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A hard integer program made easy by lexicography?
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Abstract A small but notoriously hard integer program formulated by Donald Knuth

fifty years ago is solved by three versions of a lexicographic algorithm using Gomory

cuts. The lexicographic cutting plane algorithms are faster than CPLEX on this prob-

lem by a factor of at least 10.
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1 Introduction

During a recent visit to Carnegie Mellon University, Donald Knuth mentioned in a

conversation with one of the authors of this note that early in his career he formulated

an integer program that could not be solved with the technology of the time and

remained unsolved for another 35 years. Upon being asked for the details of the case,

he then kindly provided the information that follows.

As an undergraduate student at Case Institute of Technology, in 1960 Donald

Knuth wrote a paper [2] that gave an integer programming formulation to the problem

of minimizing drum latency time, i.e. optimizing the allocation of memory positions

for the instructions and data of a program stored on a rotating magnetic drum. The

formulation used 51 integer variables and 43 inequalities, besides the nonnegativity

constraints on each variable. The young Knuth also implemented Gomory’s algorithm,

or, to put it in his own words, “I used Gomory’s original all-integer algorithm, based on
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his preprint dated January 29, 1960; he told me my implementation was probably the

first outside of Yorktown Heights” [3]. He then tried to solve the instance on an IBM

650 and of course failed. In spite of its relatively modest size and the obvious historical

interest that it presented, the problem remained unsolved for the next 35 years. Finally,

in 1995 Dimitris Alevras at ZIB (Berlin) solved it by running it on CPLEX, on a

SPARCstation 5. A solution of value of 22,996 was found after generating 8,880 nodes

of a branch-and-bound tree, but it took 732,200 nodes of the search tree to prove that

solution optimal. Alevras reported that the problem was “amazingly sensitive from a

numerical point of view” [3]. Another run, with different CPLEX parameter settings

for branching, and using SOS, clique and cover inequalities, needed more than 22,000

nodes just to find a first integer solution.

2 The experiment

Having recently discovered [5,1] that a lexicographic version of Gomory’s cutting plane

algorithm for pure integer programs is numerically stable and capable of solving in-

stances of considerable difficulty for other codes, we decided to run it on Dr. Knuth’s

problem, available for download at www.dei.unipd.it/~fisch/knuth.lp. We first ran

the problem with IBM ILOG CPLEX 12.2, with default settings. Of course, the CPLEX

of today is by far superior to the one of 1995, but it still took more than 50,000 nodes

of the branch-and-bound tree (in its default setting) to find a solution of the same

value of 22,996 as the one found by Alevras, and to prove its optimality. We then

ran the problem with our version of the lexicographic cutting plane algorithm in its

simplest variant, which generates a sequence of individual cuts and reestablishes the

lexicographic optimality of the tableau after adding each cut. To our pleasant surprise,

our algorithm found the same optimal solution of 22,996 after generating 5,618 cuts!

The contrast to the over 50,000 search tree nodes that CPLEX needed to accomplish

the task is striking. A branch and bound tree with 50,000 nodes implies the solution

of as many linear programs. On the other hand, generating 5,618 cuts requires prac-

tically no time, the cuts being read off the simplex tableau, and reoptimizing after

the addition of each cut requires the solution of one linear program. True, the linear

program is solved to lexicographic optimality, which involves considerably more pivots

than just finding an optimal solution; but still, the effort is proportional to the number

of cuts and simply not comparable to the effort of solving 50,000 linear programs. In

particular, the total number of pivots required by our lexicographic method (including

those due to lexicographic reoptimization) is surprisingly small: just 31,842 instead of

the over 211,000 required by CPLEX. In terms of the time needed by the two codes

to solve the problem, the outcome was comparable (9.0 seconds for CPLEX and 6.2

seconds for our code), but the current version of CPLEX is the result of two decades

of development by a strong team of programming experts, an “industrial product”,

whereas our code is merely a research tool, the “handicraft” work of a single student

helped by his advisor.

We also solved Knuth’s problem by two additional versions of our lexicographic

cutting plane algorithm, introduced in [1], and for comparison, with a standard im-

plementation of Gomory’s cutting plane algorithm, and with CPLEX 12.2. Table 1

reports the outcome of these runs. The entries of the first column are as follows.

– TB stands for the “textbook” implementation of Gomory’s 1958 cutting plane

method for pure integer programs, in its modern, “multi-cut” variant, which gener-

www.dei.unipd.it/~fisch/knuth.lp
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Method Time (sec.s) #LP’s #pivots #cuts #nodes Gap closed
TB (multi-cut) >8h 2,197 252,225 124,414 0 69%
lex-GFC (single cut) 6.20 5,618 31,842 5,618 0 100%
lex-GFC (multi-cut) 0.30 111 1,941 5,524 0 100%
Bin-GFC 0.15 42 1,032 1,171 0 100%
Cplex 12.2 (default) 9.01 42,607 211,026 102 53,009 100%
Cplex 12.2 (strong-branching) 8.21 91,513 52,710 85 9,585 100%
Cplex 12.2 (aggressive cuts) 4.32 7,298 50,270 148 7,142 100%

Table 1 Comparison of different solution methods; the first 4 are pure cutting plane methods,
while the last 3 are branch-and-bound routines of Cplex under 3 different parameter settings.

ates a Gomory cut (or GFC) from every fractional basic variable before reoptimiz-

ing. The original, “single-cut” version, which reoptimizes after every cut, breaks

down after a few thousand cuts.

– lex-FGC (single cut) is our lexigraphic cutting plane algorithm using GFC cuts,

with (partial) lexicographic reoptimization after every cut. For details see [1], sec-

tions 3 and 7.

– lex-FGC (multi-cut) is the same, but with cuts generated from every fractional

basic variable before (partial) lexicographic reoptimization

– Bin-FGC is a version of the lexicographic algorithm introduced in [1] (section 5),

which replaces the objective function with a binary search of its optimal value.

Thus lex-GFC (multi-cut) is used repeatedly to explore the existence of a feasible

solution within a given cost-interval.

– CPLEX 12.2 is the integer solver of CPLEX, run under three different parameter

settings, namely “default,” “strong branching” and “aggressive cuts.”

According to Table 1, the best performer in terms of both time and number of linear

programs solved is Bin-GFC, which is about 30 times faster than CPLEX under the

best parameter settings. The multi-cut version of lex-GFC is about 15 times faster than

CPLEX. The growth of the lower bounds given by the LP values with the number of

iterations (i.e., number of LP’s solved) is shown for the first three methods of Table 1

in Figure 1 (left).

Comparing the data for the best performing version of the lexicographic approach

with those for the best CPLEX settings, we find that the former requires 2% of the

number of pivots required by the latter. Another highly interesting aspect of our exper-

iments is the fact, illustrated in Figure 1 (right), is that the sequence of determinants

of the successive basis matrices after each lexicographic reoptimization, instead of in-

creasing as usual when the cuts produce dual degeneracy and the solutions get closer

and closer to each other, in fact keeps decreasing throughout the run. As discussed in

[5,1], the main reason for this behavior is that as a sequence of cuts is added to the

simplex tableau, dual degeneracy becomes a typical phenomenon, resulting in multi-

ple optimal solutions to the current LP relaxation. When the standard dual simplex

method is used to reoptimize after adding a new cut, the algorithm tends to pick among

the many optimal solutions one that is closest to the old solution. This leads to the ap-

pearance of very large basis determinants, needed to differentiate between points closer

and closer to each other. The lexicographic dual simplex on the other hand does not

stop the reoptimization upon finding the first dual-feasible solution, but continues to

pivot until it reaches a lexicographically dual-feasible solution, which is usually among

those furthest from the previous optimum; see Figure 2 for an illustration of the LP
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Fig. 1 Lower bound growth for the pure cutting plane methods (left) and comparison of basis
determinants (right).
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Fig. 2 LP solution trajectories (X and Y represent a projection of the variable’s space; see
[5] for details)
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Method Time (sec.s) #LP’s #pivots #cuts #nodes Gap closed
TB (multi-cut) >8h 6,407 691,746 422,821 0 96%
lex-GFC (single cut) 8.1 6,554 39,528 6,554 0 100%
lex-GFC (multi-cut) 0.9 316 5,015 13,652 0 100%
Bin-GFC 0.6 161 5,027 1,243 0 100%
Cplex 12.2 (default) 5.46 28,352 127,077 76 33,845 100%
Cplex 12.2 (strong-branching) 31.17 348,852 228,993 68 49,061 100%
Cplex 12.2 (aggressive cuts) 21.93 44,704 336,148 215 49,053 100%

Table 2 Comparison of different solution methods for the corrected instance.

optimal solutions. In this way, the determinant of the basis matrix is not forced to

increase during the run. Our explanation for the fact that the determinants actually

decreased during the run is that whereas the initial matrix included some relatively

large numbers (like 50), the cutting planes generated were numerically “clean”, i.e.

with small coefficients, and as they gradually made the original constraints redundant,

they produced basis matrices with smaller numbers and cleaner structure.

In his message to us accompanying the description of the problem, Dr. Knuth

states that he has recently discovered an error in the original problem statement,

which he hopes will not invalidate the optimal solution found by Alevras: one of the

inequalities needs to be replaced with two others, also involving a new variable (this

instance is available for download at www.dei.unipd.it/~fisch/knuth_corrected.

lp; see pages 435–436 of [4]). We also ran the corrected version of the problem, and

found that the seemingly minor change makes the problem substantially more difficult:

although the optimal solution remains the same as before there is a sharp increase

in the computational effort required by either method to solve it. Table 2 reports the

results. Although the difference in performance is less sharp than before, CPLEX with

the most favorable settings still takes 10 times as long as the lexicographic Bin-GFC.
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