
Light Robustness

Matteo Fischetti and Michele Monaci

DEI, Università di Padova, Italy
{matteo.fischetti, michele.monaci}@unipd.it

Preliminary draft: December 18, 2008

Abstract

We consider optimization problems where the exact value of the input data is not
known in advance and can be affected by uncertainty. For these problems, one is typi-
cally required to determine a robust solution, i.e., a possibly suboptimal solution whose
feasibility and cost is not affected heavily by the change of certain input coefficients.
Two main classes of models have been proposed in the literature to handle uncertainty:
stochastic programming models (offering great flexibility, but often too large in size to
be handled efficiently), and robust optimization models (easier to solve but sometimes
leading to very conservative solutions of little practical use). We invertigate a third way
to model uncertainty, leading to a modelling framework that we call Light Robustness.
Light Robustness couples robust optimization with a simplified two-stage stochastic pro-
gramming approach, and has a number of important advantages in terms of flexibility
and ease to use. In particular, experiments on both random and real word problems show
that Light Robustness is often able to produce solutions whose quality is comparable with
that obtained through stochastic programming or robust models, though it requires less
effort in terms of model formulation and solution time.
Key words: Robust optimization, Stochastic Programming, Integer Linear Program,
Multi-dimensional Knapsack, Train Timetabling.

1 Introduction

One of the basic assumption in mathematical programming is that the exact value of the
input data is fixed and known in advance. This assumption can however be violated in many
situations arising when real world problems are considered. This can be due to the fact that
the parameters used in the model are just estimates of real parameters, or more generally to
the effect of uncertainty affecting some parameters. When uncertainty is taken into account,
an optimal solution with respect to the nominal values of the parameters can be suboptimal
(or even infeasible) according to the actual parameters. Hence, small uncertainty in the
input data can make the nominal optimal solution completely meaningless from a practical
viewpoint.

Within the above setting, a main request when dealing with real world applications is
to determine a robust solution, i.e., a solution that remains feasible even if some of the
input coefficients change. In other words, one is required to determine a solution that is not
necessarily optimal for the nominal objective function, but such that its feasibility and cost
is not affected heavily by the change of some coefficients—at least for certain meaningful
realizations of the input data.

In this paper we mainly focus on a Linear Program (LP) of the form

min
∑
j∈N

cj xj (1)

1

∑
j∈N

aij xj ≤ bi i ∈M (2)

xj ≥ 0 j ∈ N (3)

where some coefficients of constraint matrix A can take a value, say ãij ∈ [aij , aij + âij], which
is different from the nominal one (namely, aij). We further assume that the actual values of
the coefficients are independent. Uncertainty on vectors b and c is not dealt with explicitly, as
it can be handled in a straightforward way by just adding suitable artificial variables and/or
constraints. We denote by n = |N | and m = |M | the number of variables and constraints in
the LP model, respectively. Our approach extends easily to the Mixed-Integer Programming
(MIP) case, where certain variables can only assume integer values.

Classical approaches for dealing with uncertainty can be classified as follows:

- Stochastic Programming (SP): find a solution that is optimal by considering possible
recourse variables yω implementing corrective actions to be performed after a certain
scenario ω ∈ Ω has taken place (see, e.g., Birge and Louveaux [8], Ruszczynski and
Shapiro [14], and Linderoth, Shapiro, and Wright [12]). This approach typically does
not restrict the original solution space, but penalizes the feasible solutions by taking
into account the cost of the corrective actions needed to face a certain scenario. The
approach is quite powerful but requires the knowledge of the probability (and main
features) of the various scenarios, and almost invariably leads to huge LPs that require
very large computing times (though clever decomposition techniques have been proposed
in the literature to speed-up their resolution).

- Robust Optimization (RO): uncertainty is associated with hard constraints restricting
the solution space, i.e., one is required to find a solution that is still feasible for worst-
case parameters chosen within a certain uncertainty domain (see, e.g., Ben-Tal and
Nemirovski [2] and Bertsimas and Sim [6]). This is a simple way to model uncertainty,
but it can lead to overconservative solutions that are quite bad in terms of cost (actually,
a feasible solution may not exist at all).

In the present paper we analyze a third way to model uncertainty, leading to a modelling
framework that we call Light Robustness (LR). Light Robustness can be viewed as a “flexible
counterpart” of robust models, obtained through the following modelling steps. We first fix
the maximum objective function deterioration that we are willing to accept in our model, by
introducing a linear constraint of the type cTx ≤ z. Then we define a “robustness goal” that
we would like to achieve, and model it by using a classical robust optimization framework
(e.g., through the Ben-Tal and Nemirovski [2] or Bertsimas and Sim [6] methods). In this
way we obtain a robust model with no objective function, that however is likely to be infeasi-
ble. To cope with infeasibility, we introduce appropriate slack variables that allow for “local
violations” of the robustness requirements, and define an auxiliary objective function aimed
at minimizing the slacks. The LR slack variables play a role similar to second-stage recourse
variables in SP models, as they penalize the corrective actions needed to restore feasibility. In
this view, LR is a modelling framework combining the flexibility of SP (due to the presence of
second-stage variables) and the modelling ease of RO. The underlying assumption is that the
robust model already captures uncertainty in a sufficiently detailed way, so we do not need a
cumbersome second-stage set of variables and constraints—simple slack variables are enough.

2

LR models are easy to formulate and to solve, and their applicability is potentially larger
than robust models. However, it is not clear whether such a simple approach can deliver solu-
tions that are comparable than those obtained through more involved stochastic programming
or robust models. The computational experience reported in the present paper confirms the
viability of the LR approach—at least in some practically relevant contexts.

The rest of the paper is organized as follows. In Section 2 we briefly review the Bertsimas
and Sim approach [6]. Two LR variants are described in Sections 3 and 4, respectively, and
are computationally tested on random instances in Section 5. A real-world application is
addressed in Section 6. Finally, Section 7 draws some conclusions.

2 The Bertsimas and Sim approach

The first attempt to handle data uncertainty through mathematical models was performed
by Soyster [16], who considered uncertain problems of the form

min {
∑
j∈N

cj xj |
∑
j∈N

Aj xj ≤ b, ∀Aj ∈ Kj , j ∈ N}

where Kj are convex sets associated with “column-wise” uncertainty. This approach tends to
lead to overconservative models, thus to poor solutions in term of optimality. Ben-Tal and
Nemirovski [2, 3, 4] defined less conservative models by considering ellipsoidal uncertainties.
Moreover, [2] shows that the robust counterpart of an uncertain LP is equivalent to an explicit
computationally tractable problem, provided that the uncertainty is itself “tractable”. On
the contrary, when the problem to be considered is an ILP, these nonlinear (convex) models
become computationally hard problems.

Later on, Bertsimas and Sim (BS) [5, 6] considered a different concept of robustness.
Their approach is based on the observation that, in real situations, it is unrealistic to assume
that all coefficients take, at the same time, their worst-case value. So, it makes sense to
define a robust model whose optimal solution remains feasible for every change of (at most)
Γi coefficients in each row i ∈M , where Γi is an input parameter associated to the expected
robustness of the solution. (For sake of simplicity, we will implicitly assume that Γi is integer,
although this is not required in the approach proposed in [6].) The robust counterpart of
(1)–(3) is therefore defined by replacing each row i ∈M with the new constraint:∑

j∈N

aij xj + β(x,Γi) ≤ bi (4)

where β(x,Γi) is related to the level of protection with respect to uncertainty in the coefficients
of row i, and is defined as

β(x,Γi) = max
S⊆N :|S|≤Γi

∑
j∈S

âij xj (5)

So, β(x,Γi) is the maximum increase in the left-hand side of the i-th constraint evaluated for
x∗, when at most Γi coefficients in row i take their worst-case value.

As already mentioned, parameter Γi allows the modeler to control the solution robust-
ness: Γi = 0 means that robustness is not taken into account and the nominal constraint is
considered, whereas Γi = n means that each coefficient in row i can take its worst-case value,
and corresponds to the conservative method by Soyster [16].

3

By using LP duality, the robust model can be formulated through the following LP:

min
∑
j∈N

cj xj (6)

∑
j∈N

aij xj + Γi zi +
∑
j∈N

pij ≤ bi i ∈M (7)

−âij xj + zi + pij ≥ 0 i ∈M, j ∈ N (8)
zi ≥ 0 i ∈M (9)
pij ≥ 0 i ∈M, j ∈ N (10)
xj ≥ 0 j ∈ N (11)

The robust formulation above, referred to as BS in the sequel, involves a number of vari-
ables and constraints that is polynomial in the input size. Note that the approach remains
valid when MIPs are considered instead of just LPs, the only requirement being that term
β(x,Γi) can be formulated as an LP whose size is polynomial in the input size.

The BS approach provides solutions that are deterministically feasible if the coefficients
change under the assumptions above, and are feasible with a high probability if more than Γi

coefficients in row i are allowed to change.

3 The basic Light Robustness approach

Very often, the optimal robust solution found according to the BS definition can be consider-
ably worse (with respect to the objective function value) than the optimal nominal solution,
even if few coefficients are allowed to change in each row. This fact is dramatically empha-
sized for those problems where most of the coefficients are “structural” and the number of
uncertain coefficients in each row is very small (as, e.g., in the train timetabling problem
addressed in Section 6).

As already outlined in the introduction, our definition of Light Robustness is a compromise
between the robustness of the solution with respect to uncertainty of the matrix coefficients,
and the quality of the solution with respect to the objective function. Indeed, in our scheme
we look for the most robust solution among those which are “not too far” from optimality
for the nominal problem. To be more specific, given a robust optimization model such as the
BS one (1)–(3), we define the LR counterpart as:

min
∑
i∈M

wiγi (12)

∑
j∈N

aij xj + β(x,Γi)− γi ≤ bi i ∈M (13)

∑
j∈N

aij xj ≤ bi i ∈M (14)

∑
j∈N

cj xj ≤ (1 + δ) z∗ (15)

xj ≥ 0 j ∈ N (16)
γi ≥ 0 i ∈M (17)

Slack variables γi act as second-stage recourse variables used to recover from a possible infea-
sibility, whose weighted sum is minimized by objective function (12). Each variable γi defines

4

the level of robustness of the solution with respect to uncertainty of parameters in row i ∈M :
in particular, γi takes a strictly positive value if the corresponding robust constraint i is vi-
olated. Constraint (15) imposes a maximum worsening of the objective function value with
respect to z∗, defined as the value of the optimal solution of the nominal problem. The role
of the input parameter δ in (15) is to balance the quality (optimality) and the feasibility
(robustness) of the solution: δ = 0 corresponds to the nominal problem (i.e., robustness is
only taken into account to break ties among equivalent optimal solutions), while for δ = ∞
the nominal objective function is not considered at all.

Note that the presence of constraints (13) combined with nominal constraints (14) and
objective function (12), is equivalent to fix, for each variable γi, an upper bound equal to
β(x,Γi).

Weights wi appearing in the objective function (12) are intended to compensate for pos-
sibly different scales for the constraints and can be set, e.g., to the Euclidean norm of each
left-hand side coefficient vector. In the sequel we assume implicitly that all the constraints
are stated in a comparable unit, hence we set wi = 1 for all i. It is worth noting that the
BS approach itself is intrinsically dependent on the specific formulation of LP model at hand,
in the sense that it is not invariant with respect to transformations of the constraints that
leave the feasible space of the nominal problem unchanged. In other words, the practical
applicability of the BS approach (and hence of its LR counterpart) implicitly assumes that
the original model is stated in a form that is “suited for robustness”–taking an LP-equivalent
model can lead to meaningless results.

By using LP duality as in the BS approach, the LR counterpart of (1)–(3) becomes:

min
∑
i∈M

γi (18)

∑
j∈N

aij xj + Γi zi +
∑
j∈N

pij − γi ≤ bi i ∈M (19)

−âij xj + zi + pij ≥ 0 i ∈M, j ∈ N (20)
zi ≥ 0 i ∈M (21)
pij ≥ 0 i ∈M, j ∈ N (22)∑

j∈N

aij xj ≤ bi i ∈M (23)

∑
j∈N

cj xj ≤ (1 + δ) z∗ (24)

γi ≥ 0 i ∈M (25)
xj ≥ 0 j ∈ N (26)

As stated, Light Robustness is a strongly dependent on the BS definition of robustness,
hence it can be applied only in those cases in which uncertainty can be described by means
of a linear formulation. However, different LR variants can be defined for specific problems.
In fact, in our view LR is not a rigid technique, but a modelling framework where robustness
is achieved by first enforcing a demanding robustness/optimality goal, and then by allowing
for local violations of the constraints (absorbed by the slack variables) to deal with possible
infeasibility issues. In the next section we analyze a different (and simpler) LR version whose
definition does not rely on the BS model. A problem-specific LR definition will be addressed
in Section 6.

5

4 A heuristic Light Robustness scheme

We next describe a modified LR scheme that is not based on the BS approach, but deals
directly with the slack variables associated with the constraints of the nominal problem.
The underlying assumption here is that the degree of robustness of a solution is somehow
proportional to the slack left in the uncertain rows, to be used to absorb variations of the
left-hand side coefficients. Determining the exact value of the slack in each row is of course
a difficult task that depends on the whole solution x∗ (and not just on the constraint slacks)
and has to take into account interactions among the constraints, but it can be approached
heuristically as follows.

Let x∗ be an optimal solution of nominal problem (1)–(3), and let

L∗i =
∑
j∈N

(aij + âij) x∗j − bi

denote the maximum violation of constraint i with respect to solution x∗. We define by

U = {i ∈M : L∗i > 0}

the set of constraints that may be affected by uncertainty with respect to x∗. In other words,
U contains the rows we want to take care of in terms of uncertainty, i.e., those rows for
which enough slack should be given. We can assume without loss of generality |U | ≥ 1,
since otherwise the optimal solution x∗ of the nominal problem would be feasible (and hence
optimal) in any realization of the data.

We first solve the following LP

max σ (27)∑
j∈N

aij xj + si = bi i ∈M (28)

σ ≤ si

L∗i
I ∈ U (29)∑

j∈N

cj xj ≤ (1 + δ) z∗ (30)

xj ≥ 0 j ∈ N (31)
si ≥ 0 i ∈M (32)

which maximizes the minimum slack that can be assigned to any uncertain row. In order to
take into account uncertainty on each row separately, the slack variable si in the i-th uncertain
constraint (29) is heuristically normalized by dividing it by L∗i (i ∈ U).

The LP above typically has several equivalent optimal solutions, due to its max-min
nature. Indeed, objective function (27) only considers the row corresponding to the minimum
normalized slack, hence there is no incentive in giving a large slack to the remaining rows—
whereas this is very important for improving robustness. Thus, a second LP is solved in order
to balance the slack among uncertain rows, while keeping the total amount of slack large
enough. Given an optimal solution (x∗, s∗, σ∗) of model (27)–(32), we define the average and
minimum value for the normalized slack as

savg =
∑

i∈U s
∗
i /L

∗
i

|U |

6

smin = min{s∗i /L∗i : i ∈ U} (= σ∗)

and solve the following LP

min
∑
i∈U

ti (33)

∑
j∈N

aij xj + si = bi i ∈M (34)

∑
j∈N

cj xj ≤ (1 + δ) z∗ (35)

si

L∗i
+ ti ≥ savg i ∈ U (36)

xj ≥ 0 j ∈ N (37)
si/L

∗
i ≥ smin i ∈ U (38)

si ≥ 0, ti ≥ 0 i ∈ U (39)

In this model, for each uncertain constraint i ∈ U we introduce an auxiliary variable
ti assuming a positive value if the associated normalized slack is smaller than the average.
Objective function (33) penalizes the sum of these variables, so as balance the normalized
slack among all constraints.

Although this method requires the solution of two LPs (actually, three if the nominal
problem is also considered), our computational experiments reported in Section 5 show that
the corresponding extra computing time is quite small in practice, due to the use of fast
parametric reoptimization techniques.

5 Computational experiments on random data

In order to test the two LR approaches described in the previous sections, we performed
computational experiments on knapsack and portfolio instances similar to those considered
by Bertsimas and Sim in [6], and on variants of these instances.

Our computational measure of robustness for a given feasible solution x̃ of the nominal
model (1)–(3) is provided by an external tool (called the external validation tool in the
sequel) that generates 10,000 random scenarios, i.e., realizations of the input data according
to a uniform distribution. The validation tools receives solution x̃ on input, and returns the
probability of infeasibility of x̃ (of course, violation of a single constraint in model (1)–(3) is
enough to declare x̃ infeasible for a certain scenario).

Since our LR schemes require an optimality threshold on input, namely z := (1 + δ)z∗, a
fair comparison with respect BS is not immediate. In our experiments we implemented the
following scheme.

We first solved the BS model (6)–(11) so as to test BS approach alone. Since a main
difficulty in using the BS approach is the definition of coefficients Γi to be used in (5), we
heuristically fixed Γi = Γ for all i ∈M , and solved the corresponding BS model for increasing
values of Γ, until a value was found, say Γmax, for which the corresponding solution is always
feasible according to our external validation tool. We will refer to this solution as the always-
feasible solution. The gap between the value of the optimal solution of the nominal problem
and the value of the always-feasible solution is then used for defining threshold values z.
More specifically, we considered 9 threshold values obtained by allowing for a worsening

7

(with respect to the optimal nominal solution) of 1%, 5%, 10%, 25%, 50%, 60%, 70%, 80%,
and 90% of such a gap.

Once the threshold value z̄ is fixed, we ran all models and evaluated the robustness of the
corresponding solution x̃ through our external validation tool. The basic LR model (12)–(17)
was solved by setting all Γi’s to a constant (quite large) value, so as to require a high level of
protection against uncertainty.

The heuristic LR model (27)–(32) and (33)–(39) does not require any other parameter and
was solved as described. As to the BS model (6)–(11), we embedded it into a binary search
procedure that finds the maximum real value of Γ ∈ [0, n] such that the optimal solution
value for model (6)–(11) does not exceed z. In order to limit computing time, binary search
is halted as soon as the difference between the maximum and minimum Γ values is smaller
than 0.1. The procedure is further speeded-up, at each binary-search iteration, by stopping
the solution of model (6)–(11) as soon as a solution with value not greater than z is found.
In a similar way, each iteration is halted whenever a proof is given that no such a solution
exists. The value of Γ produced by the binary search procedure, say Γ∗, is therefore an
approximation of the best possible value for model (6)–(11) when a solution having cost at
most z̄ is required. In the following we refer to this method as BinBS.

A fair comparison of BinBS and LR computing times is not immediate, since our experi-
ment design is biased somehow in favor of the LR approach. Indeed, one could symmetrically
fix the Γ value and apply binary search to LR to find the corresponding threshold value z̄.
According to our experience, in practical cases working with an optimality threshold is more
natural than providing the Γ coefficient(s). In any case, the reported computing times for
BinBS and LR have to compared with some caution.

The following tables report, separately for each problem, the results of each method for
each threshold value z̄, showing the probability that the solution found is infeasible along
with the corresponding computing time. In addition, for method BinBS we report the value
Γ∗ found by the binary search procedure, and the average time required to perform a single
binary-search iteration. All experiments have been performed on a AMD Athlon 64 Processor
3500+ using ILOG-Cplex 10.1 as LP/ILP solver.

5.1 Single Knapsack Problem

One of the most famous problems in Combinatorial Optimization is the Knapsack Problem
(KP) in which one is given a set N = {1, . . . , n} of items and a knapsack of capacity W .
Each item j ∈ N has associated a positive profit pj and a positive weight wj , and the aim
is to select a set of items in such a way that (i) the sum of the weights of the selected items
does not exceed c, and (ii) the sum of the profits of the selected items is maximized. By
introducing, for each item j ∈ N a binary variable xj taking value 1 iff item j is selected, the
problem can be formulated as follows:

max
∑
j∈N

pj xj (40)

∑
j∈N

wj xj ≤W (41)

xj ∈ {0, 1} j ∈ N (42)

This problem is NP-hard, although pseudo-polynomial solution algorithms exist. For exten-
sive studies on approaches to the knapsack problem, as well as to its variants or extensions,

8

the reader is referred to the books by Martello and Toth [13] and by Kellerer, Pferschy and
Pisinger [11].

Following Berstimas and Sim [6], we tested our robust approach by generating a KP
instance with |N | = 200, integer profits pj randomly generated in [16, 77], integer weights wj

randomly generated in [20, 29], and W = 4000. Uncertainty was modelled by allowing each
weight to differ by at most 10% with respect to its nominal value.

Table 1 reports the value of the optimal solution of model (6)–(11) using different values
for Γ. In addition, the table gives the percentage worsening in the solution value, the required
computing time, and the probability that the provided solution is infeasible. The results of
Table 1 experimentally confirm the theoretical results provided in [6] for what concerns both
the worsening of the solution value and the probability of infeasibility.

Table 1: Results on BS model (6)–(11) on a random knapsack problem

Γ z % wors. % Infeas Time
0 8801 0.0000 47.57 0.00
1 8800 0.0114 43.18 0.01
5 8786 0.1704 19.96 0.12

10 8773 0.3181 5.08 0.02
15 8754 0.5340 0.57 0.06
20 8740 0.6931 0.02 0.13
22 8732 0.7840 0.00 0.14

The optimal solution of the nominal (maximization) problem has value 8801, while the
always feasible solution, provided by model (6)–(11) with Γ = 22, has value 8732. The derived
threshold values and the corresponding results for each robust method are reported in Table
2. The first table row has the following meaning: fixing a lower bound of z = 8800 on the
solution profit, one can find a solution with infeasibility probability of 43.18% (43.10% for
HLR); this solution if found in 0.06 CPU seconds by BinBS (each binary-search iteration
taking 0.01 seconds on average), and corresponds to the choice Γ∗ = 0.98, whereas LR and
HLR require 0.01 and 0.02 seconds, respectively.

According to the table, for each threshold value z̃ the three methods deliver solutions
with negligible differences in terms of robustness. This is not surprising, due the very simple
structure of the KP problem. As expected, the LR approaches are faster than BinBS as no
binary search is required.

5.2 Multi-dimensional Knapsack Problem

In order to validate our methods on a problem involving several constraints, we considered
a Multi-dimensional Knapsack instance with |M | = 10 constraints. All coefficients and the
associated deviations are generated as for the KP instance of Section 5.1, i.e., in the same
way used in [6]. For this instance, the optimal solution of the nominal problem has value
8316, while the always feasible solution is provided by model (6)–(11) with Γ = 24 and has
value 8238.

Computational results in Table 3 show that the solutions provided by BinBS and LR
are quite similar in terms of robustness. On the other hand, computing times for LR are

9

Table 2: Results on a random knapsack problem

BinBS LR(Γ = 20) HLR
z̄ Γ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8800 0.98 43.18 0.06 0.01 43.18 0.01 43.10 0.02
8797 1.95 36.82 0.07 0.01 36.82 0.01 36.54 0.01
8794 2.93 30.61 0.06 0.01 30.61 0.01 30.61 0.02
8783 5.47 18.60 0.19 0.02 18.60 0.01 18.60 0.19
8766 11.33 3.13 0.16 0.02 3.25 0.02 3.20 0.02
8759 13.28 1.48 0.25 0.03 1.48 0.02 1.48 0.15
8752 16.60 0.31 0.13 0.01 0.31 0.02 0.31 0.01
8745 18.75 0.12 0.09 0.01 0.12 0.02 0.12 0.03
8738 20.90 0.01 0.20 0.02 0.02 0.18 0.01 0.02

considerably smaller (often by two orders of magnitude) than those required by BinBS. E.g.,
for threshold z = 8296 BinBS required 27.37 seconds, whereas LR took just 0.24 seconds.
At first glance, this is quite surprising since the average BS time for a single binary-search
iteration is 2.74 seconds, i.e., 10 times larger than LR. A similar situation arises for z = 8277
and 8269. The explanation is that, during binary search, the BS model has to deal with weird
(noninteger) values for the Γi coefficients appearing in (7), which makes these constraints
numerically nasty and the solution of the overall problem much harder. The LR models,
instead, do not suffer from this problem, due the greater flexibility granted by the presence
of slack variables.

As to HLR, it provides even (slightly) better results than BinBS and LR in terms of
robustness, and requires much shorter computing times. E.g., for z = 8296 it provides a
solution with about 10% less probability of infeasibility than BinBS, and requires about 3
orders of magnitude less computing time.

Table 3: Results on the multi-dimensional knapsack instance

BinBS LR(Γ = 20) HLR
z̄ Γ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8315 0.59 86.97 1.88 0.19 88.42 0.21 86.97 0.10
8312 2.34 81.01 0.84 0.08 82.25 0.16 81.01 0.11
8308 3.32 78.20 0.88 0.09 71.53 0.11 71.58 0.08
8296 5.47 64.70 27.37 2.74 61.42 0.24 53.64 0.09
8277 12.70 5.62 4.45 0.45 6.74 0.14 5.62 0.08
8269 14.45 4.02 37.26 3.73 4.77 0.17 4.02 0.08
8261 18.75 0.30 2.38 0.24 0.30 0.30 0.30 0.11
8253 20.90 0.08 2.75 0.28 0.09 0.28 0.08 0.06
8245 22.66 0.05 12.08 1.21 0.15 2.05 0.05 0.09

In order to analyze the performance of various robust approaches on more demanding
settings, we performed additional experiments on the multi-dimensional knapsack instance

10

described above.
We first considered the situation arising when coefficients of the first constraint have

more uncertainty than those of the other constraints. In particular, the original instance is
considered, but each coefficient in the first constraint is allowed to differ by at most 50% with
respect to its nominal value, while uncertainty for coefficients in the remaining rows is at most
10%, as in the previous experiment. The corresponding computational results are given in
Table 4 and confirm the previous findings: all three methods provided solutions with similar
robustness (the only exception being z = 8313 and 8286, where LR produced significantly
more robust solutions), and HLR is faster than LR, which is in turn much faster than BinBS.

Table 4: Results on the multi-dimensional knapsack instance with larger uncertainty of the
coefficients in the first row

BinBS LR(Γ = 20) HLR
z̄ Γ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8313 1.56 89.68 1.24 0.12 86.44 0.27 89.68 0.08
8301 4.30 73.34 6.32 0.63 73.35 0.10 74.51 0.08
8286 7.03 41.21 0.72 0.07 28.20 0.29 40.85 0.05
8241 10.16 8.99 0.96 0.10 7.30 1.35 8.99 0.04
8167 14.84 0.77 0.69 0.07 0.84 0.08 0.84 0.04
8137 16.60 0.29 1.23 0.12 0.29 0.06 0.29 0.04
8108 18.36 0.14 3.05 0.31 0.12 0.26 0.13 0.06
8078 20.31 0.09 0.70 0.07 0.08 0.74 0.08 0.07
8048 22.07 0.02 0.55 0.06 0.04 0.06 0.01 0.06

Finally, we considered two cases where the number of uncertain coefficients in each row is
not a constant. In particular, let Ji ⊆ N denote the index set of the uncertain coefficients in
each row i (i = 1, . . . , 10). We considered case |Ji| = 10∗(11−i), i.e., 100 uncertain coefficients
arise in the first row, 90 in the second, and 10 in the last row. The set of uncertain coefficients
in each row is generated according to a uniform distribution, and each uncertain coefficient
can differ by at most 10% with respect to the nominal value.

Note that, in the new setting, defining a same value for all Γi’s does not make sense for
BS. Thus, according to [6], we considered a value θ representing the normalized number of
uncertain coefficients, and defined Γi = θ |Ji| for each row i. Accordingly, binary search was
executed with an accuracy equal to 10−3 on the value of θ, while LR was executed with θ = 1.

In the instance addressed in Table 5, there is no correlation among uncertain coefficients in
different rows. On the contrary, in the instance of Table 6 uncertainty was generated so that
a coefficient can be uncertain in row i only if the coefficient in the same column is uncertain
in row i − 1, thus inducing a certain degree of correlation among uncertain coefficients in
different rows.

Results in Tables 5 and 6 confirm once again that the LR approaches, in spite of their
simplicity, are able to produce solutions that turn out to be equally (or even more) robust than
those produced by BinBS, in much shorter computing times. In particular, HLR qualifies as
the method of choice for producing robust solutions for multi-dimensional knapsack problems.

11

Table 5: Results on the multi-dimensional knapsack instance when the number of uncertain
coefficients in each row is not a constant

BinBS LR(θ = 1.0) HLR
z̄ θ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8315 0.015 77.89 0.58 0.06 77.80 0.09 77.89 0.08
8313 0.024 65.70 0.57 0.06 62.27 0.03 65.70 0.10
8311 0.043 40.60 0.39 0.04 60.39 0.05 40.60 0.04
8304 0.073 22.40 0.31 0.03 32.08 0.05 23.39 0.06
8292 0.108 20.64 6.82 0.68 13.28 1.24 27.12 0.11
8287 0.148 0.39 0.52 0.05 6.58 4.13 0.39 0.04
8283 0.167 0.09 0.58 0.06 2.47 1.00 0.20 0.05
8278 0.186 0.04 0.53 0.05 0.31 0.34 0.04 0.08
8273 0.204 0.00 0.75 0.08 0.14 0.02 0.02 0.06

Table 6: Results on the multi-dimensional knapsack instance when the number of uncertain
coefficients in each row is not a constant, and high correlation among uncertainty in different
rows exists

BinBS LR(θ = 1.0) HLR
z̄ θ∗ % Infeas Time Avg.Time % Infeas Time % Infeas Time

8315 0.015 78.27 0.52 0.05 78.27 0.08 78.27 0.09
8313 0.024 64.52 0.58 0.06 59.38 0.02 64.52 0.10
8311 0.043 40.95 0.41 0.04 77.45 0.05 40.95 0.04
8304 0.073 20.60 0.33 0.03 59.56 0.05 22.86 0.06
8292 0.109 19.93 5.74 0.57 12.93 1.70 22.00 0.14
8287 0.149 0.45 0.76 0.08 2.16 1.31 0.45 0.04
8283 0.167 0.15 0.92 0.09 0.78 0.12 0.25 0.06
8278 0.186 0.09 0.64 0.06 0.13 0.10 0.10 0.07
8273 0.204 0.01 0.94 0.09 0.03 0.02 0.06 0.06

12

5.3 A simple portfolio problem

The two previous subsections showed the effectiveness of the LR approach in the context of
knapsack problems. In fact, these problems are very well suited for the LR models, as the
slack variables in the model correspond to empty space in the the knapsacks, so encouraging
large slacks has a clear impact on the robustness of the final solution. There are however
other contexts where the correlation between slacks and robustness is more subtle, hence the
LR approach is less likely to be effective. However, it is important to stress that the LR
performance depends heavily on the model used (rather than on the problem itself), in the
sense that different models can lead to drastically different results in terms of robustness—a
property shared by other approaches to robustness, including the BS one.

To illustrate this point, we consider a simplified portfolio problem taken again from [6].
Given a set N = {1, . . . , n} of stocks, the i-th having an estimated return pi, a simplified
portfolio problem requires to select the fraction xi of wealth invested in stock i so as to
maximize the portfolio value equal to

∑
i∈N pixi. In real applications, the return value for

stock i (i ∈ N) is subject to uncertainty, i.e., it can differ by at most σi from the nominal
value.

A linear formulation for the portfolio problem can be obtained as follows:

max z (43)
z ≤

∑
i∈N

pi xi (44)

∑
i∈N

xi = 1 (45)

xi ≥ 0 i ∈ N (46)

We generated a portfolio instance as done in [6], using n = 150, and generating pi and σi

values as follows:

pi = 1.15 + i
0.05
150

and σi =
0.05
450

√
2n(n+ 1)i

so that stocks with higher return are also more risky. Note that the only uncertain constraint
in the above model is (44).

Table 7 gives the results on this problem, providing the same information as in the previous
tables; computing times are negligible for all approaches and are omitted. Column HLR∗ refers
to HLR applied to a different model, to be described later. Note that BinBS fails in finding
a feasible solution for the first two threshold values, for which the value Γ∗ is so small to be
below our binary search precision (of course, one could modify the binary search procedure
so as to deal with case Γ∗ = 0).

According to the table, LR provides results (in terms of robustness) somehow worse than
BinBS, which suggests that the LR slack variables are not effective in this context. This
is confirmed by the very bad performance of HLR, that returns solutions whose robustness
seems to be independent of the threshold. A closer look to the portfolio model clarifies the
situation. Given a threshold value z̄, an optimal solution of model (27)–(32) is given by
xi = x∗i , z = z̄, s = z∗− z̄, where x∗ denotes the optimal solution of the nominal problem and
z∗ its value. Hence, HLR will always keep the same solution x∗ and use the slack variable s
to absorb the allowed worsening of the objective function.

13

The above considerations would suggest that HLR is not applicable to the the portfolio
application. However this is not true, in that one can derive an alternative model where the
slack variables do play a role in terms of robustness (see also Bienstock [7] for a recent paper
based on a similar idea). Indeed, consider the alternative LP model

max z (47)
z =

∑
i∈N

zi (48)

zi ≤ pi xi i ∈ N (49)∑
i∈N

xi = 1 (50)

xi ≥ 0 i ∈ N (51)

By applying HLR to the above model one gets the results in column HLR∗ of Table 7, showing
that our heuristic LR approach produces much better solutions than those found by BinBS
with the original formulation.

Table 7: Results on a portfolio instance

BinBS LR(Γ = 15) HLR HLR∗

z̄ Γ∗ % Infeas % Infeas % Infeas % Infeas
1.1994 – – 50.09 50.09 47.96
1.1971 – – 49.97 49.60 42.88
1.1942 0.15 46.92 48.94 49.12 36.97
1.1855 1.03 37.79 49.10 47.63 19.03
1.1710 4.83 18.38 47.06 45.24 0.00
1.1652 7.18 11.23 22.72 44.30 0.00
1.1595 10.25 5.04 7.61 43.11 0.00
1.1537 14.06 2.02 1.98 42.19 0.00
1.1479 19.34 0.26 0.46 41.20 0.00

6 A real-world application: the train timetabling problem

In order to illustrate a possible application of the LR idea in a real world context, in this
section we review the approach recently proposed by Fischetti, Salvagnin and Zanette [10]
for finding robust railway timetables. We only give a brief sketch of the method and of the
corresponding computational results; the reader is addressed to [10] for details.

The Train Timetabling Problem (TTP) consists in finding an effective train schedule on
a given railway network. The schedule needs to satisfy some operational constraints given
by capacities of the network and security measures. Moreover, one is required to exploit
efficiently the resources of the railway infrastructure. In practice, however, the maximization
of some objective function is not enough: the solution is also required to be robust against
delays/disturbances along the network. Very often, the robustness of optimal solutions of the
original problem turns out to be not enough for their practical applicability, whereas easy-to-
compute robust solutions tend to be too conservative and thus unnecessarily inefficient. As

14

a result, practitioners call for a fast yet accurate method to find the most robust timetable
whose efficiency is only slightly smaller than the theoretical optimal one.

Fischetti, Salvagnin and Zanette (FSZ) [10] proposed and analyzed computationally al-
ternative methods to find robust and efficient solutions to the TTP, in its aperiodic (non
cyclic) version described in [9]. Their method is based on an event-based MIP model for the
nominal TTP, akin to the formulation proposed in [15] for the periodic (cyclic) case, and will
be outlined briefly in the sequel.

6.1 Measuring timetable robustness

FSZ implemented an external simulation-based validation module that is independent from
the optimization model itself, so that it can be of general applicability and allows one to
compare solutions coming from different methods. The module is required to simulate the
reaction of the railways system to the occurrence of delays, by introducing small adjustments
to the planned timetable (received as an input parameter). The underlying assumption here is
that timetabling robustness is not concerned with major disruptions (which are to be handled
by the real time control system and require human intervention) but is a way to control delay
propagation, i.e., a robust timetable has to favor delay compensation without heavy human
action. As a consequence, at validation time no train cancellation is allowed, and event
precedences are fixed with respect to the planned timetable.

The validation model analyzes a single delay scenario at a time. As all event precedences
are fixed according to the input solution to be evaluated, the nominal TTP constraints simplify
to linear inequalities of the form:

ti − tj ≥ di,j (52)

where ti and tj are time variables associated with significant events (typically, arrival and
departure of a train from a certain station), and di,j is a minimum trip time or minimum
rest/headway time. Let P denote the set of ordered pairs (i, j) for which a constraint of type
(52) can be written, and E denote the set of events.

The problem of adjusting the given timetable t under a certain delay scenario δω can thus
be rephrased as the following simple LP model with decision variables tω describing the best
possible adjustment of the published timetable t for the considered delay scenario:

min
∑
j∈E

(
tωj − tj

)
(53)

tωi − tωj ≥ di,j + δω
i,j (i, j) ∈ P (54)

tωi ≥ ti i ∈ E (55)

Constraints (54) correspond to linear inequalities just explained, in which the nominal right-
hand-side value δi,j is updated by adding the (possibly zero) extra-time δω

i,j from the current
scenario ω.

Constraints (55) are non-anticipatory constraints stating the obvious condition that one
is not allowed to anticipate any event with respect to its published value in the timetable.

The objective function is to minimize the “cumulative delay” on the whole network.
Given a feasible solution t, the validation tool keeps testing it against a large set of

scenarios, one at a time, gathering statistical information on the value of the objective function
and yielding a concise figure (the average cumulative delay) of the robustness of the timetable.

15

6.2 Finding robust solutions

Different techniques to enforce robustness were implemented by FSZ.

A fat stochastic model The first attempt to solve the robust version of the TTP was to
use a standard scenario-based SP formulation whose structure can informally be sketched as
follows:

min
1
|Ω|

∑
j∈E,ω∈Ω

(
tωj − tj

)
(56)

∑
h∈T

ρh ≥ (1− δ)z∗ (57)

tωi − tωj ≥ di,j + δω
i,j (i, j) ∈ P, ω ∈ Ω (58)

tωi ≥ ti i ∈ E,ω ∈ Ω (59)
ti − tj ≥ di,j (i, j) ∈ P (60)
li ≤ ti ≤ ui i ∈ E (61)

The model is similar to that used in the validation tool, but takes into account several
scenarios ω ∈ Ω at the same time. Moreover, the nominal timetable values tj are now viewed
as decision variables to be optimized—their optimal value will define the final timetable
to be published. The model keeps a copy of the original (linear) model with a modified
right hand side for each scenario, along with the original model; the original variables and
the correspondent second-stage copies in each scenario are linked through non-anticipatory
constraints.

The objective is to minimize the cumulative delay over all events and scenarios. The
original objective function (namely, the total train profit

∑
h∈T ρh, to be maximized, where T

is the set of trains) is taken into account through constraint (57), where δ ≥ 0 is the tradeoff
parameter and z∗ is the objective value of the reference solution. As to the single-train profit
variables ρh that appear in (57), they are linked to the timetable variables through appropriate
constraints (not shown in the model); see [10] for a complete model.

For realistic instances and number of scenarios this model becomes very time consuming
(if not impossible) to solve–hence we called it “fat”. On the other hand, also in view of its
similarity with the validation model, the fat model plays the role of a kind of “perfect model”
in terms of achieved robustness, hence it will be used for benchmark purposes.

A slim stochastic model Given the computing time required by the full stochastic model,
the following alternative SP model was designed, which is simpler yet meaningful for the TTP
problem.

min
∑

(i,j)∈P,ω∈Ω

wω
i,js

ω
i,j (62)

∑
h∈T

ρh ≥ (1− δ)z∗ (63)

ti − tj + sω
i,j ≥ di,j + δω

i,j (i, j) ∈ P, ω ∈ Ω (64)
sω
i,j ≥ 0 (i, j) ∈ P, ω ∈ Ω (65)

16

ti − tj ≥ di,j (i, j) ∈ P (66)
li ≤ ti ≤ ui i ∈ E (67)

In this model there is just one copy of the original variables, plus the recourse variables
sω
i,j that account for the unabsorbed extra times δω

i,j . It is worth noting that the above “slim”
model is inherently smaller than the fat one. Moreover, one can drop all the constraints
of type (64) with δω

i,j = 0, a situation that occurs very frequently in practice since most
extra-times in a given scenario are zero.

As to the objective function, it involves a weighted sum of the the recourse variables.
Finding meaningful values for the weights wω

i,j turns out to be very important. Indeed, we
will shown in the sequel how to define the weights so as to produce solutions whose robustness
is comparable with that obtainable by solving the (much more time consuming) fat model.

Light Robustness A LR approach was used in [10] to generate robust timetables. The
resulting method is related to the adjustable robustness paradigm used by Ben-Tal, El Ghaoui,
and Nemirovski [1] in the context of project management.

In our TTP model, a typical constraint reads

ti − tj ≥ di,j

where di,j is the coefficient affected by uncertainty, and its LR counterpart is simply defined
as

ti − tj + γi,j ≥ di,j + ∆i,j γi,j ≥ 0

where ∆i,j is a parameter fixing the desired (overconservative) protection level, and γi,j are
the slack variables whose weighted sum has to be minimized.

6.3 Computational Results

Computational tests were performed on four single-line medium-size TTP instances provided
by the Italian railway company, Trenitalia. An almost-optimal heuristic solutions for each of
these instances was computed through the algorithm described in [9], and used as a reference
solution to freeze the event precedences and to select the trains to schedule.

The overall framework was implemented in C++ and tested on a AMD Athlon64 X2 4200+
computer with 4GB of RAM running Linux 2.6. The MIP solver used was ILOG-Cplex 10.1.

As far as scenarios are concerned, for each train on the line and for each scenario FSZ gen-
erated the corresponding extra-time, 5% on average, drawn from an exponential distribution,
and distributed it proportionally to its train segments.

For each reference solution, a set of experiments was performed to compare the different
methods for different values of the tradeoff parameter δ giving the allowed percentage of wors-
ening of the nominal objective function, namely 1%, 5%, 10%, 20% and 40%. In particular,
we compared the following alternative methods:

• fat : fat stochastic model (50 scenarios only)

• slim1 : slim stochastic model with uniform objective function–all weights equal (400
scenarios)

17

• slim2 : slim stochastic model with enhanced objective function (400 scenarios), where
events arising earlier in each train sequence receive a larger weight in the objective
function. More specifically, if the i-th event of train h is followed by k events, its weight
in the objective is set to k + 1. The idea beyond this weighing policy is that early
extra-times in a train sequence are likely to propagate to the next ones, so they are
more important.

• LR: light robustness model, with objective function as in slim2 and protection level
parameters set to ∆ = −µ ln 1

2 , where µ is the mean of the exponential distribution. This
is the protection level required to absorb a delay of such distribution with probability
1
2 .

The results are reported in Table 8, where for each tradeoff parameter δ and railway line
we give, for each method, the level of robustness of the corresponding solution (measured
by the validation tool in terms of cumulative delay, in minutes—the smaller, the better) and
the required computing time (in CPU seconds). According to the table, fat, slim2 and LR
models produce solutions of comparable robustness (at least when the tradeoff parameter δ is
not unrealistically large), whereas slim1 is clearly the worst method. As to computing times,
the fat model is one order of magnitude slower than slim1 and slim2, although it uses only
50 scenarios instead of 400. LR is much faster than any other method, more than two orders
of magnitude w.r.t the fast stochastic models, and qualifies as the method of choice to attack
even larger instances.

7 Conclusions

In this paper we addressed optimization problems in which input data is affected by uncer-
tainty. Although many robust and/or stochastic programming models have been proposed
in the literature to handle such a situation, their applicability is sometimes far from satisfac-
tory. We proposed to deal with uncertainty by means of a new modelling framework that we
called Light Robustness (LR). Light Robustness couples robust optimization with a simpli-
fied two-stage stochastic programming approach based on the introduction of suitable slack
variables, and has a number of important advantages in terms of flexibility and ease to use.
Experiments on both random and real word problems show that LR is often able to produce
solutions whose quality is comparable with than obtained through stochastic programming or
robust models, though it requires much less effort in terms of model formulation and solution
time—even if this latter aspect appears to be less important in many applications.

According to our computational results, the LR approach is mostly successful when the
slack variables have a direct impact on robustness. For the cases where the correlation between
slacks and robustness is more subtle, the LR approach is less likely to be effective, though
an appropriate reformulation of the model can be highly beneficial. We have illustrated this
behavior on a simplified portfolio problem, where a simple LR scheme applied to a suitable
reformulation of the initial model produces extremely good results in term of robustness.

In our view, the LR framework is not a rigid technique, but a modelling framework where
robustness is achieved by first enforcing a demanding robustness/optimality goal, and then
by allowing for local violations of the constraints (absorbed by the slack variables) to deal
with possible infeasibility issues. As such, effective LR variants can be designed for specific
problems, such as the train timetabling problem recently addressed in [10].

18

Table 8: Comparison of different methods w.r.t. computing time and robustness (cumulative
delay in minutes), for different lines and tradeoff δ

δ Fat Slim1 Slim2 LR
Line Delay Time (s) Delay Time (s) Delay Time (s) Delay Time (s)

0% BZVR 16149 9667 16316 532 16294 994 16286 2.27
0% BrBO 12156 384 12238 128 12214 173 12216 0.49
0% MUVR 18182 377 18879 88 18240 117 18707 0.43
0% PDBO 3141 257 3144 52 3139 63 3137 0.25

Tot: 49628 10685 50577 800 49887 1347 50346 3.44
1% BZVR 14399 10265 15325 549 14787 1087 14662 2.13
1% BrBO 11423 351 11646 134 11472 156 11499 0.48
1% MUVR 17808 391 18721 96 17903 120 18386 0.48
1% PDBO 2907 250 3026 57 2954 60 2954 0.27

Tot: 46537 11257 48718 836 47116 1423 47501 3.36
5% BZVR 11345 9003 12663 601 11588 982 12220 1.99
5% BrBO 9782 357 11000 146 9842 164 10021 0.51
5% MUVR 16502 385 18106 86 16574 107 17003 0.45
5% PDBO 2412 223 2610 49 2508 57 2521 0.28

Tot: 40041 9968 44379 882 40512 1310 41765 3.23
10% BZVR 9142 9650 10862 596 9469 979 10532 2.01
10% BrBO 8496 387 10179 132 8552 157 8842 0.51
10% MUVR 15153 343 17163 84 15315 114 15710 0.43
10% PDBO 1971 229 2244 50 2062 55 2314 0.25

Tot: 34762 10609 40448 862 35398 1305 37398 3.20
20% BZVR 6210 9072 7986 538 6643 1019 8707 2.04
20% BrBO 6664 375 8672 127 6763 153 7410 0.52
20% MUVR 13004 384 15708 91 13180 116 13576 0.42
20% PDBO 1357 230 1653 55 1486 60 1736 0.28

Tot: 27235 10061 34019 811 28072 1348 31429 3.26
40% BZVR 3389 10486 4707 578 3931 998 5241 2.31
40% BrBO 4491 410 6212 130 4544 166 6221 0.53
40% MUVR 10289 376 13613 95 10592 108 11479 0.45
40% PDBO 676 262 879 55 776 57 1010 0.28

Tot: 18845 11534 25411 858 19843 1329 23951 3.57

19

Future research should investigate the applicability of the LR paradigm to other real life
problems, so as to highlight its pros and cons in various contexts.

Acknowledgments

This work was supported by the Future and Emerging Technologies unit of the EC (IST
priority), under contract no. FP6-021235-2 (project “ARRIVAL”) and by MiUR, Italy (PRIN
2006 project “Models and algorithms for robust network optimization”). We thank Domenico
Salvagnin and Arrigo Zanette for the implementation of the timetabling models.

References

[1] L. El Ghaoui A. Ben-Tal and A. Nemirovski. Robust Optimization. 2008. (in preparation)
preliminary draft available at http://www2.isye.gatech.edu/~nemirovs/RBnew.pdf.

[2] A. Ben-Tal and A. Nemirovski. Robust solutions to uncertain linear programs. Operations
Research Letters, 25:1–13, 1999.

[3] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems con-
taminated with uncertain data. Mathematical Programming, 88:411–424, 2000.

[4] A. Ben-Tal and A. Nemirovski. Robust optimization - methodology and applications.
Mathematical Programming, 92:453–480, 2002.

[5] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathematical
Programming, 98:49–71, 2003.

[6] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52:35–53, 2004.

[7] D. Bienstock. Histogram models for robust portfolio optimization. The Journal of Com-
putational Finance, 11(1), 2007.

[8] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series
in Operations Research and Financial Engineering. Springer, 2000.

[9] A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling
problem. Operations Research, 50:851–861, 2002.

[10] M. Fischetti, D. Salvagnin, and A. Zanette. Fast approaches to improve the robustness
of a railway timetable. Research paper, DEI, University of Padova, 2007.

[11] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, Germany,
2004.

[12] J.T. Linderoth, A. Shapiro, and S.J. Wright. The empirical behavior of sampling methods
for stochastic programming. Annals of Operations Research, 142:219–245, 2006.

[13] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Chichester, 1990.

20

[14] A. Ruszczynski and A. Shapiro. Stochastic Programming. Hanbooks in Operations
Research and Management Science. Elsevier, 2003.

[15] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems.
SIAM Journal on Discrete Mathematics, 2:550–581, 1989.

[16] A.L. Soyster. Convex programming with set-inclusive constraints and applications to
inexact linear programming. Operations Research, 21:1154–1157, 1973.

21

