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Abstract. We discuss an implementation of the lexicographic version of
Gomory’s fractional cutting plane method for ILP problems and of two
heuristics mimicking the latter. In computational testing on a battery of
MIPLIB problems we compare the performance of these variants with
that of the standard Gomory algorithm, both in the single-cut and in the
multi-cut (rounds of cuts) version, and show that they provide a radical
improvement over the standard procedure. In particular, we report the
exact solution of ILP instances from MIPLIB such as stein15, stein27,
and bm23, for which the standard Gomory cutting plane algorithm is not
able to close more than a tiny fraction of the integrality gap. We also
offer an explanation for this surprising phenomenon.
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1 Introduction

Modern Branch-and-Cut (B&C) methods for mixed or pure Integer Linear Pro-
grams (ILPs) are heavily based on general-purpose cutting planes such as Go-
mory cuts, that are used to reduce the number of branching nodes needed to
reach optimality; see, e.g., Caprara and Fischetti [7] for a survey on B&C meth-
ods. On the other hand, pure cutting plane methods based on Gomory cuts alone
are typically not used in practice, due to their poor convergence properties.

In a sense, branching can be viewed as just a “symptomatic cure” to the
well-known drawbacks of Gomory cuts—saturation, bad numerical behavior, etc.
From the cutting plane point of view, however, the cure is even worse than the
disease, in that it hides the real source of the problems. In this respect, it is
instructive to observe that a main piece of information about the performance
of Gomory cuts (namely, that they perform much better if generated in rounds)
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was discovered only in 1996 (Balas, Ceria, Cornuéjols, and Natraj [3]), i.e., about
40 years after their introduction [12].

The purpose of our project, whose scope extends well beyond the present
paper, is to try to come up with a viable pure cutting plane method (i.e., one
that is not knocked out by numerical difficulties), even if on most problems it
will not be competitive with the branch-and-bound based methods.

As a first step, we chose to test our ideas on Gomory’s fractional cuts, for
two reasons: they are the simplest to generate, and they have the property that
when expressed in the structural variables, all their coefficients are integer (which
makes it easier to work with them and to assess how nice or weird they are). In
particular, we addressed the following questions:

i) Given an ILP, which is the most effective way to generate Gomory fractional
cuts from the optimal LP tableaux so as to push the LP bound as close as
possible to the optimal integer value?

ii) What is the role of degeneracy in Gomory’s method?
iii) How can we try to counteract the numerical instability associated with the

iterated use of Gomory cuts?
iv) Is the classical polyhedral paradigm “the stronger the cut, the better” still

applicable in the context of Gomory cuts read from the tableau? The question
is not at all naive, as one has to take into account the negative effects that a
stronger yet denser (or numerically less accurate) cut has on the subsequent
tableaux, and hence on the next cuts.

As we were in the process of testing various ways of keeping the basis determi-
nant and/or condition number within reasonable limits, our youngest coauthor
had the idea of implementing the lexicographic dual simplex algorithm used in
one of Gomory’s two finite convergence proofs [14]. Gomory himself never advo-
cated the practical use of this method; on the contrary, he stressed that its sole
purpose was to simplify one of the two proofs, and that in practice other choice
criteria in the pivoting sequence were likely to work better. Actually, we have no
information on anybody ever having tried extensively this method in practice.

The lexicographic method has two basic ingredients: (a) the starting tableau
is not just optimal, i.e., dual feasible, but lexicographically dual-feasible, and the
method of reoptimization after adding a cut is the lexicographic dual simplex
method; and (b) at least after every k iterations for some fixed k, the row with
the first fractional basic variable is chosen as source row for the next cut.

The implementation of this method produced a huge surprise: the lexico-
graphic method produces a dramatic improvement not only in gap closure (see
Figure 1), but also in determinant and cut coefficient size.

It is well known that cutting plane methods work better if the cuts are
generated in rounds rather than individually (i.e., if cuts from all fractional
variables are added before reoptimization, rather than reoptimizing after every
cut). Now it seems that if we are generating rounds of cuts rather than individual
cuts, the use of the lexicographic rule would make much less sense, in particular
because (b) is automatically satisfied—so the lexicographic rule plays a role only
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Fig. 1. Comparison between the textbook and lexicographic implementations of single-
cut Gomory’s algorithm on air04 and stein27.

in shaping the pivoting sequence in the reoptimization process. So we did not
expect it to make much of a difference. Here came our second great surprise:
as illustrated in Figure 2, even more strikingly than when using single cuts,
comparing the standard and lexicographic methods with rounds of cuts shows
a huge difference not only in terms of gap closed (which for the lexicographic
version is 100% for more than half the instances in our testbed), but also of
determinant size and coefficient size (not shown in the figure).
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Fig. 2. Comparison between the textbook and lexicographic implementations of multi-
cut Gomory’s algorithm on air04 and stein27.

In this paper we discuss and evaluate computationally an implementation
of the lexicographic version of Gomory’s fractional cutting plane method and
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of two heuristics mimicking the latter one, and offer an interpretation of the
outcome of our experiments.

We also describe a way to round the tableau coefficients when computing
GFC coefficients, which turns out to be very effective (together with the lexico-
graphic simplex) in producing numerically stable cuts. The integration of Go-
mory Mixed-Integer cuts within a lexicographic cutting plane method for pure
integer programs is finally addressed.

A preliminary version of the present paper was presented at the 13th Inter-
national IPCO Conference [19].

2 Gomory cuts

In this paper we focus on pure cutting plane methods applied to solving ILPs of
the form:

min cTx

Ax = b

x ≥ 0 integer

where A ∈ Zm×n, b ∈ Zm and c ∈ Zn. Let P := {x ∈ <n : Ax = b, x ≥ 0} denote
the LP relaxation polyhedron, that we assume to be bounded.

The cut generation is of course a crucial step in any cutting plane method,
as one is interested in easily-computable yet effective cuts.

In 1958, Gomory [12] (see also [14]) gave a simple and elegant way to generate
violated cuts, showing that x∗ can always be separated by means of a cut easily
derived from a row of the LP-relaxation optimal tableau. The cut derivation
is based on a rounding argument: given any equation

∑n
j=1 γjxj = γ0 valid

for P , if x is constrained to be nonnegative and integer then
∑n
j=1bγjcxj ≤

bγ0c (as well as
∑n
j=1dγjexj ≥ dγ0e) is a valid cut with all-integer coefficients.

By subtracting cut
∑n
j=1bγjcxj ≤ bγ0c from

∑n
j=1 γjxj = γ0 one obtains its

equivalent “fractional” form
∑n
j=1 φ(γj)xj ≥ φ(γ0), where φ(z) := z − bzc ≥ 0

denotes the fractional part of z ∈ <. The cut is typically called Chvátal-Gomory
cut when written in its all-integer form, and Gomory Fractional Cut (GFC)
when written in its fractional form; see [9] for a discussion of the relationships
between these cuts in a more general context.

According to Gomory’s proposal, the cut generating equation is the one as-
sociated with a row of the LP optimal tableau whose basic variable is fractional:
we will refer to this row as the cut generating row, and to the corresponding
basic variable as the cut generating variable.

GFCs have important theoretical and practical properties. First of all, one
can use GFCs read from the LP tableau to derive a finitely-convergent cutting
plane method. Secondly, because of the integrality of all the cut coefficients, the
associated slack variable can be assumed to be integer, so the addition of GFCs
does not introduce continuous variables that could make the rounding argument
inapplicable in the next iterations. Moreover, the fact that the cut coefficients
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are integer ensures a certain “confidence level” about the numerical accuracy of
the generated cuts.

In 1960, Gomory [13] introduced the Gomory Mixed Integer (GMI) cuts to
deal with the mixed-integer case. In case of pure ILPs, GMI cuts are applicable
as well. Actually, GMI cuts turn out to dominate GFCs in that each variable xj
receives a coefficient increased by a fractional quantity θj ∈ [0, 1) with respect to
the GFCs (writing the GMI in its ≤ form, with the same right-hand-side value
as in its GFC counterpart). E.g, a GFC cut of the type 2x1 − x2 + 3x3 ≤ 5
may correspond to the GMI 2.27272727x1 − x2 + 3.18181818x3 ≤ 5. So, from a
strictly polyhedral point of view, there is no apparent reason to insist on GFCs
when a stronger replacement is readily available at no extra computational effort.
However, as shown in the example above, the coefficient integrality of GMI cuts
is no longer guaranteed, and the nice numerical properties of GFCs are lost.
Even more importantly, as discussed in the sequel, the introduction of “weird
fractionalities” in the cut coefficients may have uncontrollable effects on the
fractionality of the next LP solution and hence of the associated LP tableau.
Finally, GMI cuts introduce continuous slack variables that may receive overweak
coefficients in the next iterations, leading to weaker and weaker GMI cuts in the
long run. As a result, it is unclear whether GFC or GMI cuts are better suited
for a pure cutting plane method for pure integer programs based on tableau cuts.

It is important to stress that the requirement of reading (essentially for free)
the cuts directly from the optimal LP tableau makes the Gomory method intrin-
sically different from a method that works solely with the original polyhedron
where the cut separation is decoupled from the LP reoptimization, as in the
recent work of Fischetti and Lodi [11] on GFCs or Balas and Saxena [10] on
GMI (split) cuts. Actually, only the first round of cuts generated by the Gomory
method (those read from the very first optimal tableau) work on the original
polyhedron, subsequent rounds are generated from a polyhedron truncated by
previously generated cuts.

We face here a very fundamental issue in the design of pure cutting plane
methods based of Gomory (mixed-integer or fractional) cuts read from the LP
optimal tableau. Since we expect to generate a long sequence of cuts that even-
tually lead to an optimal integer solution, we have to take into account side
effects of the cuts that are typically underestimated when just a few cuts are
used (within an enumeration scheme) to improve the LP bound. In particular,
one should try to maintain a “clean” optimal tableau so as to favor the genera-
tion of “clean” cuts in the next iterations. To this end, it is important to avoid
as much as possible generating (and hence cutting) LP optimal vertices with a
“weird fractionality”—the main source of numerical inaccuracy. This is because
the corresponding optimal LP basis necessarily has a large determinant (needed
to describe the fractionality), hence the tableau contains weird entries that lead
to weaker and weaker Gomory cuts.

In this respect, dual degeneracy (that is notoriously massive in cutting plane
methods) can play an important role and actually can favor the practical con-
vergence of the method, provided that it is exploited to choose the cleanest LP
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solution (and tableau) among the equivalent optimal ones—the sequence of piv-
ots performed by a generic LP solver during the tableau reoptimization is aimed
at restoring primal feasibility as quickly as possible, and leads invariably to an
uncontrolled growth of the basis determinant, so the method gets out of control
after few iterations.

3 Degeneracy and the lexicographic dual simplex method

As already mentioned, massive dual degeneracy occurs almost invariably when
solving ILPs by means of cutting plane algorithms. Indeed, cutting planes tend
to introduce a huge number of cuts that are almost parallel to the objective
function, whose main goal is to prove or to disprove the existence of an integer
point with a certain value of the objective function.

In one of his two proofs of convergence, Gomory used the lexicographic dual
simplex method to cope with degeneracy. The lexicographic dual simplex method
is a generalized version of the simplex algorithm where, instead of considering the
minimization of the objective function, viewed without loss of generality as an ad-
ditional integer variable x0 = cTx, one is interested in the minimization of the en-
tire solution vector (x0, x1, . . . , xn), where (x0, x1, . . . , xn) <LEX (y0, y1, . . . , yn)
means that there exists an index k such that xi = yi for all i = 1, . . . , k − 1 and
xk < yk. In the lexicographic, as opposed to the usual, dual simplex method the
ratio test does not only involve two scalars (reduced cost and pivot candidate)
but a column and a scalar. So, its implementation is straightforward, at least in
theory. In practice, however, there are a number of major concerns that limit this
approach, including the fact that the method rigidly prescribes the pivot choice,
thus excluding the possibility of applying much more effective pivot-selection
criteria. As a clever approach should not interfere too much with the black-box
LP solver used, one could think of using a perturbed linear objective function
x0 + ε1x1 + ε2x2 . . ., where x0 is the actual objective and 1 � ε1 � ε2 � . . ..
Though this approach is numerically unacceptable, one can mimic it by using
the following method which resembles the iterative procedure used in the con-
struction of the so-called Balinsky–Tucker tableau [4], and is akin to the slack
fixing used in sequential solution of preemptive linear goal programming (see [2]
and [18]).

Starting from the optimal solution (x?0, x
?
1, . . . , x

?
n), we want to find another

basic solution for which x0 = x?0 but x1 < x?1 (if any), by exploiting dual de-
generacy. So, we fix the variables that are nonbasic (at their bound) and have
a nonzero reduced cost. This fixing implies the fixing of the objective function
value to x?0, but has a major advantage: since we fix only variables at their
bounds, the fixed variables will remain out of the basis in all the subsequent
steps. Then we reoptimize the LP by using x1 as the objective function (to be
minimized), fix other nonbasic variables, and repeat. The method then keeps op-
timizing subsequent variables, in lexicographic order, over smaller and smaller
dual-degenerate subspaces, until either no degeneracy remains, or all variables
are fixed. At this point we can unfix all the fixed variables and restore the origi-
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nal objective function, the lex-optimal basis being associated with the non-fixed
variables. This approach proved to be quite effective (and stable) in practice.

Lexicographic simplex and Gomory cuts: an entangled pair

The lexicographic simplex method and Gomory cuts form an entangled pair:
GFCs and the dual lexicographic simplex are intimately related with each other,
in the sense that GFCs are precisely the kind of cuts that allow for a significant
lexicographic improvement at each step. It is therefore not surprising that Go-
mory’s (first) proof of convergence strictly relies on the use of the lexicographic
dual simplex [14].

In what follows we assume that the tableau rows have been sorted in increas-
ing order of the corresponding basic variables. The lexicographic dual simplex
method starts with a lexicographically optimal tableau, which means that all
columns are lexicographically positive or lexicographically negative (depending
on whether one minimizes or maximizes, and on the sign rule one follows in
representing the columns), and preserves this property throughout the pivoting
procedure. To fix our ideas, let us opt for minimization and the sign rule that
requires all columns to be lexicographically negative, which means that the first
entry is the negative of what usually goes under the name of reduced cost. Thus
at any stage of the procedure, the first nonzero entry of each column is nega-
tive. It is this sign pattern that guarantees a certain property of the sequence of
cuts generated under the lexicographic rule, provided that the “right” rounding
operation is used in generating the cuts.

As a matter of fact, the Gomory method using the lexicographic simplex can
be proved to be convergent only in case the kind of rounding used is consistent
with the lexicographic objective. We next discuss very briefly the GFC properties
that lead to a convergent method. Let the ith row of the current tableau be

xh +
∑
j∈J−

aijxj +
∑
j∈J+

aijxj = ai0

where xh is the basic variable in row i, J− is the set of indices of nonbasic
variables such that aij ≤ 0, and J+ is the set of indices of nonbasic variables such
that aij > 0. Moreover, let us suppose h is the first index such that x∗h(= ai0) is
fractional. To simplify notation, assume h 6= 0, i.e., the optimal objective value
is not fractional.

A key observation is that, due to the lexicographic sign pattern, for each
j ∈ J+ there exist a row t < i with atj < 0.

The Gomory rounding procedure can be used to obtain the following GFC,
in integer form:

xh +
∑
j∈J−

daijexj +
∑
j∈J+

daijexj ≥ dai0e (1)

Note that we round the coefficients of the original row upward. The choice
is motivated by the fact that, for a minimization problem, we expect to lexico-
graphically minimize the solution vector of the linear relaxation, hence the cut
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is intended to contribute in the opposite direction, namely, to increase lexico-
graphically the solution vector.

Clearly, the round-up operation maintains the nonpositiveness of the coeffi-
cients in J− and the positiveness of those in J+.

In case no xj with j ∈ J+ becomes strictly positive after the lexicographic
reoptimization, cut (1) requires

xh ≥ dai0e −
∑
j∈J−

daijexj ≥ dai0e.

Otherwise, due to the particular tableau sign pattern, the increase of some xj
with j ∈ J+ implies the increase of some higher lex-ranked basic variable xr (the
objective function included) by a positive amount. In both cases, a significant
lexicographic step is performed: either the cut-generating variable xh jumps,
at least, to its upper integer value dx∗he, or some higher lex-ranked variable
increases by a positive amount. These considerations allow one to conclude that
the method converges after a finite number of steps; see [14] for more details.
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Fig. 3. Impact of rounding direction on GFCs read from the tableau rows.

To show the practical impact of reading the “right” GFC from the tableau
rows, in Figure 3 we plot the behavior of two variants of the lexicographic method
(in its multi-cut version using rounds of cuts) applied to instance bm23: one
variant exploits the right GFCs, while the other uses their wrong counterpart.
The figure shows a huge difference not only in terms of gap closed, but also of
numerical stability (coefficient size).

4 Heuristic variants

While the lexicographic simplex method gives an exact solution to the problem
of degeneracy, simple heuristics can be devised that mimic the behavior of lex-
icographic dual simplex. The scope of these heuristics is to try to highlight the
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crucial properties that allow the lexicographic method to produce stable Gomory
cuts.

As already mentioned, a lex-optimal solution can in principle be reached
by using an appropriate perturbation of the objective function, namely x0 +
ε1x1 + . . . + εnxn with 1 � ε1 � . . . � εn. Although this approach is actually
impractical, one can use a 1-level approximation where the perturbation affects
a single variable only, say xh, leading to the new objective function minx0 +εxh.
The perturbation term is intended to favor the choice of an equivalent optimal
basis closer to the lexicographically optimal one, where the chosen variable xh
is moved towards its lower bound—and hopefully becomes integer.

In our first heuristic, Heur1, when the objective function is degenerate we
switch our focus to the candidate cut generating variable, i.e., the variable xi to
be perturbed is chosen as the most lex-significant fractional variable. The idea is
that each new cut should guarantee a significant lex-decrease in the solution vec-
tor by either moving to a new vertex where the cut generating variables becomes
integer, or else some other more lex-significant variables becomes fractional and
can be cut.

A second perturbation heuristic, Heur2, can be designed along the following
lines. Consider the addition of a single GFC and the subsequent tableau reop-
timization performed by a standard dual simplex method. After the first pivot
operation, the slack variable associated with the new cut goes to zero and leaves
the basis, and it is unlikely that it will re-enter it in a subsequent step. This how-
ever turns out to be undesirable in the long run, since it increases the chances
that the GFC generated in the next iterations will involve the slack variables
of the previously-generated GFCs, and hence it favors the generation of cuts
of higher rank and the propagation of their undesirable characteristics (density,
numerical inaccuracy, etc.). By exploiting dual degeneracy, however, one could
try to select an equivalent optimal basis that includes the slack variables of the
GFCs. This can be achieved by simply giving a small negative cost to the GFC
slack variables.

Both the above heuristics involve the use of a small perturbation in the
objective function coefficients, that however can produce numerical problems
that interfere with our study. So we handled perturbation in a way similar to
that used in our implementation of the lexicographic dual simplex, that requires
the solution of two LPs—one with the standard objective function, and the
second with the second-level objective function and all nonbasic variables having
nonzero reduced cost fixed at their bound.

5 Cut validity

Margot [16] addressed the possibility that cutting plane generators produce in-
valid cuts due to numerical errors, and performed very interesting experiments
on this important issue. The outcome of the experiments is that invalid cuts are
generated more frequently than expected, so validity should be a major concern
in the development of cut generators.
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An important step towards a numerical accurate cut generator has been
recently taken by Cook et al. [8] for the case of GMI cuts. However, the approach
has a potential drawback when used in a pure cutting plane context, as it can
produce slightly-modified cuts that do not preserve the nice properties of the
original cuts.

When GFCs are considered, validity can be certified by just solving an LP,
since these cuts have Chvátal rank 1 with respect to the current formulation.
To be more specific, the validity of a GFC of the form αTx ≤ α0 with (α, α0) ∈
Zn+1 requires checking whether the maximum value of the LP relaxation with
objective function s := αTx−α0 is strictly less than 1. (GFCs in ≥ form can be
handled in a similar way.)

In our context, a generic GFC read from the optimal tableau and reexpressed
in terms of the structural variables has the form

∑n
j=1baijcxj ≤ bai0c. It is

easy to show that the current basis B maximizes the objective function s :=∑n
j=1baijcxj − bai0c as well. Indeed, by subtracting from this latter equation

the i-th tableau row written as 0 =
∑n
j=1 aijxj − ai0 one can project out the

basic x variables and obtain the reduced-cost equation

s = fi0 −
n∑
j=1

fijxj (2)

where fij ∈ [0, 1) denotes the fractional part of aij , and fij = 0 for basic variables
xj . Since fij ≥ 0 for all j, the current basic solution x∗ is guaranteed to be
optimal for the maximization of s, the corresponding optimal value being s∗ =
fi0 < 1, which proves the validity of the GFC cut.

In practice, the solution of the maximization problem above will be carried
out by a finite-precision solver whose optimality check depends on a certain
threshold ε used to verify reduced cost signs. From this perspective, it makes
sense to assert the validity of a GFC by using the same optimality threshold as
in the LP solver, in the sense that cut invalidity would come into play only when
the optimality test itself is invalidated by numerical problems. This observation
motivates the following definition.

Definition 1. Given a polyhedron P = {(x, y) ∈ Rn+m
+ : Ax + y = b} with

A ∈ Zm×n and b ∈ Zm, a basis B of (A, I), an integer vector (α, α0) ∈ Zn+1

and a threshold ε > 0, we say that cut αTx ≤ α0 is a ε-valid (rank 1) cut
if the objective function αTx is ε-maximized by B, according to the classical
reduced-cost test αT − αTBB−1A ≤ ε1T , and α0 ≥ bαTBB−1b+ εc.

Accordingly, the ε-validity of a GFC cut is still guaranteed if one performs
integer roundings by using a small positive threshold ε, through operator

floorε(aij) = baij + εc (3)

Indeed, with the above redefinition of the floor operator the GFC cut be-
comes

∑
j floorε(aij)xj ≤ floorε(ai0) and the reduced costs f ′ij := aij−floorε(aij) =
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fij −bfij + εc used in (2) to certify GFC validity remain greater or equal to −ε,
hence within the tolerance that certifies optimality.

In our implementation we use the above floorε operator, with ε set in a
conservative way with respect to the optimality tolerance of the LP solver in
use.

6 Computational results

Our set of pure ILP instances mainly comes from MIPLIB 3 and 2003 [5, 1]; see
Table 1. It is worth noting that, to our knowledge, even very small instances of
these libraries (such as stein15, bm23, etc.) have never been solved by a pure
cutting plane method based on GFC or GMI cuts read from the LP tableau.

Problem Cons Vars LP opt Opt % root gap Source
air04 823 8904 55535.44 56137 1.07 MIPLIB 3.0
air05 426 7195 25877.61 26374 1.88 MIPLIB 3.0
bm23 20 27 20.57 34 39.5 MIPLIB
cap6000 2176 6000 -2451537.33 -2451377 0.01 MIPLIB 3.0
hard ks100 1 100 -227303.66 -226649 0.29 Single knapsack
hard ks9 1 9 -20112.98 -19516 3.06 Single knapsack
krob200 200 19900 27347 27768 1.52 2 matching
l152lav 97 1989 4656.36 4722 1.39 MIPLIB
lin318 318 50403 38963.5 39266 0.77 2 matching
lseu 28 89 834.68 1120 25.48 MIPLIB
manna81 6480 3321 -13297 -13164 1.01 MIPLIB 3.0
mitre 2054 9958 114740.52 115155 0.36 MIPLIB 3.0
mzzv11 9499 10240 -22945.24 -21718 5.65 MIPLIB 3.0
mzzv42z 10460 11717 -21623 -20540 5.27 MIPLIB 3.0
p0033 16 33 2520.57 3089 18.4 MIPLIB
p0201 133 201 6875 7615 9.72 MIPLIB 3.0
p0548 176 548 315.29 8691 96.37 MIPLIB 3.0
p2756 755 2756 2688.75 3124 13.93 MIPLIB 3.0
pipex 2 48 773751.06 788263 1.84 MIPLIB
protfold 2112 1835 -41.96 -31 35.35 MIPLIB 3.0
sentoy 30 60 -7839.28 -7772 0.87 MIPLIB
seymour 4944 1372 403.85 423 4.53 MIPLIB 3.0
stein15 35 15 5 9 44.44 MIPLIB
stein27 118 27 13 18 27.78 MIPLIB 3.0
timtab 171 397 28694 764772 96.25 MIPLIB 3.0

Table 1. Our test bed

Possibly after scaling, input data in our testbed is integer. All problems are
preprocessed by adding an integer variable x0 that accounts for the original
objective function, from which we can derive valid cuts, as Gomory’s proof of
convergence prescribes. GFC cuts are derived in integer form. Then slacks are
substituted to bring the cut back to the space of original variables. Since all
computations deal with integers this avoids round-off errors, and the cuts are
ε-valid according to Definition 1 above, where ε = 1e−8.

We carried out our experiments on a PC Intel Core 2 Q6600, 2.40GHz, with
a time limit of 1 hour of CPU time and a memory limit of 2GB for each instance.

Our first set of experiments addressed the single-cut version of Gomory’s
algorithm. Actually, at each iteration we decided to generate two GFCs from
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the selected cut generating row—one from the tableau row itself, and one from
the same row multiplied by -1.

The choice of the cut generation row in case of the lexicographic method
is governed by the rule that prescribes the selection of the least-index variable.
As to the other methods under comparison, the cut generation row is chosen
with a random policy giving a higher probability of selecting the cut-generating
variable from those with fractional part closer to 0.5 (alternative rules produced
comparable results).

A very important implementation choice concerns the cut purging criterion.
The lexicographic algorithm ensures the lexicographic improvement of the solu-
tion vector after each reoptimization, thus allowing one to remove cuts as soon as
they become slack at the new optimum. As far as other methods are concerned,
however, we can safely remove cuts only when the objective function improves.
Indeed, if the objective function remains unchanged a removed cut can be gen-
erated again in a subsequent iteration, and the entire algorithm can loop—a
situation that we actually encountered during our experiments. We therefore
decided to remove the slack cuts only when it is mathematically correct, i.e.
after a nonzero change in the objective function value, though this policy can
lead to an out-of-memory status after a long stalling phase.

Table 2 compares results on the textbook implementation of Gomory’s al-
gorithm (TB) and the lexicographic one (Lex). Besides the percentage of closed
gap (ClGap), we report 2 tightly correlated parameters to better measure the
performance of each method. The first parameter is the cut coefficients size (Co-
eff.): large coefficients, besides increasing the likelihood of numerical errors, can
be a symptom of cut ineffectiveness since they are required to represent very
small angles in the space of structural variables. The second parameter is the
condition number κ of the optimal basis, which gives a measure of the inaccu-
racy of the finite-precision representation of a solution x to the linear system
Bx = b (the smaller the more accurate the representation). In the table, only
the maximum value of the two indicators above during the run is reported. The
first column reports one of the following exit-status codes: (O) integer optimum,
(T) time limit, (M) out of memory, (N) no suitable cuts found as all available
cuts where discarded because of their large (> 1010) coefficients.
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Textbook Lex
Problem Itrs Cuts Time ClGap Coeff. κ Itrs Cuts Time ClGap Coeff. κ

air04 N 267 515 44.95 11.73 8.4e+07 4.6e+12 T 5446 10886 3601.15 36.83 1.8e+06 2e+14
air05 N 1237 2391 902.94 2.70 1.5e+08 9.2e+18 T 15859 31712 3601.13 44.60 3.2e+05 3.1e+12
bm23 N 313 618 0.23 18.09 1.4e+09 9.2e+18 O 713 1424 0.97 100.00 2.4e+02 2.7e+06
cap6000 N 575 1117 55.15 5.36 4.6e+07 2.7e+13 N 12606 25130 2112.15 26.53 4.3e+07 8.3e+18
hard ks100 N 1485 2892 149.03 100.00 2e+08 9.3e+15 O 217 431 0.36 100.00 4.5e+05 1.3e+12
hard ks9 N 164 289 0.18 98.83 2.2e+09 1.2e+13 O 889 1776 0.53 100.00 4.8e+04 5.3e+09
krob200 O 41 49 1.40 100.00 2.5 1.3e+07 O 1168 2199 256.95 100.00 8.7e+02 4.4e+08
l152lav N 1099 2160 77.89 37.54 4.2e+08 9.2e+18 O 1122 2219 30.21 100.00 1.6e+04 2.1e+09
lin318 O 97 134 8.53 100.00 20 5.4e+08 T 2028 3702 3604.78 63.64 2.4e+04 9.7e+10
lseu N 391 761 0.49 60.75 8.8e+08 9.2e+18 O 15120 30217 33.37 100.00 1.9e+04 7.3e+08
manna81 O 271 270 93.41 100.00 1 9.2e+18 O 879 878 742.08 100.00 1 9.7e+05
mitre T 11722 23373 3600.96 22.76 1.1e+09 9.2e+18 T 5026 10047 3601.78 14.11 1.3e+06 9.8e+14
mzzv11 T 509 978 3624.01 6.17 6.2e+07 9.2e+18 T 437 870 3604.00 24.80 1.2e+02 2.3e+11
mzzv42z T 1229 2413 3601.25 13.29 1.1e+08 9.2e+18 T 819 1629 3603.23 43.67 6.3e+02 5.5e+11
p0033 N 219 434 0.24 10.28 5.1e+08 9.2e+18 O 1496 2957 1.69 100.00 1.8e+03 7.6e+06
p0201 N 95 186 0.28 8.11 5.1e+08 2.2e+14 N 188144 373279 2165.83 85.27 5.1e+08 1.5e+21
p0548z T 279514 535298 3601.16 2.18 6.5e+08 9.2e+18 T 333934 667812 3601.01 0.03 6.4e+05 1.7e+14
p2756 T 5384 10572 3601.03 0.29 2.1e+09 9.2e+18 T 56113 112222 3601.00 0.52 1.2e+04 6.8e+12
pipex N 3888 7538 1.75 17.01 9.7e+08 2e+14 O 767681 1514866 1402.65 100.00 2.7e+06 7.3e+12
protfold T 112 216 3866.35 5.68 2.5e+08 9.2e+18 T 505 1002 4460.44 54.38 1.6e+08 5.6e+14
sentoy N 21775 36984 9.53 10.82 4.4e+08 9.2e+18 O 5729 11456 14.11 100.00 6.5e+04 1.3e+08
seymour N 210 378 430.49 21.67 6.5e+07 9.2e+18 T 779 1538 3605.73 11.23 1.5e+03 2.2e+09
stein15 N 74 123 0.06 25.00 1.9e+09 2.7e+15 O 66 121 0.10 100.00 6 2.4e+03
stein27 N 46 87 0.06 0.00 1.1e+09 5.6e+17 O 4283 8254 9.26 100.00 76 6.5e+04
timtab1-int T 99530 172894 3594.30 22.18 1.8e+09 9.2e+18 T 785007 1569491 3601.00 4.00 4.9e+08 3.4e+15

Table 2. Comparison between textbook and lexicographic implementation of Gomory’s algorithm (single-cut version)
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Table 2 shows clearly that in most cases the TB version has huge coefficient
sizes and condition numbers, while in Lex all these values remain relatively small
along the entire run. While the textbook version stopped in 60% of the cases
since it was no longer able to find a cut with coefficients of acceptable size, the
lexicographic algorithm encountered this situation in a single case. In addition,
Lex could solve to proven optimality 12 of the 25 instances of our testbed—some
of these instances being notoriously hard for pure cutting plane methods.

For illustration purposes, Figure 4 gives a representation of the trajectory of
the LP optimal vertices to be cut (along with a plot of the basis determinant)
when the textbook and the lexicographic methods are used for instance stein15.
In Figures 4(a) and (b), the vertical axis represents the objective function value.
As to the XY space, it is a projection of the original 15-dimensional variable
space. The projection is obtained by using a standard procedure available e.g. in
MATLAB (namely, multidimensional scaling [6]) with the aim of preserving the
metric of the original 15-dimensional space as much as possible. In particular,
the original Euclidean distances tend to be preserved, so points that look close
one to each other in the figure are likely to be also close in the original space.

According to Figure 4(a), the textbook method concentrates on cutting
points belonging to a small region. This behavior is in a sense a consequence of
the efficiency of the underlying LP solver, that has no reason to change the LP
solution once it becomes optimal with respect to the original objective function—
the standard dual simplex will stop as soon as a feasible point (typically very
close to the previous optimal vertex) is reached. As new degenerate vertices are
created by the cuts themselves, the textbook method enters a feedback loop that
is responsible for the exponential growth of the determinant of the current basis,
as reported in Figure 4(d).

On the contrary, as shown in Figure 4(b), the lexicographic method prevents
this by always moving the fractional vertex to be cut as far as possible (in the
lex-sense) from the previous one. Note that, in principle, this property does not
guarantee that there will be no numerical problems, but the method seems to
work pretty well in practice.

Finally, Figure 4(c) offers a closer look at the effect of lexicographic reop-
timization. Recall that our implementation of the lexicographic dual simplex
method involves a sequence of reoptimizations, each of which produces an al-
ternative optimal vertex possibly different from the previous one. As a result,
between two consecutive cuts our method internally traces a trajectory of equiv-
alent solutions, hence in the trajectory plotted in Figure 4(b) we can distinguish
between two contributions to the movement of x∗ after the addition of a new cut:
the one due to the black-box optimizer, and the one due to lex-reoptimization.
Figure 4(c) concentrates on the slice objective=8 of the Lex trajectory. Each
lexicographic optimal vertex used for cut separation is depicted as a filled circle.
The immediate next point in the trajectory is the optimal vertex found by the
standard black-box dual simplex, whereas the next ones are those contributed
by the lexicographic reoptimization. The figure shows that lexicographic reop-
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Fig. 4. Problem stein15 (single cut). (a)-(b) Solution trajectories for TB and Lex, resp.;
(c) Lower dimensional representation of the Lex solution trajectory; the filled circles are
lexicographic optima used for cut separation; their immediate next circles are optima
given by the black-box dual-simplex solver, whereas the other points correspond to
the equivalent solutions visited during lexicographic reoptimization; the double circle
highlights the trajectory starting point. (d) Growth of determinants in TB and Lex
(logarithmic scale).

timization has a significant effect in moving the points to be cut, that in some
cases are very far from those returned by the black-box dual simplex.

Figure 5 gives an alternative representation of the fractional solutions visited
during the optimization of stein15. We call it fractional spectrography, since
it depicts the spectrum of fractionalities along the execution of the algorithm.
Fractional spectrography is a pseudo-color plot of the 3-dimensional data set
formed by iterations, variables, and variable values. Iterations are represented in
the x-axis, variables in the y-axis, while the z-axis, representing variable values, is
a grayscale color. Variables are represented in their lexicographic order: variable
0 is the objective function, variable 1 is the lexicographically first variable, x1,
and so on. For a problem with only binary variables, the white color encodes
a 1 and the black color a 0. Nonbinary variables as, for example, the objective
function, are normalized into the interval [0, 1]. All shadings between black and
white are fractional values. This coding helps giving a visualization of the degree
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Fig. 5. Fractional spectrography of the sequence of solutions provided by the Gomory
cutting plane method (one cut at a time).

of fractionality of a solution. In Figure 5, the left chart shows the behavior of the
textbook implementation of Gomory cutting planes. It is clear that, from around
iteration 250, the method starts visiting fractional solutions that are closer and
closer one to each other, until the chart assumes an almost uniform gray shading
indicating heavy fractionality persistency. On the contrary, the right-hand-side
part of Figure 5 shows the much crisper look of the lexicographic version, where
the fractional components tend to flip between integer values and fractionalities
are quickly repaired.

To support the interpretation above even further, we performed the exper-
iment of just restarting the LP solver from scratch after having generated the
GFCs, so that it is more likely that a “substantially different” optimal solution
is found. According to our preliminary tests (not reported here for lack of space),
this small change had a significant impact on the performance of the textbook
method (though not comparable to that derived from the use of the lexicographic
method), showing the importance of breaking the correlation of the optimal LP
bases.

A second set of experiments was carried out on the multi-cut version of
Gomory’s algorithm, where cuts are generated in rounds. To be specific, after
each LP reoptimization we consider all the tableau rows with fractional basic
variable, and generate two GFCs from each row—one from the row itself, and
one from the same row multiplied by -1.

The corresponding results are reported in Table 3: the multi-cut version of
Lex performed slightly better than in the single-cut mode, as in 13 out of the
26 instances the method reached the optimum. However, the difference between
the single- and multi-cut versions is not as striking as one would expect from
the experience reported in the literature [3]. This may be due to the fact that, in
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the classical non-lexicographic context where cuts are used in conjunction with
branching, adding multiple cuts before reoptimizing mitigates the “flattening”
tendency of the feasible set in the region where successive individual cuts are
applied, leading to a much improved performance. In our pure cutting plane
context, instead, the convergence property is theoretically guaranteed by the
introduction of a single cut, and the other cuts seem to play a less important
role in the long run.

Table 4 reports the results of our two heuristics, Heur1 and Heur2. A compar-
ison with the previous table shows that both heuristics are effective in controlling
the coefficient size, determinant, and condition number. The average closed gap
is significantly better than in TB, but clearly worse than in Lex.

Figures 6 and 7 give some illustrative plots for instance sentoy. The figures
clearly show the typical degenerate behavior of TB, with instable phases of rapid
growth of determint/coefficients/κ exploring small space regions with shallow
cuts. It is worth observing the striking difference in the plots of the average cut
depth, computed as the geometric distance of the cut from the separated vertex,
averaged over all the cuts in a round. Even more interesting, the TB and Lex
have a completely different behavior as far as the optima distance (computed
as the Euclidean distance between two consecutive fractional vertices to be cut)
is concerned. As a matter of fact, as already shown by Figure 4, lexicographic
reoptimization is quite successful in amplifying the dynamic (and diversity) of
the fractional solutions.
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Textbook Lex
Problem Itrs Cuts Time ClGap Coeff. κ Itrs Cuts Time ClGap Coeff. κ

air04 N 29 9277 711.79 9.07 8.8e+02 2.8e+09 T 413 133647 3604.53 24.86 6.1e+04 9.1e+11
air05 N 43 13342 1061.33 5.32 2.1e+03 2.4e+09 T 776 224190 3600.25 24.66 8.9e+03 7.2e+09
bm23 N 107 1348 0.48 18.09 1.6e+09 1.4e+12 O 658 8290 1.11 100.00 3.4e+02 2.6e+06
cap6000 N 339 3378 200.75 8.47 3.9e+07 6.9e+15 N 5200 36832 1436.66 30.27 3.9e+07 2.7e+18
hard ks100 N 1752 10689 1037.46 100.00 1.9e+08 4.5e+15 O 105 519 0.29 100.00 3.6e+05 1.7e+12
hard ks9 N 265 1830 0.18 100.00 9.6e+04 1.8e+10 O 139 601 0.11 100.00 3e+04 4e+09
krob200 O 101 5029 339.18 100.00 2.4e+02 4.2e+08 O 39 1640 62.86 100.00 1.4e+02 1.7e+07
l152lav N 440 25793 1638.96 32.97 1.1e+03 3.6e+09 O 742 25091 116.45 100.00 1.5e+04 1e+09
lin318 O 18 467 22.51 100.00 9.3 3.8e+05 O 26 951 106.25 100.00 21 7.9e+06
lseu N 116 2543 2.78 46.03 6.3e+08 7e+14 O 15662 219216 85.02 100.00 1.1e+05 4.7e+10
manna81 O 1 271 4.24 100.00 1 1.3e+05 O 10 279 9.68 100.00 1 2.7e+05
mitre T 154 47919 3798.87 84.80 2.2e+08 1e+18 T 225 71317 3659.66 87.70 1.7e+08 1.2e+16
mzzv11 N 20 14379 1940.34 33.59 1.2e+04 1.7e+10 T 16 14440 3603.24 31.07 7.2e+05 3.3e+13
mzzv42z N 20 6887 426.10 22.62 1.4e+06 3.7e+12 T 20 15550 3602.99 20.17 3e+07 3.5e+13
p0033 N 368 4511 3.51 95.60 7.8e+08 9.7e+13 O 499 4419 0.94 100.00 2.1e+03 1.8e+07
p0201 N 211 5876 23.34 24.19 4.2e+08 1.9e+14 T 176477 4083975 3601.02 98.24 3.4e+06 1.5e+15
p0548 N 781 42639 217.06 52.02 5.5e+08 2.4e+20 N 1000 51456 46.07 51.78 2.2e+07 1.2e+15
p2756 N 231 9369 274.22 78.63 8.4e+08 1.2e+17 T 22936 326045 3601.11 79.09 3.6e+07 1.2e+17
pipex N 2680 41857 11.67 50.23 6.3e+08 1.9e+13 O 355901 3170373 665.78 100.00 4.3e+06 6.2e+13
protfold T 8 4808 19687.73 8.76 1.3e+08 1.5e+14 T 149 59515 3613.59 45.26 15 2.5e+07
sentoy N 52 707 0.18 3.39 4.7e+08 2.5e+14 O 5348 69208 14.33 100.00 9.1e+04 1.4e+10
seymour N 12 7950 1626.75 16.45 5.1e+07 5.9e+13 T 107 62266 3604.82 26.89 3.3e+02 1.2e+08
stein15 N 51 1261 0.37 50.00 1.6e+09 3e+11 O 66 688 0.12 100.00 6.3 1.7e+03
stein27 N 40 1821 1.06 0.00 1.2e+09 4.8e+12 O 3132 35859 9.72 100.00 77 1.7e+05
timtab1-int N 148 44479 14.09 28.92 1.4e+08 1.1e+15 N 2982 921030 353.47 44.20 1.2e+08 1.1e+16

Table 3. Comparison between textbook and lexicographic implementation of Gomory’s algorithm (multi-cut version)
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Heur1 Heur2
Problem Itrs Cuts Time ClGap Coeff. κ Itrs Cuts Time ClGap Coeff. κ

air04 M 29 9277 711.79 9.07 8.8e+02 2.8e+08 M 26 7671 359.91 11.90 2.5e+03 9.1e+10
air05 M 43 13342 1061.33 5.32 2.1e+03 7.5e+09 M 26 7632 399.20 5.32 1.1e+03 3.1e+09
bm23 N 107 1348 0.48 18.09 1.6e+09 1.4e+18 M 660 13828 331.01 25.54 2.3e+06 6.9e+14
cap6000 N 339 3378 200.75 8.47 3.9e+07 2.6e+12 M 437 5478 1884.77 9.10 1.4e+06 4.5e+14
hard ks100 N 1752 10689 1037.46 100.00 1.9e+08 1.1e+13 O 3234 6806 432.71 100.00 7.1e+03 9.9e+09
hard ks9 O 265 1830 0.18 100.00 9.6e+04 2.3e+05 O 281 2138 0.41 100.00 2.4e+05 5.8e+10
krob200 O 101 5029 339.18 100.00 2.4e+02 1.3e+07 O 105 6371 442.80 100.00 2.6e+02 9.6e+07
l152lav M 440 25793 1638.96 32.97 1.1e+03 1.7e+05 M 200 13912 1118.15 34.49 1.2e+04 7.7e+10
lin318 O 18 467 22.51 100.00 9.3 5.4e+08 M 29 1559 262.08 99.01 24 1.6e+08
lseu N 116 2543 2.78 46.03 6.3e+08 9.2e+18 M 520 16394 333.86 47.78 2.2e+05 8.3e+12
manna81 O 1 271 4.24 100.00 1 9.2e+18 O 1 271 4.39 100.00 1 9.8e+04
mitre T 154 47919 3798.87 84.80 2.2e+08 9.2e+18 O 153 22616 885.86 100.00 5.8e+04 8.1e+13
mzzv11 M 20 14379 1940.34 33.59 1.2e+04 9.2e+18 M 50 21526 2188.58 40.21 1.9e+02 1.5e+11
mzzv42z M 20 6887 426.10 22.62 1.4e+06 9.2e+18 M 70 15777 1593.59 38.97 1.3e+03 1.5e+12
p0033 N 368 4511 3.51 95.60 7.8e+08 3.4e+18 O 201 2222 0.41 100.00 1.1e+04 6.1e+08
p0201 N 211 5876 23.34 24.19 4.2e+08 9.2e+18 M 670 25540 1462.61 36.08 1.1e+06 8.2e+13
p0548 N 781 42639 217.06 52.02 5.5e+08 9.2e+18 M 350 22082 1360.48 47.03 3.5e+04 1e+15
p2756 N 231 9369 274.22 78.63 8.4e+08 9.2e+18 M 250 15315 1127.85 78.17 5.7e+03 5.7e+12
pipex N 2680 41857 11.67 50.23 6.3e+08 9.2e+18 M 2240 40953 390.15 49.08 1.2e+08 6.7e+14
protfold N 8 4808 19687.73 8.76 1.3e+08 9.2e+18 T 21 6994 3788.34 8.76 1.6 3.5e+06
sentoy N 52 707 0.18 3.39 4.7e+08 9.2e+18 M 780 15678 346.80 19.74 3.5e+05 9.8e+13
seymour N 12 7950 1626.75 16.45 5.1e+07 9.2e+18 M 20 9993 2336.60 21.67 3.7 2.6e+06
stein15 N 51 1261 0.37 50.00 1.6e+09 1.1e+17 M 500 13772 242.22 50.00 54 6.5e+05
stein27 N 40 1821 1.06 0.00 1.2e+09 9.2e+18 M 280 13604 151.34 0.00 5.8 1.3e+04
timtab1-int N 148 44479 14.09 28.92 1.4e+08 9.2e+18 M 1320 413451 747.77 31.95 1.8e+06 7.3e+14

Table 4. The two heuristics compared (multi-cut version).
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Fig. 6. Comparison between the textbook and lexicographic implementations of the
multi-cut algorithm on sentoy.



Lexicography and degeneracy: Can a pure cutting plane algorithm work? 21

0 200 400 600 800 1000 1200

10
5

10
10

10
15

av
er

ag
e 

ab
s 

va
lu

e 
of

 c
oe

ff
TB

0 1 2 3 4 5 6

x 10
4

10
5

10
10

10
15

Lex

0 200 400 600 800 1000 1200

10
−10

10
−5

10
0

av
er

ag
e 

cu
t d

ep
th

0 1 2 3 4 5 6

x 10
4

10
−10

10
−5

10
0

0 200 400 600 800 1000 1200

0.5

1

1.5

2

2.5

3

op
tim

a 
di

st
an

ce

0 1 2 3 4 5 6

x 10
4

0.5

1

1.5

2

2.5

3

Fig. 7. Comparison between the textbook and lexicographic implementations of the
multi-cut algorithm on sentoy



22 Arrigo Zanette, Matteo Fischetti and Egon Balas

7 Approximating GMI cuts for pure integer programs

Using GMI cuts in an all-integer context has the undesired feature of introduc-
ing continuous slack variables. This fact can be a problem for two main reasons.
First, observations in Section 5 do not hold any more for GMI cuts, since Def-
inition 1 relies on the Chvátal-Gomory rounding argument. Second, fractional
values affected by round-off errors are introduced in the all-integer initial for-
mulation, and can significantly contribute to the numerical degradation of the
method.

State-of-the-art cut generators use various heuristics to try to ensure the
validity of a cut, based on a small weakening of the cut coefficients and right-
hand side. However, as already discussed, a general-purpose cut weakening can be
a very poor choice in an iterative framework intended to produce long sequences
of stable cuts (see Section 5). The challenge here is to weaken GMI cuts in very
controlled way, so as to obtain an all-integer counterpart that ensures cut validity
(under the assumptions of Section 5) and preserves the strong properties leading
to a finitely-convergent cutting plane method. To this end, it is well known [17]
that a GFC, in its fractional form, can be obtained by applying the subadditive
function φ(aij) = daije−aij = 1−fij to the coefficients of row i. Similarly, GMI
cuts can be obtained using the subadditive function

φGMI(aij) = φ(aij)− δj

where

δj = max

{
0,

φ(aij)− φ(ai0)
1− φ(ai0)

}
See Figure 8 for an illustration. So let us rewrite the GMI cut in the following
form: ∑

j∈N\B

(φ(aij)− δj)xj ≥ φ(ai0) (4)

Note that this latter cut shares with (1) the sign pattern used (together with
the lexicographic property) to prove convergence; see Section 3.

Now, given α ∈ Z+ we can approximate (from below) δj by replacing it with
its discretized counterpart kj/α, where kj is the largest positive integer such
that kj/α ≤ δj . By construction, the resulting d-GMI (d for discretized) cut∑

j∈N\B

(φ(aij)−
kj
α

)xj ≥ φ(ai0) (5)

is a weakening of the GMI cut (hence its validity) that dominates the GFC. In
other words, d-GMI cuts play an intermediate role between GMI cuts and GFCs,
and they get closer and closer to GMI cuts as parameter α increases. Our pro-
cedure might resemble the strengthening procedure of Letchford and Lodi [15].
However the cuts in [15] are substantially different from ours, since d-GMI cuts
are a dominated (but hopefully more stable) version of GMIs while there is no
strict dominance relationship between GMIs and cuts in [15].
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Fig. 8. Different subadditive functions: (a) GFC, (b) GMI, (c) d-GMI

Since α is chosen beforehand, all computations above can be done in inte-
gers. In order to derive the cut we can therefore use the numerically more stable
rounding function defined in (3). Note that the slack substitution phase needed
to add the cut to the previous LP, may involve fractional slacks variables from
other cuts. There are two ways of handling this potential source of inaccuracy.
The first is to multiply (5) by α so that the cuts added to the problem are
all-integer. The second possibility is based on the fact that all slacks are integer
multiples of the common fraction 1/α, so it is easy to compute their rational
representation when needed for the slack substitution. In a preliminary compu-
tation, the second method exhibited a slightly better numerical stability, so it is
the one implemented in our code.

Figure 9 illustrates, for a small problem (bm23), the effect of separating d-
GMI cuts of different approximation levels within a lexicographic framework,
till proved optimality is reached. In the figure on the right-hand side, the x-axis
reports approximation error 1/α for α = 1, 2, 4, 8, and 16, namely 1, 0.5, 0.25,
0.125, and 0.0625 respectively. Tighter approximations were tried but turned
out to be numerically unstable, and the run was aborted before convergence.
The y-axis reports the number of bits required during the overall process to
represent cut coefficients (e.g., to obtain an approximation error of 0.0625, we
need approximately 29 bits). It can be seen that, as the approximation gets
closer to the real GMI (from left to right in the x-axis), the size of coefficients
first grows exponentially, and then tends to saturate along the GMI asymptote.
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Fig. 9. Gomory’s lexicographic method (one cut at a time) using d-GMI cuts on instance bm23
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Figure 9 (left) illustrates the evolution of the coefficient sizes when moving
from GFCs (approximation error 1) to cuts closer and closer to GMI cuts (ap-
proximation error 0.25 and 0.0625). On the x-axis we report the iteration (i.e.,
cut) number, whereas the y-axis gives the maximum number of bits required
to represent cut coefficients in each iteration. According to the figure, the three
versions with approximation error 1, 0.25 and 0.0625 converge to the optimal
solution in 714, 663, and 651 iterations, respectively. This is quite unsatisfactory,
as the increased strength of d-GMI cuts reduces the overall number of iterations
by, at most, 9%. Moreover, the coefficient fluctuation is highly amplified when
the approximation error becomes smaller and smaller. These results were con-
firmed on other instances, and seem to indicate that the size of coefficients of
d-GMI cuts grows exponentially with α, thus making their usage impractical
even when cuts are embedded in a lexicographic framework. This also suggests
that GMI cuts themselves can be very complex to manage by a pure cutting
plane method.

8 Conclusions and future work

Pure cutting plane algorithms have been found not to work in practice because
of numerical problems due to the cuts becoming increasingly parallel (a phe-
nomenon accompanied by dual degeneracy), increasing determinant size and
condition number, etc. For these reasons, cutting planes are in practice used in
cut-and-branch or branch-and-cut mode.

In this paper we have discussed an implementation of the lexicographic ver-
sion of Gomory’s fractional cutting plane method and of two heuristics mimicking
the latter one. In computational testing on a battery of MIPLIB problems, we
compared the performance of these variants with that of the standard Gomory
algorithm, both in the single-cut and in the multi-cut (rounds of cuts) version,
and showed that they provide a radical improvement over the standard proce-
dure. In particular, we reported the exact solution of ILP instances from MIPLIB
such as stein15, stein27, and bm23, for which the standard Gomory cutting
plane algorithm is not able to close more than a tiny fraction of the integrality
gap.

We have identified the right choice of direction in rounding the tableau co-
efficients when generating cuts, which turned out to be very effective (together
with the lexicographic simplex) in producing numerically stable cuts.

Future work should address the integration of lexicographic simplex with
other kinds of cuts, including GMI cuts. We made a first step in this direction,
by introducing a numerically more stable discretized version of GMI cuts. Our
preliminary computational results seem however to indicate that these cuts (and
hence GMI cuts) are intrinsically more difficult to handle than GFCs, at least
within a cutting plane method for pure ILPs.



26 Arrigo Zanette, Matteo Fischetti and Egon Balas

References

1. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34:361–372, 2006. Problems available at http://miplib.zib.de.

2. J. L. Arthur and A. Ravindran. PAGP, a partitioning algorithm for (linear) goal
programming problems. ACM Trans. Math. Softw., 6(3):378–386, 1980.
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