of course, the original formulation becomes larger and larger but in order to provide cuts of
rank 1, the separation problem solved at step 2 above only uses the original constraints in the
cut derivation. For what concerns the solution of those separation problems, it is important
that state-of-the-art MIP solvers such as ILOG-Cplex or Xpress Optimizer are used, as they
incorporate very powerful heuristics that are able to find (and then improve) feasible solutions
in short computing times. Indeed, good heuristic solutions are enough for step 2 above, where
the NP-hard separation problem does not need to be solved to optimality2 since any feasible
solution provides a valid inequality cutting off the current solution of step 1 above.

In order to make these MIPs solvable, a few issues have to be addressed.
All authors noted that only integer variables in the support of the fractional solution of

step 1 above have to be considered, e.g., a constraint αj ≤ uTAj for j such that x∗j = 0 is
redundant because αj (times x∗j) does not contribute to the violation of the cut, while it can
be computed a posteriori by an efficient post-processing procedure. It is easy to see that this
is also the case of integer variables whose value is at the upper bound, as these variables can
be complemented before separation.

The ultimate goal of the cutting plane sketched above is to find, for each fractional point
(x∗, y∗) to be cut off, a “round” of cuts that are significantly violated and whose overall effect
is as strong as possible in improving the current LP relaxation. A major practical issue for
accomplishing such a goal is the strength of the returned cuts. As a matter of fact, several
equivalent solutions of the separation problems typically exist, some of which produce very
weak cuts for the MIP model. This is because the separation problem actually considers the
face F (x∗, y∗) of PI where all the constraints that are tight at (x∗, y∗) (including the variable
bounds) are imposed as equalities. Hence, for this face there exist several formulations of
each cut, which are equivalent for F (x∗, y∗) but not for PI .

The computational experiments in [27] have shown a relation between the strength of a cut
and the sparsity of the vector of multipliers u generating it. In particular, the introduction of
a penalty term −

∑
iwiui (where i denotes the index of a constraint) in the objective function

(8), has the effect of making the cut itself sparser. The sparser the cuts the better for the LP
problems solved on step 1 of the cutting plane procedure3. The importance of making the
cuts as sparse as possible has been also documented by Balas and Saxena [7], who noticed
that split disjunctions with sparse support tend to give rise to sparse split cuts.

Another important issue in order to accelerate the cutting plane procedure is the cut
selection, i.e., finding a set of cuts whose overall behavior is as effective as possible. Cut
selection is somehow related to finding a set of cuts which are “as diverse as possible”, possibly
more effective together. One can expect that such kind of diversification can be strongly
improved with cuts obtained by heuristically solving two or more of the discussed separation
models; promising results in this direction have been obtained by combining either CG or
pro-CG cuts with MIR inequalities [19,20].

2Except eventually in the last step, in which one needs a proof that no additional violated cut exists.
3The same sparsification trick is also used in Bonami et al. [10].

8

2.3.2 Strength of the closures

The strength of the closures, namely CG, pro-CG and split (or MIR), have been evaluated
by running cutting plane algorithms for large (sometimes huge) computing times. Indeed,
the goal of the investigation was in all cases to show the tightness of the closures, rather
than investigating the practical relevance of the separation MIPping idea when used within a
MIP solver. On the other hand, as discussed in the previous section, several techniques can
be implemented to speed up the computation and, even in the current status, the MIPping
separation approach is not totally impractical. Indeed, one can easily implement a hybrid
approach in which the MIP-based separation procedures are applied (for a fixed amount of
time) in a preprocessing phase, resulting in a tighter MIP formulation to be solved at a later
time by a standard MIP solver. Using this idea, two unsolved MIPLIB-2003 [2] instances,
namely nsrand-ipx and arki001, have been solved to proven optimality for the first time by
Fischetti and Lodi [27] and by Balas and Saxena [7], respectively. In other words, for very
difficult and challenging problems it does pay to improve the formulation by adding cuts in
these closures before switching to either general- or special-purpose solution algorithms.

In Tables 1 and 2 we report, in an aggregated fashion, the tightness of the closures for
MIPLIB 3.0 [9] instances, in terms of percentage of gap closed4 for pure integer and mixed
integer linear programs, respectively.

Split closure CG closure

% Gap closed Average 71.71 62.59
% Gap closed 98-100 9 instances 9 instances
% Gap closed 75-98 4 instances 2 instances
% Gap closed 25-75 6 instances 7 instances
% Gap closed < 25 6 instances 7 instances

Table 1: Results for 25 pure integer linear programs in the MIPLIB 3.0.

Split closure pro-CG closure

% Gap closed Average 84.34 36.38
% Gap closed 98-100 16 instances 3 instances
% Gap closed 75-98 10 instances 3 instances
% Gap closed 25-75 2 instances 11 instances
% Gap closed < 25 5 instances 17 instances

Table 2: Results for 33 mixed integer linear programs in the MIPLIB 3.0.

Most of the results reported in the previous tables give a lower approximation of the
exact value of the closures5, due to the time limits imposed on the cutting plane algorithms.
Nevertheless, the picture is pretty clear and shows that, although one can construct examples

4Computed as 100− 100(opt value(PI)− opt value(P 1))/(opt value(PI)− opt value(P)).
5In particular, the time limit in [10] to compute a bound of the pro-CG closure is rather short, 20 CPU

minutes, and there are pathological instances for which such a closure is ineffective, see [10] for details.

9

in which the rank of the facets for a polyhedron is very large, in most practical cases the
inequalities of rank 1 already give a very tight approximation of the convex hull of integer
and mixed integer programs.

3 MIPping heuristics

In this section we consider the problem of finding a feasible (primal) solution to a generic
mixed-integer linear program with 0-1 variables of the form:

(P) min cTx (48)
s.t. (49)
Ax ≤ b (50)
xj ∈ {0, 1} ∀j ∈ B 6= ∅ (51)
xj ≥ 0, integer ∀j ∈ G (52)
xj ≥ 0 ∀j ∈ C, (53)

where A is an m × n input matrix, and b and c are input vectors of dimension m and n,
respectively. Here, the variable index set N := {1, . . . , n} is partitioned into (B,G, C), where
B 6= ∅ is the index set of the 0-1 variables, while the possibly empty sets G and C index the
general integer and the continuous variables, respectively. Note that we assume the existence
of 0-1 variables, as one of the components of the method we actually implemented (namely,
the local branching heuristic) is based on this assumption. Our approach can, however,
be extended to remove this limitation, as outlined in the concluding remarks of [25]. Also
note that constraints (50), though stated as inequalities, can involve equalities as well. Let
I := B ∪ G denote the index set of all integer-constrained variables.

Heuristics for general-purpose MIPs include [4], [5], [8], [18], [29], [32], [33], [34], [38], [39],
[40], [43], [44], and [22], among others. Recently, we proposed in [25] a heuristic approach,
called Local Branching (LB), to improve the quality of a given feasible solution. This method,
as well as other refining heuristics (including the recently-proposed RINS approach [18]),
requires the availability of a starting feasible solution, which is an issue for some difficult
MIPs. This topic was investigated by Fischetti, Glover and Lodi [24], who introduced the
so-called Feasibility Pump (FP) scheme for finding a feasible (or, at least, an “almost feasible”)
solution to general MIPs through a clever sequence of roundings.

We analyze computationally a simple variant of the original LB method that allows one
to deal with infeasible reference solutions, such as those returned by the FP method. Our
approach is to start with an “almost feasible” reference solution x̄, as available at small
computational cost through the FP method. We then relax the MIP model by introducing
for each violated constraint: (i) an artificial continuous variable in the constraint itself, (ii)
a binary (also artificial) variable, and (iii) a constraint stating that, if the artificial variable
has to be used to satisfy the constraint satisfied, then the binary variable must be set to 1.
Finally, the objective function is replaced, in the spirit of the first phase of the primal simplex
algorithm, by the sum of the artificial binary variables. The initial solution turns out now to
be feasible for the relaxed model and its value coincides with the number of initial violated
constraints. We then apply the standard LB framework to reduce the value of the objective
function, i.e., the number of infeasibilities and a solution of value 0 turns out to be feasible
for the initial problem. Note that, although a continuous artificial variable for each violated

10

constraint could be enough, binary variables are better exploited by LB as it will be made
clear in Section 3.1 and discussed in detail in Section 3.2.

Our approach also produces, as a byproduct, a small-cardinality set of constraints whose
relaxation (removal) converts a given MIP into a feasible one–a very important piece of
information in the analysis of infeasible MIPs. In other words, our method can be viewed as
a tool for repairing infeasible MIP models, and not just as a heuristic for repairing infeasible
MIP solutions. This is in the spirit of the widely-studied approaches to find maximum feasible
(or minimum infeasible) subsystems of LP models, as addressed e.g. in [3,12,31], but is applied
here to MIP models. This may be a useful technique in practice.

The section is organized as follows. In Subsection 3.1 we review the LB and FP methods.
In Subsection 3.2 we describe the LB extension we propose to deal with infeasible reference
solutions. Computational results are presented in Subsection 3.3, where we compare the LB
performance with that of the commercial software ILOG-Cplex on two sets of hard 0-1 MIPs,
specifically 44 problems taken from the MIPLIB 2003 library [2] and 39 additional instances
already considered in [24].

3.1 Local Branching and Feasibility Pump

We next review the LB and FP methods. The reader is referred to [25] and [24] for more
details.

Local Branching

The Local Branching approach works as follows. Suppose a feasible reference solution
x̄ of the MIP is given, and one aims at finding an improved solution that is “not too far”
from x̄. Let S := {j ∈ B : x̄j = 1} denote the binary support of x̄. For a given positive
integer parameter k, we define the k-OPT neighborhood N (x̄, k) of x̄ as the set of the feasible
solutions of the MIP satisfying the additional local branching constraint:

∆(x, x̄) :=
∑
j∈S

(1− xj) +
∑
j∈B\S

xj ≤ k, (54)

where the two terms in the left-hand side count the number of binary variables flipping their
value (with respect to x̄) either from 1 to 0 or from 0 to 1, respectively. As its name suggests,
the local branching constraint (54) can be used as a branching criterion within an enumerative
scheme for the MIP. Indeed, given the incumbent solution x̄, the solution space associated
with the current branching node can be partitioned by means of the disjunction:

∆(x, x̄) ≤ k (left branch) or ∆(x, x̄) ≥ k + 1 (right branch), (55)

where the neighborhood-size parameter k is chosen so as make neighborhood N (x̄, k) “suffi-
ciently small” to be optimized within short computing time, but still “large enough” to likely
contain better solutions than x̄ (typically, k = 10 or k = 20).

In [25], we investigated the use of a general-purpose MIP solver as a black-box “tactical”
tool to explore effectively suitable solution subspaces defined and controlled at a “strategic”
level by a simple external branching framework. The procedure is in the spirit of well-known
local search metaheuristics, but the neighborhoods are obtained through the introduction
in the MIP model of the local branching constraints (54). This allows one to work within

11

a perfectly general MIP framework, and to take advantage of the impressive research and
implementation effort that nowadays are devoted to the design of MIP solvers. The new
solution strategy is exact in nature, though it is designed to improve the heuristic behavior
of the MIP solver at hand. It alternates high-level strategic branchings to define solution
neighborhoods, and low-level tactical branchings (performed within the MIP solver) to explore
them. The result can then be viewed as a two-level branching strategy aimed at favoring early
updatings of the incumbent solution, hence producing improved solutions at early stages of
the computation. The computational results reported in [25] show the effectiveness of the LB
approach. These have also been confirmed by the recent works of Hansen, Mladenov́ıc and
Urosev́ıc [38] (where LB is used within a Variable Neighborhood Search metaheuristic [48]) and
of Fischetti, Polo and Scantamburlo (where MIPs with a special structure are investigated).

Feasibility Pump

Let P := {x ∈ Rn : Ax ≤ b} denote the polyhedron associated with the LP relaxation
of the given MIP, and assume without loss of generality that system Ax ≤ b includes the
variable bounds:

lj ≤ xj ≤ uj , ∀j ∈ I,

where lj = 0 and uj = 1 for all j ∈ B. With a little abuse of terminology, we say that a
point x is integer if xj ∈ Zn for all j ∈ I (no matter the value of the other components).
Analogously, the rounding x̃ of a given x is obtained by setting x̃j := [xj] if j ∈ I and x̃j := xj
otherwise, where [·] represents scalar rounding to the nearest integer. The (L1-norm) distance
between a generic point x ∈ P and a given integer vector x̃ is defined as

Φ(x, x̃) =
∑
j∈I
|xj − x̃j |,

(notice that continuous variables xj , j 6∈ I, if any, are immaterial) and can be modeled as:

Φ(x, x̃) :=
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

(x+
j + x−j),

where the additional variables x+
j and x−j require the introduction into the MIP model of the

additional constraints:

xj = x̃j + x+
j − x

−
j , x+

j ≥ 0, x−j ≥ 0, ∀j ∈ I : lj < x̃j < uj . (56)

It follows that the closest point x∗ ∈ P to x̃ can easily be determined by solving the LP:

min{Φ(x, x̃) : Ax ≤ b}. (57)

If Φ(x∗, x̃) = 0, then x∗j (= x̃j) is integer for all j ∈ I, so x∗ is a feasible MIP solution.
Conversely, given a point x∗ ∈ P , the integer point x̃ closest to x∗ is easily determined by
just rounding x∗.

The FP heuristic works with a pair of points (x∗, x̃) with x∗ ∈ P and x̃ integer, that are
iteratively updated with the aim of reducing as much as possible their distance Φ(x∗, x̃). To
be more specific, one starts with any x∗ ∈ P , and initializes a (typically infeasible) integer
x̃ as the rounding of x∗. At each FP iteration, called a pumping cycle, x̃ is fixed and one

12

finds through linear programming the point x∗ ∈ P which is as close as possible to x̃. If
Φ(x∗, x̃) = 0, then x∗ is a MIP feasible solution, and the heuristic stops. Otherwise, x̃ is
replaced by the rounding of x∗ so as to further reduce Φ(x∗, x̃), and the process is iterated.

The basic FP scheme above tends to stall and stop prematurely. This happens whenever
Φ(x∗, x̃) > 0 is not reduced when replacing x̃ by the rounding of x∗, meaning that all the
integer-constrained components of x̃ remained unchanged in this iteration. In the original FP
approach [24], this situation is dealt with by heuristically choosing a few components x̃j to be
modified, even if this operation increases the current value of Φ(x∗, x̃). A different approach,
to be elaborated in the next section, is to switch to a method based on enumeration, in the
attempt to explore a small neighborhood of the current “almost feasible” x̃ (that typically
has a very small distance Φ(x∗, x̃) from P).

3.2 LB with Infeasible Reference Solutions

The basic idea of the method presented in this section is that the LB algorithm does not
necessarily need to start with a feasible solution—a partially feasible one can be a valid warm
start for the method. Indeed, by relaxing the model in a suitable way, it is always possible
to consider any infeasible solution, say x̂, to be “feasible”, and penalize its cost so the LB
heuristic can drive it to feasibility.

The most natural way to implement this idea is to add a continuous artificial variable for
each constraint violated by x̂, and then penalize the use of such variables in the objective
function by means of a very large cost M . We tested this approach and found it performs
reasonably well on most of the problems. However, it has the drawback that finding a proper
value for M may not be easy in practice. Indeed, for a substantial set of problems in the
MIPLIB 2003 [2] collection, the value of the objective function is so large that it is difficult
to define a value for M that makes any infeasible solution worse than any feasible one.
Moreover, the way the LB method works suggests the use of the following, more combinatorial,
framework.

Let T be the set of the indices of the constraints aTi x ≤ bi that are violated by x̂. For
each i ∈ T , we relax the original constraint aTi x ≤ bi into aTi x − σi ≤ bi, where σi ≥ 0 is a
nonnegative continuous artificial variable, and add the constraint:

σi ≤ δiyi, yi ∈ {0, 1}, (58)

where δi is a sufficiently large value, and yi is a binary artificial variable attaining value 1 for
each violated constraint6. Finally, we replace the original objective function cTx by

∑
i∈T yi,

so as to count the number of violated constraints. It has to be noted that the set of binary
variables in the relaxed model is B ∪ Y, where Y := {yi : i ∈ T}, hence the structure of the
relaxation turns out to be particularly suited for the LB approach, where the local branching
constraint affects precisely the binary variables (including the artificial ones).

An obvious drawback of the method above is that the original objective function is com-
pletely disregarded, thus the feasible solution obtained can be arbitrarily bad. A way of
avoiding this situation could be to put a term in the artificial objective function that takes
the original costs into account. However, a proper balancing of the two contributions (original
cost and infeasibility penalty) may not be easy to achieve although promising results in this

6Note that when the violated constraint is in equality form two nonnegative artificial variables, σ+
i and σ−i ,

are added with opposite signs and the corresponding constraint (58) becomes σ+
i + σ−i ≤ δiyi.

13

direction have been very recently reported by Achterberg and Berthold [1]. As a matter of
fact, the outcome of a preliminary computational study is that a better overall performance is
obtained by using the artificial objective function (alone) until feasibility is reached, and then
improving the quality of this solution by using a standard LB or RINS approach. This can
be done by recovering the original objective function and simply using the computed feasible
solution in the usual LB way. In other words, the overall algorithm remains in principle exact
(see [25] for details) and the proposed scheme is used to provide an initial solution.

3.3 Computational Results

In this section, we report on computational results comparing the proposed method with both
the FP heuristic and the commercial software ILOG-Cplex 9.0.3. In our experiments, we used
the “asymmetric” version of the local branching constraint (54), namely:

∆(x, x̄) :=
∑
j∈S

(1− xj). (59)

Indeed, as discussed in [25], this version of the constraint seems to be particularly suited for
set covering problems where LB aims at finding solutions with a small binary support—which
is precisely the case of interest in our context.

Our testbed is made up of 33 among the 45 0-1 MIP instances from MIPLIB 2003 [2] and
described in Table 3, plus an additional set of 39 hard 0-1 MIPs described in Table 4. (The
0-1 MIPLIB instance stp3d was not considered since the computing time required for the
first LP relaxation is larger than 1 hour, while 11 instances, namely fixnet6, markshare1,
markshare2, mas74, mas76, modglob, pk1, pp08a, pp08aCUTS, set1ch and vpm2 have been
removed because all tested algorithms found a feasible solution within 0.0 CPU seconds.) The
two tables report the name, total number of variables (n), number of 0-1 variables (|B|), and
number of constraints (m) for each instance.

Name n |B| m Name n |B| m
10teams 2025 1800 230 mod011 10958 96 4480
A1C1S1 3648 192 3312 momentum1 5174 2349 42680
aflow30a 842 421 479 net12 14115 1603 14021
aflow40b 2728 1364 1442 nsrand ipx 6621 6620 735
air04 8904 8904 823 nw04 87482 87482 36
air05 7195 7195 426 opt1217 769 768 64
cap6000 6000 6000 2176 p2756 2756 2756 755
dano3mip 13873 552 3202 protfold 1835 1835 2112
danoint 521 56 664 qiu 840 48 1192
ds 67732 67732 656 rd-rplusc-21 622 457 125899
fast0507 63009 63009 507 seymour 1372 1372 4944
fiber 1298 1254 363 sp97ar 14101 14101 1761
glass4 322 302 396 swath 6805 6724 884
harp2 2993 2993 112 t1717 73885 73885 551
liu 1156 1089 2178 tr12-30 1080 360 750
misc07 260 259 212 van 12481 192 27331
mkc 5325 5323 3411

Table 3: Set of 33 among the 45 0-1 MIP instances collected in MIPLIB 2003 [2].

14

Name n |B| m source Name n |B| m source
biella1 7328 6110 1203 [25] blp-ar98 16021 15806 1128 [43]
NSR8K 38356 32040 6284 [25] blp-ic97 9845 9753 923 [43]
dc1c 10039 8380 1649 [21] blp-ic98 13640 13550 717 [43]
dc1l 37297 35638 1653 [21] blp-ir98 6097 6031 486 [43]
dolom1 11612 9720 1803 [21] CMS750 4 11697 7196 16381 [42]
siena1 13741 11775 2220 [21] berlin 5 8 0 1083 794 1532 [42]
trento1 7687 6415 1265 [21] railway 8 1 0 1796 1177 2527 [42]
rail507 63019 63009 509 [25] usAbbrv.8.25 70 2312 1681 3291 [42]
rail2536c 15293 15284 2539 [25] manpower1 10565 10564 25199 [53]
rail2586c 13226 13215 2589 [25] manpower2 10009 10008 23881 [53]
rail4284c 21714 21705 4284 [25] manpower3 10009 10008 23915 [53]
rail4872c 24656 24645 4875 [25] manpower3a 10009 10008 23865 [53]
A2C1S1 3648 192 3312 [25] manpower4 10009 10008 23914 [53]
B1C1S1 3872 288 3904 [25] manpower4a 10009 10008 23866 [53]
B2C1S1 3872 288 3904 [25] ljb2 771 681 1482 [18]
sp97ic 12497 12497 1033 [25] ljb7 4163 3920 8133 [18]
sp98ar 15085 15085 1435 [25] ljb9 4721 4460 9231 [18]
sp98ic 10894 10894 825 [25] ljb10 5496 5196 10742 [18]
bg512142 792 240 1307 [47] ljb12 4913 4633 9596 [18]
dg012142 2080 640 6310 [47]

Table 4: The additional set of 39 0-1 MIP instances.

The framework described in the previous section has been tested by using different starting
solutions x̂ provided by FP. In particular, we wanted to test the sensitivity of our modified
LB algorithm with respect to the degree of infeasibility of the starting solution, as well as its
capability for improving it. Thus, we executed the FP code for 0, 10 and 100 iterations and
passed to LB the integer (infeasible) solution x̂ with minimum distance Φ(x∗, x̂) from P . (The
case with 0 iterations actually corresponds to starting from the solution of the continuous
relaxation, rounded to the nearest integer.) The resulting three versions of the modified LB
are called LB0, LB10, and LB100, respectively.

In our experiments, we avoided any parameter tuning–FP was implemented exactly as
in [24], and for the modified LB code we used a time limit of 30 CPU seconds for the exploration
of each local-branching neighborhood. As to the value of the neighborhood-size parameter
k in LB, we implemented an adaptive procedure: at each neighborhood exploration, we try
to reduce the number of violated constraints in the current solution by half, i.e., we set
k = b|T ′|/2c, where |T ′| is the value of the current solution. (Since the support of the
solution also takes into account non-artificial binary variables, when the number of violated
constraints becomes less than 20 we fix k = 10, i.e., we use the value suggested in [25] for
the asymmetric version of the local branching constraint.). The motivation for this choice
is that the number of violated constraints in an initial solution can be extremely large, in
which case the use of a small value of k would result in a very slow convergence. A possible
drawback is that, in some cases, some of the neighborhoods in the LB sequence can contain
no feasible solutions (with respect to the original model) because we do not allow enough
artificial variables y to change. The approach can therefore appear counterintuitive, but the
idea is that of reducing the neighborhood size iteratively so as to eventually converge.

All codes are written in ANSI C and use the ILOG-Cplex callable libraries. The three
modified LB codes (LB0, LB10, and LB100) are compared with FP and ILOG-Cplex 9.0.3 in

15

Table 5 for the MIPLIB-2003 instances, and in Table 6 for the additional set of instances.
Computing times are expressed in CPU seconds, and refer to a Pentium M 1.6 GHz notebook
with 512 MByte of main memory. A time limit of 1,800 CPU seconds was provided for
each instance with each algorithm and the computation was halted as soon as a first feasible
solution was found.

For each instance, we report in both tables: for ILOG-Cplex, the number of nodes (nodes)
needed to find an initial solution and the corresponding computing time (time); for FP, the
number of iterations (FPit) and its computing time (time); for each of the three variants of
LB, the computing time spent in the FP preprocessing phase (FP time), the initial number
of violated constraints (|T |), the number of LB iterations (LBit), and the overall computing
time (time). Note that, we define an LB iteration as the exploration, generally within a time
limit, of the neighborhood of the current solution. Moreover, the time reported is the sum
of the time of the FP initialization plus the LB time, thus it can be larger than 1,800 CPU
seconds. When one of the algorithms was not able to find a feasible solution in the given time
limit, we wrote (*) in column “nodes” (for ILOG-Cplex) or “FPit” (for FP), or wrote (µ) in
column “|T |” near the number of initial infeasible constraints (for LB), where µ is the number
of violated constraints in the final solution.

As expected, the degree of infeasibility of the starting solution plays an important role in
the LB methods—the better the initial solution, the faster the method. In this view, the FP
approach seems to fit particularly well in our context, in that it is able to provide very good
solutions (as far as the degree of infeasibility is concerned) in very short computing times.
Among the three LB implementations, LB0 failed 8 times in finding a feasible solution within
the time limit, LB10 4 times, and LB0 only 3 times. Among the 64 instances for which the
three LB implementations found a feasible solution within the time limit, LB0 was at least
as fast as the other two in 26 cases, LB10 in 34 cases, and LB100 in 42 cases. Overall, LB100

qualifies as the most effective (and stable) of the three methods.
A comparison between ILOG-Cplex and LB100 shows that:

1. ILOG-Cplex was not able to find any feasible solution (within the 1,800-second time
limit) in 5 cases, whereas LB100 was unsuccessful 3 times;

2. among the 66 instances for which both algorithms found a feasible solution within the
time limit, ILOG-Cplex was strictly faster in 21 cases, while the opposite holds in 41
cases;

3. among the same 66 instances, the average computing time for finding a feasible solution
for ILOG-Cplex was 146.7 CPU seconds, while for LB100 was 65.0 CPU seconds.

As expected, the quality of the initial ILOG-Cplex solution (not reported in the tables) is
typically better than that provided by the LB methods. More precisely, the geometric mean
of the ratio between the solution found by an algorithm and best solution is 2.28, 2.22, 2.11
and 1.13 for the three LB implementations and ILOG-Cplex, respectively. As noted in Section
3.2, however, the first solution can be easily improved by standard use of the LB algorithm.
As an example, on instance dc1c the ratio of the solution obtained by algorithm LB0 with
respect to the first solution computed by ILOG-Cplex is 12.16. However, the ratio reduces
significantly by applying LB, and becomes 4.83, 2.74, and 1.02 in the first three iterations,
respectively, and reaches value 0.77 (i.e., the ILOG-Cplex solution is eventually improved) in
the fourth one. Those four iterations take 138.1 CPU seconds, plus 81.6 seconds to find the

16

I
L
O
G
-
C
p
l
e
x

9
.0

.3
F
P

L
B
0

L
B
1
0

L
B
1
0
0

n
a
m

e
n
o
d
es

ti
m

e
F
P
it

ti
m

e
F
P
ti

m
e

|T
|
L
B
it

ti
m

e
F
P
ti

m
e

|T
|
L
B
it

ti
m

e
F
P
ti

m
e

|T
|
L
B
it

ti
m

e

1
0
te

a
m

s
3
3
5

8
.4

7
0

1
1
.7

0
.1

7
5

2
9

6
6
7
.7

1
.1

1
8

1
1

1
7
7
.4

1
1
.7

–
–

1
1
.7

A
1
C

1
S
1

1
5
0

4
.1

8
3
.8

0
.1

6
3

5
0
.8

3
.8

–
–

3
.8

3
.8

–
–

3
.8

a
fl
ow

3
0
a

0
0
.1

1
8

0
.1

0
.0

2
9

4
3
.0

0
.1

2
9

4
0
.3

0
.1

–
–

0
.1

a
fl
ow

4
0
b

3
7
0

5
.9

6
0
.3

0
.1

4
0

5
5
7
.6

0
.3

–
–

0
.3

0
.3

–
–

0
.3

a
ir

0
4

4
0

8
.6

6
7
4
.7

3
.4

1
2
5

2
4

6
7
1
.8

7
4
.7

–
–

7
4
.7

7
4
.7

–
–

7
4
.7

a
ir

0
5

7
0

3
.4

2
5

8
3
.8

0
.8

2
0
8

1
2

1
3
5
.0

2
2
.8

1
4

3
2
5
.0

8
3
.8

–
–

8
3
.8

ca
p
6
0
0
0

0
0
.2

2
0
.2

0
.1

1
1

0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

d
a
n
o
3
m

ip
0

6
7
.7

2
8
6
.3

6
5
.0

9
4
6

(1
0
5
)

3
1

1
,8

6
5
.0

8
6
.3

–
–

8
6
.3

8
6
.3

–
–

8
6
.3

d
a
n
o
in

t
4
0

1
.7

2
3

1
.5

0
.1

1
2
5

6
1
6
.9

0
.6

1
2
0

5
3
.7

1
.5

–
–

1
.5

d
s

0
5
5
.0

1
3
3

(*
)

1
,8

0
0
.0

5
4
.5

6
5
6

1
6

5
8
2
.8

2
2
9
.9

3
5
0

8
3
0
2
.1

1
,3

5
8
.6

1
3
3

6
1
,3

8
5
.0

fa
st

0
5
0
7

0
3
9
.0

3
4
6
.7

4
3
.4

1
4
8

1
4
5
.8

4
6
.7

–
–

4
6
.7

4
6
.7

–
–

4
6
.7

fi
b

er
0

0
.1

2
0
.0

0
.0

4
1

5
0
.5

0
.0

–
–

0
.0

0
.0

–
–

0
.0

g
la

ss
4

5
3
8
9

1
.6

1
2
4

0
.3

0
.0

5
2

5
0
.9

0
.0

4
5

4
0
.1

0
.2

4
5

4
0
.3

h
a
rp

2
0

0
.0

6
5
4

5
.0

0
.0

9
3

0
.9

0
.1

6
1

0
.1

0
.8

6
1

0
.8

li
u

0
0
.1

0
0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

m
is

c0
7

6
7

0
.2

7
8

0
.4

0
.0

1
3
5

7
1
.7

0
.1

8
1

6
0
.6

0
.4

–
–

0
.4

m
k
c

0
0
.2

2
0
.2

0
.1

9
3

2
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

m
o
d
0
1
1

0
0
.2

0
0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

0
.1

–
–

0
.1

m
o
m

en
tu

m
1

3
1
4

(*
)

1
,8

0
0
.0

5
0
2

1
,3

2
9
.6

1
.8

6
9
7

(1
0
6
)

1
8

1
,8

0
1
.8

4
2
.6

8
9
5

(1
5
)

5
8

1
,8

4
2
.6

1
7
8
.8

8
9
5

(1
5
)

5
8

1
,9

7
8
.8

n
et

1
2

2
0
3

(*
)

1
,8

0
0
.0

1
5
0
7

2
2
5
.0

1
.8

4
0
6

1
4

2
4
6
.2

1
2
.9

2
3
9

7
1
6
.8

2
1
.8

2
3
9

7
2
5
.5

n
sr

a
n
d

ip
x

0
0
.5

4
0
.9

1
1
.3

3
9
0

8
1
4
.1

0
.9

–
–

0
.9

0
.9

–
–

0
.9

n
w

0
4

0
4
.9

1
4
.6

0
.3

6
2

6
.8

4
.6

–
–

4
.6

4
.6

–
–

4
.6

o
p
t1

2
1
7

1
1
7

0
.1

0
0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

p
2
7
5
6

0
0
.1

1
5
0
0
2
3

(*
)

1
,8

0
0
.0

0
.0

4
1

6
0
.8

0
.1

1
9

1
0
.2

1
.2

1
9

1
1
.3

p
ro

tf
o
ld

1
9
0

6
4
0
.9

3
6
7

5
0
2
.0

2
.7

3
7

(3
7
)

7
1
,8

0
2
.7

1
6
.1

1
3

(1
)

5
0

1
,8

1
6
.1

1
2
5
.6

7
(1

)
5
5

1
,9

2
5
.6

q
iu

0
0
.2

5
0
.3

0
.1

1
3
2

1
0
.2

0
.3

–
–

0
.3

0
.3

–
–

0
.3

rd
-r

p
lu

sc
-2

1
1
0
9
7
8
(*

)
1
,8

0
0
.0

4
0
1

(*
)

1
,8

0
0
.0

3
.9

1
1
9
0
2
1

(7
0
9
4
)

2
3

1
,8

0
3
.9

3
6
.8

1
1
9
0
1
7

(1
)

7
1

1
,8

3
6
.8

4
4
9
.5

1
1
9
0
1
7

(2
)

7
5

2
,2

4
9
.5

se
y
m

o
u
r

0
3
.5

7
3
.6

3
.0

9
2
1

1
3
.8

3
.6

–
–

3
.6

3
.6

–
–

3
.6

sp
9
7
a
r

0
3
.4

4
4
.2

2
.9

2
2
2

1
3
.8

4
.2

–
–

4
.2

4
.2

–
–

4
.2

sw
a
th

0
0
.2

4
9

2
.9

0
.1

2
0

6
1
2
4
.6

1
.0

2
0

6
7
0
.8

2
.9

–
–

2
.9

t1
7
1
7

7
1
0

3
0
1
.0

4
0

8
1
4
.8

1
0
.7

4
4
5

(5
0
)

2
5

1
,8

1
0
.7

1
3
3
.2

1
0
8

(5
)

3
5

1
,9

3
3
.2

8
1
4
.8

–
–

8
1
4
.8

tr
1
2
-3

0
1
7
9

0
.9

8
0
.1

0
.0

3
4
8

8
0
.6

0
.1

–
–

0
.1

0
.1

–
–

0
.1

va
n

0
8
7
2
.8

1
0

3
0
0
.5

2
7
.4

1
9
2

(1
2
8
)

9
1
,8

2
7
.4

3
0
0
.5

–
–

3
0
0
.5

3
0
0
.5

–
–

3
0
0
.5

T
ab

le
5:

C
on

ve
rg

en
ce

to
a

fir
st

fe
as

ib
le

so
lu

ti
on

on
th

e
M

IP
L

IB
-2

00
3

in
st

an
ce

s.

17

I
L
O
G
-
C
p
l
e
x

9
.0

.3
F
P

L
B
0

L
B
1
0

L
B
1
0
0

n
a
m

e
n
o
d
es

ti
m

e
F
P
it

ti
m

e
F
P
ti

m
e

|T
|
L
B
it

ti
m

e
F
P
ti

m
e
|T
|
L
B
it

ti
m

e
F
P
ti

m
e
|T
|
L
B
it

ti
m

e

b
ie

ll
a
1

5
9
4

1
0
8
.4

4
2
.8

2
.3

1
1
9
3

9
1
8
.2

2
.8

–
–

2
.8

2
.8

–
–

2
.8

N
S
R

8
K

5
(*

)
1
,8

0
0
.0

3
1
9
5
.5

1
8
5
.8

5
4
8
8

(5
4
8
8
)

1
1
,9

8
5
.8

1
9
5
.5

–
–

1
9
5
.5

1
9
5
.5

–
–

1
9
5
.5

d
c1

c
4
7
4
9

4
7
4
.0

2
1
2
.7

1
1
.6

1
4
8
3

1
1

8
1
.6

1
2
.7

–
–

1
2
.7

1
2
.7

–
–

1
2
.7

d
c1

l
0

8
0
.8

2
1
6
.2

1
4
.0

1
5
6
7

1
1
4
.8

1
6
.2

–
–

1
6
.2

1
6
.2

–
–

1
6
.2

d
o
lo

m
1

3
6
7

5
0
4
.4

2
2

2
2
.6

1
1
.9

1
4
1
0

1
2

2
7
7
.1

1
7
.7

6
3
2

8
4
9
.4

2
2
.6

–
–

2
2
.6

si
en

a
1

6
0
0

1
,3

7
1
.5

3
4
3
.7

4
0
.6

1
7
5
0

1
2

2
7
1
.2

4
3
.7

–
–

4
3
.7

4
3
.7

–
–

4
3
.7

tr
en

to
1

3
4
0

2
7
6
.8

7
1
1
.0

9
.3

6
0
3

8
2
2
.6

1
1
.0

–
–

1
1
.0

1
1
.0

–
–

1
1
.0

ra
il
5
0
7

0
3
2
.8

2
8
.7

6
.5

2
1
8

1
7
.4

8
.7

–
–

8
.7

8
.7

–
–

8
.7

ra
il
2
5
3
6
c

0
1
6
.8

1
1
5
.2

1
4
.3

2
0
0
8

1
1
4
.9

1
5
.2

–
–

1
5
.2

1
5
.2

–
–

1
5
.2

ra
il
2
5
8
6
c

0
6
3
.9

1
8
.3

7
.6

1
8
7
1

1
7
.9

8
.3

–
–

8
.3

8
.3

–
–

8
.3

ra
il
4
2
8
4
c

0
2
0
4
.9

2
5
6
.7

5
3
.5

3
3
0
5

1
5
4
.2

5
6
.7

–
–

5
6
.7

5
6
.7

–
–

5
6
.7

ra
il
4
8
7
2
c

0
1
8
6
.4

2
1
9
.3

1
7
.5

3
2
5
4

1
1
8
.3

1
9
.3

–
–

1
9
.3

1
9
.3

–
–

1
9
.3

A
2
C

1
S
1

0
0
.1

5
4
.7

0
.1

6
0

1
0
.2

4
.7

–
–

4
.7

4
.7

–
–

4
.7

B
1
C

1
S
1

0
0
.1

6
5
.0

0
.1

2
0
8

1
0
.2

5
.0

–
–

5
.0

5
.0

–
–

5
.0

B
2
C

1
S
1

0
0
.1

7
4
.7

0
.1

2
1
7

1
0
.3

4
.7

–
–

4
.7

4
.7

–
–

4
.7

sp
9
7
ic

0
2
.4

3
3
.1

1
.7

1
7
3

1
2
.4

3
.1

–
–

3
.1

3
.1

–
–

3
.1

sp
9
8
a
r

0
3
.8

3
5
.2

3
.5

2
6
0

7
2
3
.6

5
.2

–
–

5
.2

5
.2

–
–

5
.2

sp
9
8
ic

0
2
.1

2
2
.6

1
.8

1
4
7

6
6
.0

2
.6

–
–

2
.6

2
.6

–
–

2
.6

b
lp

-a
r9

8
8
3
0
0

1
5
8
.3

8
3
5

1
2
2
.9

0
.5

2
1
2

8
3
1
.7

2
.5

2
0
4

7
1
6
.4

1
5
.7

2
0
5

7
2
5
.9

b
lp

-i
c9

7
1
1
2
0

1
6
.2

8
1
.3

0
.3

5
9

5
5
.5

1
.3

–
–

1
.3

1
.3

–
–

1
.3

b
lp

-i
c9

8
1
5
7
0

3
3
.6

3
1
.5

0
.9

7
6

5
5
.0

1
.5

–
–

1
.5

1
.5

–
–

1
.5

b
lp

-i
r9

8
1
2
3
0

8
.1

4
0
.4

0
.1

3
7

4
1
.3

0
.4

–
–

0
.4

0
.4

–
–

0
.4

C
M

S
7
5
0

4
9
4
0

2
7
.2

1
6

6
.5

0
.7

2
4
4
6

1
9
.2

3
.3

2
4
4
1

1
1
1
.7

6
.5

–
–

6
.5

b
er

li
n

5
8

0
1
5
2

0
.4

1
3

0
.2

0
.0

1
7
0

2
0

2
7
5
.4

0
.1

1
6
7

1
0
.2

0
.2

–
–

0
.2

ra
il
w

ay
8

1
0

3
5
0

1
.3

1
2

0
.3

0
.1

3
7
4

1
7

3
5
8
.4

0
.2

3
7
3

1
0
.5

0
.3

–
–

0
.3

u
sA

b
b
rv

.8
.2

5
7
0

2
7
4
5
8
1

1
,3

7
1
.5

3
1

0
.7

0
.1

4
0
0

1
0
.6

0
.3

3
7
6

1
0
.8

0
.7

–
–

0
.7

b
g
5
1
2
1
4
2

0
0
.3

0
0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

0
.2

–
–

0
.2

d
g
0
1
2
1
4
2

0
1
.0

0
0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

m
a
n
p

ow
er

1
1
5
4

(*
)

1
,8

0
0
.0

3
0

1
8
.8

8
.4

1
1
4
2

1
5

1
0
8
.7

1
3
.4

3
3
6

9
5
2
.0

1
8
.8

–
–

1
8
.8

m
a
n
p

ow
er

2
1
5
0

3
6
4
.6

9
2

1
3
7
.5

3
9
.5

1
1
8
1

3
0

7
7
4
.2

7
3
.6

3
0
9

1
3

3
9
4
.8

1
3
7
.5

–
–

1
3
7
.5

m
a
n
p

ow
er

3
1
8
1

3
2
6
.9

4
2

7
6
.2

2
7
.1

1
1
6
0

2
3

5
3
4
.7

5
5
.5

4
2
7

1
7

3
6
3
.3

7
6
.2

–
–

7
6
.2

m
a
n
p

ow
er

3
a

1
8
1

9
2
5
.1

2
9
3

2
9
4
.1

3
0
.6

1
3
2
7

(7
)

5
7

1
,8

3
0
.6

5
3
.3

3
6
9

1
8

4
9
1
.2

1
1
4
.8

9
2

3
7
2
.1

m
a
n
p

ow
er

4
1
8
5

6
7
1
.0

2
0
8

1
3
8
.9

1
4
.3

1
1
0
5

3
4

1
,0

1
0
.8

4
1
.8

6
0
4

1
9

4
2
7
.7

8
0
.5

4
0

8
3
8
3
.8

m
a
n
p

ow
er

4
a

1
9
4

1
,0

3
9
.9

3
0
8

2
8
9
.2

3
6
.4

1
2
2
6

3
7

8
1
4
.8

6
9
.1

4
8
3

1
8

4
4
0
.0

1
5
9
.3

7
4

2
0
6
.2

lj
b
2

3
0

0
.2

0
0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

0
.0

–
–

0
.0

lj
b
7

1
0
0

3
.8

0
0
.6

0
.6

–
–

0
.6

0
.6

–
–

0
.6

0
.6

–
–

0
.6

lj
b
9

1
8
0

7
.0

0
0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

0
.8

–
–

0
.8

lj
b
1
0

9
0

5
.9

0
1
.1

1
.1

–
–

1
.1

1
.1

–
–

1
.1

1
.1

–
–

1
.1

lj
b
1
2

1
1
0

5
.8

0
0
.7

0
.7

–
–

0
.7

0
.7

–
–

0
.7

0
.7

–
–

0
.7

T
ab

le
6:

C
on

ve
rg

en
ce

to
a

fir
st

fe
as

ib
le

so
lu

ti
on

on
th

e
ad

di
ti

on
al

se
t

of
0-

1
M

IP
in

st
an

ce
s.

18

first solution, thus the overall computing time of 219.7 CPU seconds is less than a half of the
time spent by ILOG-Cplex to find its first solution, namely 474.0 CPU seconds.

This very satisfactory behavior is unfortunately not confirmed on other instances, though
local search heuristics such as LB or RINS [18] generally improve the first solution considerably.
On the other hand, an effective exploitation of a first feasible solution within an enumerative
algorithm is by itself a relevant (and difficult) research topic, that recently started to receive
considerable attention in the field.

4 MIPping the dominance test

In the standard B&B (or B&C) framework, a node is fathomed in two situations:

1. the LP relaxation of the node is infeasible;

2. the LP relaxation optimum is not better than the value of the incumbent optimal
solution.

There is however a third way of pruning a node, by using dominances. According to [51],
a dominance relation is defined as follows: if we can show that the best descendant of a
node β is at least as good as the best descendant of a node α, then we say that node β
dominates node α, meaning that the latter can be fathomed (in case of ties, an appropriate
rule has to be taken into account in order to avoid fathoming cycles). Unfortunately, this
definition may become useless in the context of general MIPs, where we do not actually know
how to perform the dominance test without storing huge amounts of information for all the
previously-generated nodes — which is often impractical.

Fischetti and Toth [30] proposed a different (and more “local”) dominance procedure
which overcomes many of the drawbacks of the classical definition, and resembles somehow
the isomorphic-pruning introduced recently by Margot [45]. Here is how the procedure works.

Let the MIP problem at hand denoted as:

min{cTx : x ∈ Rn
+, Ax ≤ b, xj integer for all j ∈ J}, (60)

where J ⊆ I := {1, · · · , n} is the index-set of the integer variables. For any J ′ ⊆ J and for
any x′ ∈ Rn

+, we denote as:
c(J ′, x′) :=

∑
j∈J ′

cjx
′
j ,

the contribution of the variables in J ′ to the overall cost cTx′. Now, let us suppose to solve
problem (60) by an enumerative (B&B or B&C) algorithm whose branching rule fixes some
of the integer-constrained variables to some values. For every node k of the search tree, let
Jk ⊆ J denote the set of indices of the variables xj fixed to a certain value xkj (say). Every
solution x such that xj = xkj for all j ∈ Jk (i.e., belonging to the subtree rooted at node k)
is called a completion of the partial solution associated at node k.

Definition 1. Let α and β be two nodes of the search tree. Node β dominates node α if:

1. Jβ = Jα;

2. c(Jβ, xβ) ≤ c(Jα, xα), i.e., the cost of the partial solution at node β is not worse than
that at node α;

19

3. every completion of the partial solution associated with node α is also a completion of
the partial solution associated with node β.

Clearly, according to the classical dominance theory, the existence of a node β unfathomed
that dominates node α is a sufficient condition to fathom node α. A key question at this
point is: Given the current node α, how can we check the existence of a dominating node
β? Fischetti and Toth answered this question by modeling the search of dominating nodes
as a structured optimization problem, to be solved exactly or heuristically. For generic MIP
models, this leads to the following auxiliary problem:

XPα : min
∑

j∈Jα cjxj

s.t.
∑

j∈Jα Ajxj ≤ bα :=
∑

j∈Jα Ajx
α
j

xj integer for all j ∈ Jα
(61)

If a solution xβ (say) of the auxiliary problem having a cost strictly smaller than c(Jα, xα) is
found, then it defines a dominating node β and the current node α can be fathomed.

It is worth noting that the auxiliary problem is of the same nature as the original MIP
problem, but with a smaller size and thus it is often easily solved (possibly in a heuristic way)
by a general-purpose MIP solver, so we are indeed “MIPping the dominance test”.

The Fischetti-Toth dominance procedure, called Local Dominance (LD) procedure in the
sequel to stress its local nature, has several useful properties:

• there is no need to store any information about the set of previously-generated nodes;

• there is no need to make any time-consuming comparison of the current node with other
nodes;

• a node can be fathomed even if the corresponding dominating one has not been generated
yet;

• the correctness of the enumerative algorithm does not depend on the branching rule;
this is a valuable property since it imposes no constraints on the B&B parameters
(though a unappropriate branching strategy could prevent several dominated nodes to
be fathomed).

In addition, the LD test needs not be applied at every node. This is a crucial property from
the practical point of view, as the dominance test introduces some overhead and it would
make the algorithm uncompetitive if applied at every node. Note that skipping a LD test
at a given node is not likely to induce a great pruning loss, since the following inheritance
property holds (see [54] for the proof):

Proposition 1. Let α and β be two nodes of the search tree and let β dominate α. Then for
every α′ successor of α there exists a node β′ such that β′ dominates α′.

As a consequence, if β dominates α and α is not fathomed because the corresponding
dominance test was skipped, we still have the possibility to prune some descendant nodes of
α.

An important issue to be addressed when implementing the LD test is to avoid fathoming
cycles arising when the auxiliary problem actually has a solution xβ different from xα but of
the same cost, in which case one is allowed to fathom node α only if a tie-break rule is used

20

to guarantee that node β itself is not fathomed for the same reason. In order to prevent these
“tautological” fathoming cycles the following criterion (among others) has been proposed
in [30]: In case of cost equivalence, define as unfathomed the node β corresponding to the
solution found by a deterministic7 exact or heuristic algorithm used to solve the auxiliary
problem. Unfortunately, this criterion can be misleading for two important reasons. First of
all, it is not easy to define a “deterministic” algorithm for MIP. In fact, besides the possible
effects of randomized steps, the output of the MIP solver typically depends, e.g., on the order
in which the variables are listed on input, that can affect the choice of the branching variables
as well as the internal heuristics.

In view of the considerations above, in our implementation we used a different tie-break
rule, also described in [30], that consists in ranking cost-equivalent solutions in lexicographical
order. To be more specific, in case of cost ties we fathom node α if and only if the partial
solution xβ associated with the dominating node β is lexicographically minimum8 than xα.
Using this tie-breaking rule, it is easy to prove [54] the correctness of the overall enumerative
method.

4.1 Borrowing nogoods from Constraint Programming

The computational overhead related to the LD test can be reduced considerably if we exploit
the notion of nogoods taken from Constraint Programming. A nogood is a partial assignment
of the problem variables such that every completion is either infeasible (for constraint satis-
faction problems) or nonoptimal (for constraint optimization problems). The key observation
here is that whenever we discover (through the solution of the auxiliary problem) that the
current node α is dominated, we have indeed found a nogood configuration [Jα, xα] that we
want to exclude from being re-analyzed at a later time.

There are two possible ways of exploiting nogoods in the context of MIP solvers:

• Generate a constraint αTx ≤ α0 cutting the nogood configuration off, so as to prevent
it appears again in a later fractional solution. This is always possible (for both binary
and general-integer linear problems through a local branching constraint [25], and leads
to the so-called combinatorial Benders’ cuts studied by Codato and Fischetti [14].

• Maintain explicitly a pool of previously-found nogood configurations and solve the fol-
lowing problem (akin to separation) at each node α to be tested: Find, if any, a nogood
configuration [J ′, x′] stored in the pool, such that J ′ ⊆ Jα and x′j = xαj for all j ∈ J ′. If
the test is successful, we can of course fathom node α without the need of constructing
and solving the auxiliary problem XPα.

In our implementation we use the nogood-pool option, that according to our computational
experience outperforms the cut options. It is worth noting that we are interested in minimal
(with respect to set inclusion) nogoods, so as to improve both for efficiency and effectiveness
of the method. Indeed, if node β dominates node α and J ′ := {j ∈ Jα : xαj 6= xβj }, then
clearly the restriction of xβ onto J ′ dominates the restriction of xα onto J ′. If applied at every
node, our procedure guarantees automatically the minimality of the nogood configurations
found. If this is not the case, instead, minimality is no longer guaranteed, and is enforced by
a simple post-processing step before storing any new nogood in the pool.

7In our context, an algorithm is said to be deterministic if it always provides the same output solution for
the same input set.

8We use the standard definition of lexicographic order on vectors of fixed size over a totally order set

21

4.2 Improving the auxiliary problem

The effectiveness of the LD test presented in the previous section heavily depends on the
auxiliary problem that is constructed at a given node α. In particular, it is crucial for its
solution set to be as large as possible, so as to increase the chances of finding a dominating
partial solution. Moreover, we aim at finding a partial solution different from (and hopefully
lexicographically better than) the one associated with the current node–finding the same
solution xα is of no use within the LD context. For these reasons, several improvements of
the original auxiliary-problem formulation have been proposed in [54], as outlined below.

The auxiliary problem XPα constructed at node α is always feasible, as the partial as-
signment xα corresponding to node α itself is always feasible. This is not a desired behavior,
for two main reasons:

• Often xα turns out to be the only feasible solution to XPα—for our purposes, it would
be better to considered it as infeasible, meaning that the node cannot be fathomed by
our procedure.

• When solving the auxiliary problem, the solver often finds solution xα (even if it is not
provided explicitly on input for initializing the incumbent) and proves its optimality
without looking for alternative (hopefully lexicographically better) optimal solutions

Moreover, as the depth of the nodes in the B&B increases, the auxiliary problem grows in
size and becomes heavier to solve. In addition, the resulting nogood (if any) may be of little
applicability in the remaining part of the search because it may involve too many variables.

For these reasons one can heuristically limit the search space of the auxiliary problem to
alternative assignments that are not too far from the current one, but different from it. This
can be achieved again with two local branching [25] constraints, which however, in the most
general case, could need the introduction of complicating auxiliary variables. According to
our computational experience, a good compromise is to consider local branching constraints
involving only the (binary or general integer) variables fixed to their lower or upper bound,
namely: ∑

j∈U
(uj − xj) +

∑
j∈L

(xj − lj) ≤ k, (62)

∑
j∈U

(uj − xj) +
∑
j∈L

(xj − lj) ≥ 1, (63)

where
U = {j ∈ Jα | xαj = uj} and L = {j ∈ Jα | xαj = lj}.

It is worth noting that the above constraint may exclude some feasible solutions that
differ from xα with respect to variables fixed to values different from a lower or upper bound.
In this case, our fathoming test can become less powerful, but the overall method remains
correct. Finally, we found it useful to add the following optimality constraint∑

j∈Jα
cjxj ≤

∑
j∈Jα

cjx
α
j .

22

4.3 Computational Results

The enhanced dominance procedure presented in the previous section has been implemented
in C++ within the ILOG Cplex [41] framework on a Linux platform. Here are some imple-
mentation issues that deserve further description.

One of the main drawbacks of LD tests is that their use an postpone finding of a better
incumbent solution, thus increasing the number of nodes needed to solve the problem. This
behavior is quite undesirable, the main so in the first phase of the algorithm, when we have
no incumbent and no nodes can be fathomed through bounding criteria. A practical solution
to this problem is to skip the dominance test until the first feasible solution is found.

The systematic application of the dominance test to every node of the search tree can
become too heavy to be worthwhile in practice. A first consideration is that we should skip
the dominance test on nodes near the top or the bottom of the search tree. Indeed, in the
first case only a few variables have been fixed, hence there are little chances of finding a
dominating partial assignment. In the latter case, instead, it is likely that the node would be
pruned anyway by standard bounding tests; moreover, at the bottom of the tree the number
of fixed variables is large and the auxiliary problem may be quite heavy to solve. In our
implementation, we provide two thresholds on the tree depth of the nodes, namely depthmin

and depthmax, a node α being tested for dominance only if depthmin ≤ depth(α) ≤ depthmax.
Moreover, we decided to test for dominance a node only if its depth is a multiple of a given
parameter, depth interval. The three parameters above have been set as relative percentages
on the number of variables. Finally, we set a limit on the computing time spent by the
black-box MIP solver used for solving each auxiliary problem.

In our computational experiments we tested ILOG Cplex 9.0 [41] commercial code with
and without our LD test. All runs were performed on a AMD Athlon64 3500+ PC with 4GB
of RAM, under Linux. ILOG Cplex code was run with its default options, and the overall
time limit for processing each instance was set to 2,000 CPU seconds. As to LD tests, we
used the following parameters:

• depth min = 0.3 times the total number of variables;

• depth max = 0.8 times the total number of variables;

• depth interval = 0.1 times the total number of variables.

Moreover, in this implementation we did not use local branching constraint (62). The defini-
tion of the test-bed for testing the potentiality of our approach is a delicate issue. As a matter
of fact, one cannot realistically expect any dominance relationship to be effective on all types
of MIPs. Therefore we looked for classes of problems whose structure can trigger the domi-
nance relationship, and measured the speedup that can be achieved by using our specific LD
procedure. In particular, we next give results on single and multiple knapsack problems [46].
We generated hard single knapsack instances according to the so-called spanner instances
method in combination with the almost strongly correlated profit generation technique; see
Pisinger [52] for details. Multiple knapsack instances were generated in a similar way, by
choosing a same capacity for all the containers.

The results on hard single knapsack instances with 60 to 90 items are given in Table 7.
According to the table, LD tests are very effective on this class of problems, yielding

consistently a large speedup and solving to optimality 3 instances where the standard code

23

Standard Cplex Dominance Code Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

kp60 1 286,056 9.60 0 725 0.04 0 394.56 240.00
kp60 2 27,108,819 2,050.82 0.016 773,890 2,067.44 0.028 35.03 1.00
kp60 3 718,887 24.89 0 1330 0.34 0 540.52 73.21
kp60 4 804,304 26.32 0 28,947 12.17 0 27.79 2.16
kp60 5 688,122 24.36 0 48,895 4.87 0 14.07 5.00
kp70 1 23,671,129 2,050.52 0.406 1,638,641 2,047.53 0.406 14.45 1.00
kp70 2 1,060,259 35.43 0 153,552 61.54 0 6.90 0.58
kp70 3 665,668 23.12 0 147,899 28.00 0 4.50 0.83
kp70 4 23,037,172 2,048.61 0.399 935,986 2,065.34 0.216 24.16 1.00
kp70 5 424,815 15.17 0 19,685 0.89 0 21.58 17.04
kp80 1 413,489 13.98 0 249,582 10.39 0 1.66 1.35
kp80 2 587,456 22.54 0 140,191 7.25 0 4.19 3.11
kp80 3 673,318 22.61 0 26,803 2.13 0 25.12 10.62
kp80 4 529,026 17.56 0 5,274 0.24 0 100.31 73.17
kp80 5 32,604,432 2,050.79 0.328 460,908 109.26 0 70.74 18.77
kp90 1 25,409,911 2,047.65 0.065 928,586 2,034.52 0.065 27.36 1.00
kp90 2 37,650,100 2,041.93 0.137 3,957,332 167,81 0 9.51 12.17
kp90 3 3,024,346 126.59 0 266,137 16.82 0 11.36 7.53
kp90 4 1,926,498 81.39 0 134,385 10.25 0 14.34 7.94
kp90 5 26,510,264 2,052.64 0.263 1,047,483 551.93 0 25.31 3.72

Total 207,794,071 14,787.34 - 10,966,231 9,198.76 - 18.95 1.61

Table 7: Computational results for hard single knapsack instances.

Problem Nodes Time (s) Gap Depth Min Depth Max

kp60 2 1,653,691 68.24 0 0.3 0.6
kp70 2 7,763 1.02 0 0.3 0.8
kp80 2 11,171 0.57 0 0.3 0.8
kp80 3 2,955 0.30 0 0.3 0.6

Table 8: Parameter tuning on specific hard single knapsack instances.

reached the time limit. It is worth noting that little parameter tuning would have produced
better results in term of elapsed time and/or final gap for 4 instances, as in Table 8.

As to hard multiple knapsack problems, we have generated instances with a number of
items ranging from 20 to 40 and a number of knapsacks ranging form 3 to 5. The LD
parameters were set to:

• depth min = 0.3 times the total number of variables;

• depth max = 0.5 times the total number of variables;

• depth interval = 0.1 times the total number of variables.

For these problems, the time limit was increased to 1 hour.
The results on multiple knapsack problems are available in Table 9. In multiple knap-

sack case, LD was not as effective as in the single case, yielding some improvements only on the
smallest instances. It is however worth mentioning that the ratio dominated nodes/dominance tests

24

Standard Cplex Dominance Code Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

mkp20 3.lp 187,713 16.13 0 129,516 12.18 0 1.45 1.32
mkp20 4.lp 80,845 11.20 0 79,650 10.20 0 1.02 1.10
mkp20 5.lp 1,639,251 171.07 0 1,563,925 181.96 0 1.05 0.94
mkp30 3.lp 33,205,268 3,652.63 0.627 31,141,581 3,654.65 0.632 1.07 1.00
mkp30 4.lp 5,414,529 650.24 0 26,707,752 3,649.55 0.439 0.20 0.18
mkp30 5.lp 28,159,141 3,644.38 0.515 25,653,218 3,649.69 0.515 1.10 1.00
mkp40 3.lp 40,576,080 3,654.31 0.515 22,963,265 3,699.83 0.515 1.77 0.99
mkp40 4.lp 25,354,639 3,645.51 0.437 21,250,331 3,652.06 0.437 1.19 1.00
mkp40 5.lp 777,810 160.81 0 389,427 128.98 0 2.00 1.25

Total 135,395,276 15,606.28 - 129,878,665 18,639.10 - 1.04 0.84

Table 9: Computational results for hard multiple knapsack problems.

was quite good also for these problems (though lower than in the single knapsack case) and
that the effectiveness of LD could have been hidden by the limited computational time given
to the solvers.

Acknowledgments

This work was supported by the Future and Emerging Technologies unit of the EC (IST
priority), under contract no. FP6-021235-2 (project “ARRIVAL”) and by MiUR, Italy.

References

[1] T. Achterberg and T. Berthold. Improving the feasibility pump. Discrete Optimization,
4:77–86, 2007.

[2] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34:361–372, 2006. Problems available at http://miplib.zib.de.

[3] E. Amaldi, M.E. Pfetsch, and L.E. Trotter Jr. On the maximum feasible subsystem
problem, IISs and IIS-hypergraphs. Mathematical Programming, 95:533–554, 2003.

[4] E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. OCTANE: A new heuristic
for pure 0–1 programs. Operations Research, 49:207–225, 2001.

[5] E. Balas and C.H. Martin. Pivot-and-complement: A heuristic for 0-1 programming.
Management Science, 26:86–96, 1980.

[6] E. Balas and M. Perregaard. Lift-and-project for mixed 0-1 programming: Recent
progress. Discrete Applied Mathematics, 123:129–154, 2002.

[7] E. Balas and A. Saxena. Optimizing over the split closure. Mathematical Programming,
113:219–240, 2008.

[8] E. Balas, S. Schmieta, and C. Wallace. Pivot and shift — a mixed integer programming
heuristic. Discrete Optimization, 1:3–12, 2004.

25

[9] R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

[10] P. Bonami, G. Cornuéjols, S. Dash, M. Fischetti, and A. Lodi. Projected Chvátal–
Gomory cuts for mixed integer linear programs. Mathematical Programming, 113:241–
257, 2008.

[11] A. Caprara and A.N. Letchford. On the separation of split cuts and related inequalities.
Mathematical Programming, 94:279–294, 2002.

[12] J.W. Chinneck. Fast heuristics for the maximum feasible subsystem problem. INFORMS
Journal on Computing, 13:210–223, 2001.

[13] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete
Mathematics, 5:305–337, 1973.

[14] G. Codato and M. Fischetti. Combinatorial Benders’ cuts. In D. Bienstock and
G. Nemhauser, editors, Integer Programming and Combinatorial Optimization, IPCO
X, volume 3064 of Lecture Notes in Computer Science, pages 178–195. Springer, 2004.

[15] W. Cook, R. Kannan, and A. Schrijver. Chvatal closures for mixed integer programming
problems. Mathematical Programming, 47:155–174, 1990.

[16] G. Cornuéjols. Valid inequalities for mixed integer linear programs. Mathematical Pro-
gramming, 112:3–44, 2008.

[17] G. Cornuéjols and Y. Li. On the rank of mixed 0,1 polyhedra. Mathematical Program-
ming, 91:391–397, 2002.

[18] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neighborhoods
to improve MIP solutions. Mathematical Programming, 102:71–90, 2005.

[19] S. Dash, O. Günlük, and A. Lodi. On the MIR closure of polyhedra. In M. Fischetti and
D.P. Williamson, editors, Integer Programming and Combinatorial Optimization, IPCO
XII, volume 4513 of Lecture Notes in Computer Science, pages 337–351. Springer, 2007.

[20] S. Dash, O. Günlük, and A. Lodi. MIR closures of polyhedral sets. Mathematical
Programming, DOI 10.1007/s10107-008-0225-x, 2008.

[21] Double-Click sas. personal communication, 2001.

[22] J. Eckstein and M. Nediak. Pivot, cut, and dive: a heuristic for 0-1 mixed integer
programming. Journal of Heuristics, 13:471–503, 2007.

[23] F. Eisenbrand. On the membership problem for the elementary closure of a polyhedron.
Combinatorica, 19:297–300, 1999.

[24] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Programming,
104:91–104, 2005.

[25] M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 98:23–47, 2003.

26

[26] M. Fischetti and A. Lodi. MIPping Closures: An instant survey. Graphs and Combina-
torics, 23:233–243, 2007.

[27] M. Fischetti and A. Lodi. Optimizing over the first Chvátal closure. Mathematical
Programming, 110:3–20, 2007.

[28] M. Fischetti and A. Lodi. Repairing MIP infeasibility through local branching. Comput-
ers & Operations Research, 35:1436–1445, 2008.

[29] M. Fischetti, C. Polo, and M. Scantamburlo. A local branching heuristic for mixed-integer
programs with 2-level variables, with an application to a telecommunication network
design problem. Networks, 44:61–72, 2004.

[30] M. Fischetti and P. Toth. A New Dominance Procedure for Combinatorial Optimization
Problems. Operations Research Letters, 7:181–187, 1988.

[31] J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequalities.
ORSA Journal on Computing, 2:61–63, 1990.

[32] F. Glover and M. Laguna. General purpose heuristics for integer programming – part I.
Journal of Heuristics, 2:343–358, 1997.

[33] F. Glover and M. Laguna. General purpose heuristics for integer programming – part II.
Journal of Heuristics, 3:161–179, 1997.

[34] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

[35] R.E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin
of the American Mathematical Society, 64:275–278, 1958.

[36] R.E. Gomory. An algorithm for the mixed integer problem. Technical Report RM-2597,
The Rand Corporation, 1960.

[37] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, 1988.

[38] P. Hansen, N. Mladenović, and D. Urosevic. Variable neighborhood search and local
branching. Computers & Operations Research, 33:3034–3045, 2006.

[39] F.S. Hillier. Efficient heuristic procedures for integer linear programming with an interior.
Operations Research, 17:600–637, 1969.

[40] T. Ibaraki, T. Ohashi, and F. Mine. A heuristic algorithm for mixed-integer programming
problems. Mathematical Programming Study, 2:115–136, 1974.

[41] ILOG S.A. CPLEX: ILOG CPLEX 11.0 User’s Manual and Reference Manual, 2007.
http://www.ilog.com.

[42] G.W. Klau. personal communication, 2002.

[43] A. Løkketangen. Heuristics for 0-1 mixed-integer programming. In P.M. Pardalos and
M.G.C. Resende (ed.s), editors, Handbook of Applied Optimization, pages 474–477. Ox-
ford University Press, 2002.

27

[44] A. Løkketangen and F. Glover. Solving zero/one mixed integer programming problems
using tabu search. European Journal of Operational Research, 106:624–658, 1998.

[45] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming,
94:71–90, 2002.

[46] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. Wiley, New York, 1990.

[47] A.J. Miller. personal communication, 2003.

[48] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations
Research, 24:1097–1100, 1997.

[49] J.L. Nazareth. The homotopy principle and algorithms for linear programming. SIAM
Journal on Optimization, 1:316–332, 1991.

[50] G. Nemhauser and L. Wolsey. A recursive procedure to generate all cuts for 0-1 mixed
integer programs. Mathematical Programming, 46:379–390, 1990.

[51] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall, 1982.

[52] D. Pisinger. Where are the hard knapsack problems? Computers & Operations Research,
32:2271–2284, 2005.

[53] E. Rothberg. personal communication, 2002.

[54] D. Salvagnin. A dominance procedure for integer programming. Master’s thesis, Univer-
sity of Padua, October 2005.

28

