
A Local Branching Heuristic for

Mixed-Integer Programs with 2-Level

Variables, with an Application to a

Telecommunication Network Design

Problem

Matteo Fischetti, Carlo Polo, Massimo Scantamburlo

DEI, University of Padova, Via Gradenigo 6/A, 35100 Padova, Italy

e-mail: matteo.fischetti@unipd.it

April 2003; Revised, October 2003

Abstract

Effective heuristic solution methods for general Mixed-Integer Programs

(MIPs) are strongly required in many practical applications, and have been

the subject of an intensive research effort in the recent years.

Fischetti and Lodi [6] recently proposed an exact solution technique based

on the use of branching conditions expressed through (invalid) linear inequal-

ities called local branching cuts. In the concluding remarks of their paper,

these authors anticipated the possibility their method be used to design a

genuine MIP metaheuristic framework akin to Tabu Search (TS) or Variable

Neighborhood Search (VNS), based on an external MIP solver.

In the present paper we introduce and analyze computationally a specific

implementation of the above idea. In particular, we address MIPs with bi-

nary variables, and propose a variant of the classical VNS scheme that we

call Diversification, Refining, and Tight-refining (DRT). The new approach is

intended to be of high generality, but exploits the specific structure of some

MIPs where the set of binary variables partitions naturally into two levels,

with the property that fixing the value of the first-level variables produces an

easier-to-solve (but still hard) subproblem. This is often the case, e.g., in hard

facility location problems arising in telecommunication network design.

Our method detects automatically the presence in the MIP model of the

first-level binary variables, if any, according to simple heuristic criteria. This

information is then exploited during the intensification phase of the local

search, so as to explore nested solution neighborhoods defined by local branch-

ing cuts affecting the first- and second-level variables in a different way.

Computational results for a hard facility location problem arising in telecom-

munication UMTS network design [7] are presented, with a comparison among

1

different heuristic methods: the general-purpose commercial ILOG-Cplex 7.0

MIP code, the original Fischetti-Lodi local branching heuristic scheme, the

new DRT method, and (for some instances) ad-hoc TS and VNS heuristics.

The results show that the DRT method, though very simple to implement,

provides better heuristic solutions than the alternative methods on all the

instances of our test bed.

Key words: Mixed-Integer Programs, Heuristics, Facility Location Problems

1 Introduction

Effective heuristic solution methods for general Mixed-Integer Programs (MIPs) are
strongly required in many practical applications, and have been the subject of an
intensive research effort in the recent years; see [2], [4], [8], [9], [10], [11], [12], [15],
[16], and [18], among others.

Fischetti and Lodi [6] recently proposed an exact solution technique based on
the use of branching conditions expressed through (invalid) linear inequalities called
local branching cuts. They considered a generic MIP with 0-1 variables of the form:

(P) min cT x (1)

Ax ≥ b (2)

xj ∈ {0, 1} ∀j ∈ B 6= ∅ (3)

xj ≥ 0, integer ∀j ∈ G (4)

xj ≥ 0 ∀j ∈ C (5)

where the variable index set N := {1, · · · , n} is partitioned into (B,G, C). Here
B 6= ∅ is the index set of the 0-1 variables, whereas the possibly empty sets G and
C index the general integer and the continuous variables, respectively.

Given a feasible reference solution x̄ of (P) and a nonnegative integer parameter
k, the k-OPT neighborhood of x̄ is defined as the set of the feasible solutions of (P)
satisfying the additional local branching constraint:

∆(x, x̄) :=
∑

j∈B:x̄j=1

(1− xj) +
∑

j∈B:x̄j=0

xj ≤ k (6)

where the two terms in left-hand side count the number of binary variables flipping
their value (with respect to x̄) either from 1 to 0 or from 0 to 1, respectively.

The local branching constraint is used in [6] as a branching criterion within an
enumerative scheme for (P). Indeed, given the incumbent solution x̄, the solution
space associated with the current branching node can be partitioned by means of
the disjunction

∆(x, x̄) ≤ k or ∆(x, x̄) ≥ k + 1 (7)

where the neighborhood-size parameter k is chosen appropriately. The approach
alternates high-level strategic phases where the local branching cuts are used to

2

define ‘promising’ solution regions, and low-level tactical phases where these regions
are implicitly enumerated through a classical branching-on-variable strategy. The
result is a completely general exact scheme aimed at favoring early updatings of the
incumbent solution, hence producing high-quality solutions at early stages of the
computation.

In the concluding remarks of their paper, Fischetti and Lodi anticipated the
possibility their method be used to design a genuine MIP metaheuristic framework
akin to Tabu Search (TS) [10] or Variable Neighborhood Search (VNS) [17]. In-
deed, all the main ingredients of these metaheuristics (defining the current solution
neighborhood, dealing with tabu solutions or moves, imposing a proper diversifica-
tion, etc.) can easily be modelled in terms of linear cuts to be dynamically inserted
and removed from the model. The metaheuristic scheme is then built on top of a
general-purpose MIP solver, which is used as a black box to explore solution neigh-
borhoods defined by the original MIP model amended by suitable local branching
cuts. This leads naturally to a completely general TS or VNS framework for MIPs,
which is easy to implement and hopefully as effective as (and sometimes even better
than) ad-hoc TS or VNS methods designed for specific problems.

In the present paper we introduce and analyze computationally a specific imple-
mentation of the above idea. Our aim is to show how the local branching paradigm
can be specialized for important classes of problems, so as to obtain a (still quite
general) heuristic scheme with improved performance. In particular, we propose a
variant of the classical VNS scheme that we call Diversification, Refining, and Tight-
refining (DRT). The new approach is particularly suited for those MIPs in which
the set of binary variables can be partitioned into two sets (called levels), with the
property that fixing the value of the first-level variables produces an easier-to-solve
(but non trivial) subproblem.

In particular, our method applies to any network design problem which involves
two levels of decisions: a choice of facilities to install on arcs or nodes of a network,
and the determination of routings connecting different commodities; see [3] for
a recent annotated bibliography on network design. A familiar example is the
Facility (or Plant) Location Problem (FLP) with hard side constraints, where the
first-level binary variables correspond to the choice of the facilities to be activated,
whereas the second-level binary variables refer to link activation between facilities
and customers. These kinds of models are very important in practice [13] and arise,
e.g., in UMTS telecommunication network design (see [1, 7, 19, 20], among others).
A second example arises for MIPs involving big-M coefficients for the first-level
variables, whose negative effect in the quality of the LP relaxation vanishes as soon
as these variables are fixed to either 0 or 1.

The method we propose detects automatically the presence in the MIP model
of the first-level binary variables, if any, according to simple heuristic criteria. This
information is then exploited during the intensification phase of the local search,
so as to explore nested solution neighborhoods defined by local branching cuts
constraining the variation of the first- and second-level variables in a different way.
In particular, during the refining phases the first-level variables are (almost) fixed to
their current value in the reference solution, so as to allow for an effective redefinition

3

of all other variables.
The paper is organized as follows. The basic DRT method is described in Sec-

tion 2. In Section 3 we discuss how to partition automatically the binary variables
into the two level sets required by the DRT method. Section 4 presents computa-
tional results on the UMTS telecommunication network design problem addressed in
[7]. We compare different heuristic methods: the general-purpose commercial MIP
solver ILOG-Cplex 7.0, the original Fischetti-Lodi local branching heuristic scheme,
the new DRT method, and (for some instances) ad-hoc TS and VNS heuristics. The
results show that the DRT method provides better heuristic solutions than the al-
ternative methods on all the instances of our test bed. Some conclusions are drawn
in Section 5, whereas a DRT pseudo-code and the parameter files used in the com-
putational tests are given in the Appendix.

2 The DRT method

Let us consider the MIP problem (P) defined in the introduction, and assume the
binary variable index set B has been partitioned into (B1,B2), where the (possibly
empty) sets B1 and B2 correspond to the first- and second-level variables, respec-
tively.

Given a current target solution x̄ of problem (P), we aim at exploring as effec-
tively as possible the solution neighborhood obtained by (almost) fixing the first-
level variables to their current value in x̄. In this phase, called refining, we start by
simply adding the following constraint

∆1(x, x̄) :=
∑

j∈B1:x̄j=1

(1− xj) +
∑

j∈B1:x̄j=0

xj ≤ k1 (8)

to the current MIP, where parameter k1 is fixed to a very small value (e.g., k1 = 2
or even k1 = 0). We then apply a general-purpose MIP solver in the attempt to
solve the resulting model–the input upper bound for the MIP solver is set to the
value of the best feasible solution so far.

If the model is not solved to proven optimality within a given time limit, we enter
a tight-refining heuristic phase where the first-level variables are still constrained
by (8), but we also limit the variation of the second-level variables through local-
branching constraints of the type

∆2(x, x̄) :=
∑

j∈B2:x̄j=1

(1− xj) +
∑

j∈B2:x̄j=0

xj = k2 (9)

for increasing values of the neighborhood size k2 = 0, kstep
2 , 2kstep

2 , · · · , kmax
2 , where

kstep
2 and kmax

2 are input parameters to the DRT procedure (typically, kstep
2 = 2 and

kmax
2 = 10). In this way we explore through the general-purpose MIP solver (with

an appropriate time limit) a sequence of second-level neighborhoods, all of which are
contained in the first-level neighborhood defined by (8). The tight-refining phase
ends when k2 reaches its maximum allowed value kmax

2 , or when the overall time
limit for this phase is reached.

4

We then remove constraints (8) and (9) from the current MIP, and proceed
by considering a different setting for the first-level variables. This diversification
phase is implemented according to the VNS idea that the new setting for the first-
level variables should be (different but) sufficiently close to the current one. To be
specific, we add the diversification constraint

kmin
1 ≤ ∆1(x, x̄) ≤ kmax

1 (10)

to the current model, and look for any (in principle, random) feasible solution of
it. As in [6], this is obtained through the black-box MIP solver, which is run with
no input upper bound and aborted as soon as the first heuristic solution is found.
This hopefully produces a good-quality (but still almost random) solution to be
used as the reference point x̄ for the subsequent iteration. If no solution is found
within a given time limit, parameters kmin

1 and kmax
1 are iteratively modified so as

to define larger and larger neighborhoods, according to a simple rule described in
the Appendix.

It should be observed that the above scheme can lead us to consider twice a
same first-level variable setting. To avoid this risk, before replacing the current
reference solution x̄ with the new one, we follow the TS paradigm and add the tabu
constraint

∆1(x, x̄) ≥ 1 (11)

to the current MIP, in a static way (i.e., this constraint will never be removed from
the model).

The DRT method requires a clever choice of the first-level variables. This choice
can be left to the model designer who can provide explicitly the list of the first-level
variables, based on his/her understanding of the MIP problem at hand. Simple
criteria will be described in the next section to derive a fast automatic procedure
that works well in many practical cases arising in network design problems.

Moreover, it should be observed that our DRT method works correctly even in
case no first-level variables exist (i.e., when B1 = ∅), as in this case it becomes
a descent method based the exploration of a sequence of solution neighborhoods
defined by the local branching constraints (9).

The overall DRT method is outlined in the figure below. In each step, the so-far
best feasible solution is implicitly updated. On the first execution of the repeat-until
loop, a diversification (rather than a refining) step is immediately performed, as the
first reference solution x̄ found by some heuristic is likely to be of good quality, hence
fixing its first-level variables typically does not result into a significant improvement.

The way we choose the DRT parameters–in particular, the time limit for each
phase–can lead to different results. Setting a large time limit for the intensification
phase will lead us to exploring in a deep way just a few first-level variable configu-
rations. In some cases, better results are expected by allowing for a larger number
of diversifications, even if a short time limit is imposed for each intensification. We
have therefore implemented a DRT variant, called DRT2, where we try to prevent

5

Algorithm 1 : The overall DRT method
find heuristically a “good” starting reference solution x̄, e.g., by applying the
MIP solver with a short time limit;
repeat

add statically the tabu constraint (11) to the current MIP;
add temporarily the diversification constraint (10) to the current MIP, and
apply the MIP solver (with no upper bound) to find a first feasible solution
that replaces x̄;
remove the diversification constraint, and (almost) fix the first-level variables
to their value in x̄ by adding temporarily constraint (8) to the current MIP;
solve heuristically the resulting MIP through the MIP solver, possibly
adding a sequence of temporary local branching constraints (9) for nested-
neighborhood exploration;
remove all temporary constraints

until the overall time limit is exceeded

spending too much computing time in exploring first-level configurations not lead-
ing to a significant improvement of the current solution. To this end, as soon as we
detect the risk of stalling we force the algorithm to make a big diversification step
in which a larger number of first-level variables is required to change. Parameters
of this strategy are (a) the percentage of improvement used to detect the situation
of stalling, (b) the maximum number of no-improvement iterations before a big di-
versification, (c) the number of first-level variables to change in a big diversification
phase, and (d) the maximum number of big diversifications allowed.

3 Detecting first-level variables automatically

In many important cases, the logical structure of a MIP model implies a self-evident
two-level variable structure. We have addressed two different situations, associated
with the presence into the model of (a) “logical dependencies” between binary vari-
ables, or (b) big-M coefficients controlled by binary variables.

As an example of the first case, consider the well-known Facility Location Prob-
lem (FLP) [13]. We are given a set N of customers along with a set M of possible
locations for activating the facilities. Let cij be the cost for connecting customer
i ∈ N to the facility active in location j ∈ M , and let fj be the fixed set-up cost
to install a facility in location j ∈ M . The problem consists in determining the
locations where the facilities have to be activated as well as the way to assign the
customers to them, with the goal of minimizing the overall cost for installing the
facilities and for connecting them to the customers. A simple MIP model for FLP
then reads:

minimize
∑
i∈N

∑
j∈M

cijxij +
∑
j∈M

fjyj

6

subject to ∑
j∈M

xij = 1 ∀i ∈ N (12)

xij ≤ yj ∀i ∈ N, j ∈ M (13)

xij ∈ {0, 1} ∀i ∈ N, j ∈ M (14)

yj ∈ {0, 1} ∀j ∈ M (15)

where yj = 1 iff a facility is activated in location j ∈ M , and xij = 1 iff customer
i ∈ N is assigned to the facility in location j ∈ M . Constraints (12) state that each
customer has to be assigned to exactly one facility location, whereas constraints
(13) impose that customers can only be assigned to locations where a facility has
been installed.

The structure of the model above leads to a sort of “logical dependency” of the
x-variables from the y-variables, in the sense that, because of (13), setting yj = 0
forces to zero all the variables xij for i ∈ N . Hence the y and the x variables qualify
to play the role of first- and second-level variables, respectively.

In some cases, the logical dependency between binary variables can be hidden
somehow in the model. This arises, e.g., when the model contains “aggregated”
constraints as in the capacitated version of FLP. Here each facility location j ∈ M

has a given capacity Kj > 0 whereas each customer i ∈ N has a certain facility
request ki ≥ 0. This introduces into the model constraints of the form:

∑
i∈N

kixij ≤ Kjyj , ∀j ∈ M (16)

As before, a simple analysis of the constraint shows that setting yj = 0 implies
xij = 0 for i ∈ N with ki > 0. Hence, the presence into the MIP model of
constraints of the type (16) can be used to detect automatically first-level variables,
as outlined in the sequel.

A second practical case in which the distinction between first- and second-level
variables can hopefully be automatized arises for MIP models where certain binary
variables are used to activate/deactivate linear constraints as, e.g., in the constraint
below:

∑
i

wixi ≤ w0 + My (17)

where y is a binary variable and M is a large positive value. The logic underlying this
kind of constraints is that one wants to either impose the linear constraint

∑
i wixi ≤

w0, or else requires y = 1 so as to pay a certain cost in the objective function (or
to activate other restrictions associated with case y = 1). It is however well know
that the LP relaxation of the model is only marginally affected by constraints of the
form (17), since the LP solution (x∗, y∗) can have

∑
i wix

∗
i > w0 without the need

7

of setting y∗ = 1, since the (very small) fractional value y∗ :=
∑

i(wix
∗
i − w0)/M

already suffices to fulfill (17). This behavior makes constraints of the form (17)
almost useless in the LP relaxation, which then produces very poor lower bounds
for the MIP problem. In this respect, fixing variable y is likely to have a strong
effect on the solvability of the resulting MIP problem, which suggests defining y as
a first-level variable.

Detecting automatically (a) logical dependencies between variable pairs, and
(b) the presence of binary variables used to activate/deactivate some constraints,
essentially consists in performing a sensitivity analysis of the LP relaxation of the
MIP model. Indeed, a binary variable xj qualifies for playing the role of a first-level
variable in case (a) setting xj = 0 forces the setting of other integer variables in
the LP relaxation, or (b) setting xj = 1 (or xj = 0) makes a specific constraint
redundant in the LP relaxation. In order to avoid a time-consuming analysis of this
type, however, in our implementation we used the following very simple heuristic
criteria.

We initialize B1 = ∅, and possibly include some predefined variables. We then
consider, in sequence, each constraint

∑
j

αjxj ≤ α0 (or
∑

j

αjxj = α0) (18)

in the MIP model that involves at least two integer variables (one of which binary).
Our first criterion for adding a binary variable to the current first-level set B1 is
related to the concept of “logical dependency” between variables. Assuming that
each variable xj is bounded by LBj ≤ xj ≤ UBj , the minimum value for the left-
hand side term in (18) is obtained when all variables with a positive coefficient αj

are set to their lower bound LBj , whereas all variables with a negative coefficient
αj are set to their upper bound UBj . With this variable setting, the total slack for
the constraint attains its maximum value, namely:

δmax := α0 −
(∑

j:αj>0

αjLBj +
∑

j:αj<0

αjUBj

)
(19)

Our first condition to insert a binary variable xj into the first-level set B1 is:

αj < 0 : |αj |(UBj − LBj) ≥ δmax (20)

as in this case setting xj = LBj(= 0) implies that all other variables with a nonzero
coefficient αj are forced to keep their (upper or lower) bound value as in (19).

Our second criterion for inserting a binary variable xj in B1 is aimed at capturing
the presence of a big-M coefficient αj in (18). To this end, we compute the average
value αAV G of the nonzero |αj |’s in the left-hand side of (18), and insert a binary
variable xj into B1 in case |αj | > bigMperc ·αAV G, where bigMperc is a predefined
parameter (after some testing, we found that bigMperc = 5 works well in most
applications).

8

Though very simple, the above procedure proved adequate in detecting automat-
ically the first-level variables, in particular for the MIP models that typically arise
in telecommunication network design. More sophisticated approaches can however
be designed, which also take into account “logical dependencies” related to setting
certain binary variables to value 1, make a more clever sensitivity analysis of the
LP relaxation of the model, etc. For the most difficult cases, the model designer
himself can integrate the procedure by providing on input to the DRT method a
(partial or complete) list of forced first-level binary variables.

4 Computational results

We have performed tests on several instances of a hard FLP problem arising in
UMTS (standing for Universal Mobile Telecommunication System) network plan-
ning, as addressed in [7]. Runs were made on a PC Pentium III/1GHz with 380MB
RAM, Microsoft Visual C++ 6.0 compiler, and Windows XP OS. For each run we
imposed a limit time of 3 hours (10,800 seconds). ILOG Cplex 7.0 [5] was used as
the black-box external MIP solver.

4.1 The problem

The basic architecture of a UMTS network includes the following devices:

• Mobile Terminal (MT) of different types (e.g., phone, fax, video, computer,
etc.).

• Base Transceiver Station (BTS) interfacing mobile users to the fixed network;
a BTS handles users’ access and channel assignment. Due to the inherent BTS
flexibility, different network topologies can be undertaken: the BTS can be
either directly connected to the switching equipment (smart BTS) or linked
to a BTS controller (CSS).

• Cell Site Switch (CSS), which is a switch connected to several BTS’s on one
side and to a single Local Exchange (see below) on the other side; each CSS is
devoted to the management of local traffic inside its controlled area, as well as
to the connection of the controlled BTS’s to the Local Exchange; for technical
reasons, CSS’s are often of two types (type 1 and 2) and differ, e.g., for the
cost and maximum controlled traffic.

• Local Exchange (LE), which is a switch connecting the BTS’s to the network,
either directly or through CSS’s.

In UMTS jargon, BTS’s are often called terminals while CSS’s and LE’s are called
concentrators. The network with BTS-CSS or BTS-LE links is known as access
network and the one with CSS-LE links is the first-level fixed network. They both
can be star-shaped or generic networks. The design of a UMTS network can then
be subdivided into three phases: (1) decide the number and locations of the con-
centrators and the assignment of terminals to the concentrators; (2) design the ac-

9

cess network (terminals-concentrators); and (3) design the first-level fixed network
(concentrators-concentrators).

In the specific problem we consider, a certain number of potential CSS’s and
LE’s sites is given, among which the planner has to choose those to be actually
activated. We consider a three level star-shaped UMTS architecture, defined by
an upper layer made up of active LE’s (chosen in the given set of potential LE’s),
a middle layer made up of active CSS’s (also chosen in the given set of potential
CSS’s), and a lower layer made up of the given BTS’s (each of which is required
to play the role of a leaf in the star-type structure). The problem then consists in
choosing the CSS and LE to be activated, and the way to connect them to the BTS’s
and between each other, so as to produce a feasible three-level network of minimum
cost; see Figure 4.1 for an illustration. Moreover, a number of hard side-constraints
are imposed on the number of devices and on the traffic that can be associated to
each concentrator, etc.

Figure 1: UMTS network structure

The binary variables of our MIP model include:

yCSS−h
j =

1 if a CSS of h type is installed in location j assigned to

a concentrator installed at location j

0 otherwise

10

yLE
k =

{
1 if a LE is installed in location k

0 otherwise

xBTS−CSS
ij =

1 if a BTS in location i is assigned to

a CSS installed in location j

0 otherwise

xBTS−LE
ik =

1 if a BTS in location i isassigned to

a LE installed in location k

0 otherwise

xCSS−LE
jk =

1 if a CSS in location j isassigned to

a LE installed in location k

0 otherwise
For the sake of brevity, we do not report here the MIP model we work with; the
interested reader is referred to [7]. With respect to this formulation, the first-level
binary variables (automatically detected by the DRT code) are those concerning
the activation of the LE’s and CSS’s, namely yCSS−h

j ∈ {0, 1}∀j = 1, ..,m;h = 1, 2
and yLE

k ∈ {0, 1}∀k = 1, . . . , p.

4.2 Test bed

Table 1 reports the main characteristics of the MIP instances in our test bed. For
each instance we report the number of BTS’s, CSS’s and LE’s, the number of
constraints (rows) and variables (columns) in the associated MIP model, and the
number of first- and second-level variables found automatically by the DRT method.
We also report the cost of the best feasible solution found during the present study
(Best), in Euro, the value of the root-node LP relaxation of the MIP model (LB),
and their percentage gap (%Gap) computed as 100(Best− LB)/Best.

percentage gap

11

NAME BTS CSS LE n. rows n. cols |B1| |B2| Best LB %Gap

UMTS-1 50 4 2 473 334 10 308 10,760,529 10,646,775 1.06

UMTS-2 55 6 3 681 498 13 455 11,595,031 11,554,350 0.35

UMTS-3 60 5 4 809 614 12 562 12,393,173 12,339,360 0.43

UMTS-4 65 6 4 972 738 14 676 13,376,204 13,317,114 0.44

UMTS-5 100 8 4 1741 1316 20 1232 19,731,006 19,705,894 0.13

UMTS-6 105 9 5 2119 1628 23 1515 21,950,121 20,570,225 6.29

UMTS-7 110 9 6 2394 1836 24 1704 22,969,378 21,610,413 5.92

UMTS-8 115 10 6 2660 2046 26 1900 23,978,221 22,701,546 5.32

UMTS-9 150 12 6 3739 2946 30 2772 30,089,580 29,177,750 3.03

UMTS-10 155 13 7 4376 3406 33 3191 31,081,092 30,259,843 2.64

UMTS-11 160 13 8 4710 3706 34 3464 31,984,753 31,234,374 2.35

UMTS-12 165 14 8 4984 4002 36 3742 32,834,623 32,063,919 2.35

UMTS-13 175 15 8 6428 4424 38 4145 34,711,383 34,104,825 1.75

UMTS-14 185 17 9 7034 5313 43 4963 36,580,069 36,130,049 1.23

UMTS-15 200 20 10 8271 6650 50 6200 39,181,447 38,855,799 0.83

UMTS-16 215 22 10 10051 7595 54 7100 41,905,498 41,779,804 0.30

UMTS-17 225 24 10 11217 8429 58 7890 45,038,257 43,670,898 3.04

UMTS-18 235 25 10 11890 9036 60 8475 46,861,037 45,594,865 2.70

UMTS-19 250 26 10 13227 9843 62 9260 49,613,181 48,536,040 2.17

UMTS-20 300 28 10 16213 12307 66 11680 58,663,150 58,046,858 1.05

Table 1: Test bed characteristics.

4.3 Preliminary analysis

Table 2 is taken from Polo [19] and provides a comparison between the very prelim-
inary implementation of the DRT method presented in [19] and three alternative
heuristics: the problem-specific TS algorithm described in [14], a general-purpose
VNS scheme based on ILOG-Cplex 7.0 (as described in [19]), and the general-
purpose MIP solver ILOG-Cplex 7.0 (with its MIPEmphasis parameter set to 1 for
better heuristic performance). It should be stressed that the problem-specific TS
heuristic used in the comparison is a quite sophisticated one, and its implementa-
tion required about 6,000 lines of C++ code. The other two codes are instead more
general, and required less than 2,000 lines of code each (of course, not including the
MIP solver).

The preliminary test was performed on a PC Pentium III/350MHz with 128MB
RAM, Microsoft Visual C++ 6.0 compiler, Windows 98 OS.

The table reports the objective function improvement of the DRT method when
compared with an alternative heuristic, say HEU, computed as:

δ := HEU objective value−DRT objective value

As we are considering minimization problems, a positive value means that the DRT
method performed better than the alternative heuristic HEU.

12

VNS Cplex 7.0 Tabu Search

UMTS-1 0 0 0
UMTS-2 0 0 0
UMTS-3 -5,734 -2,471 -3,829
UMTS-4 0 0 68,650
UMTS-5 5,885 0 271,924
UMTS-6 1,745 2,110 201,801
UMTS-7 1,853 291 129,522
UMTS-8 1,940 19,311 21,980
UMTS-9 49,546 53,975 50,823
UMTS-10 40,918 1,660 56,396
UMTS-11 37,251 47,660 72,439
UMTS-12 23,195 33,629 63,288
UMTS-15 64,462 99,748 59,173

Table 2: Solution improvements obtained through a preliminary implementation of
the DRT method with respect to VNS, ILOG-Cplex 7.0, and TS. A positive entry
indicates a better performance of the DRT method.

The table shows that, even in its preliminary implementation, the DRT method
compares very favorably with the compared heuristics, and in particular with the
problem-specific TS method.

4.4 Computational analysis

Table 3 compares the performance of our DRT method with four alternative heuris-
tics: (1) the Local Branching method with the UMTS parameter setting suggested
in [6]; (2) the MIP solver ILOG-Cplex 7.0 with its MIPEmphasis parameter set to 1
so as to deliver improved heuristic solutions; (3) the DRT variant DRT2 described
at the end of Section 2; and (4) the DRT method with no first-level variables. The
first-level neighborhood parameter in (8) was set to k1 = 0, i.e., all the first-level
variables are fixed during each refining phase. More details on the parameters used
in the experiments are reported in the Appendix.

The table reports the absolute improvement of DRT over each alternative heuris-
tic, namely δ := HEU objective value − DRT objective value. In addition, we
report the percentage DRT improvements with respect to the initial MIP gap, com-
puted as:

δ % :=
100 δ

DRT objective value− LB

where LB is the root-node MIP lower bound reported in Table 1. As before, a
positive δ (or δ %) means that DRT performed better than the alternative algorithm.

13

Cplex 7.0 DRT2 DRT (|B1| = 0) LocBra

problem δ δ % δ δ % δ δ % δ δ %

UMTS-1 455 0.40 0 0.00 895 0.79 0 0.00
UMTS-2 24,786 60.93 200 0.49 4,567 11.23 7 0.02
UMTS-3 0 0.00 0 0.00 3,940 7.32 0 0.00
UMTS-4 1,814 3.07 0 0.00 4,158 7.04 22,327 37.78
UMTS-5 729 2.90 6,000 23.89 7,126 28.38 491 1.96
UMTS-6 0 0.00 0 0.00 0 0.00 76,846 5.57
UMTS-7 3,994 0.29 288 0.02 4,393 0.32 818 0.06
UMTS-8 12,399 0.97 110 0.01 53,828 4.22 45,263 3.55
UMTS-9 45,625 4.98 -3,588 -0.39 104,057 11.37 301,436 32.93
UMTS-10 13,443 1.64 712 0.09 86,229 10.50 328,667 40.02
UMTS-11 79,412 10.56 -1,532 -0.20 120,047 15.97 135,307 18.00
UMTS-12 51,678 6.64 -7,904 -1.02 109,940 14.12 125,391 16.10
UMTS-13 61,417 10.13 3,821 0.63 139,919 23.07 53,885 8.88
UMTS-14 2,281 0.51 3,634 0.81 97,169 21.59 29,244 6.50
UMTS-15 100,973 31.01 2,042 0.63 276,331 84.86 159,167 48.88
UMTS-16 191,918 126.28 -26,284 -17.29 330,300 217.33 146,954 96.69
UMTS-17 125,304 8.88 -44,239 -3.13 220,255 15.60 140,390 9.95
UMTS-18 110,685 8.59 -22,878 -1.77 684,995 53.14 264,419 20.51
UMTS-19 67,965 6.24 -11,454 -1.05 623,342 57.26 111,361 10.23
UMTS-20 429,981 69.73 -369 -0.06 882,212 143.06 548,595 88.96

Table 3: Solution improvements of DRT w.r.t. ILOG-Cplex 7.0, DRT2, DRT with
no first-level variables, and Local Branching. A positive entry indicates a better
performance of the DRT method.

According to the table, the DRT and DRT2 methods outperformed the other
heuristics on all the instances of the test bed. The DRT and DRT2 methods can be
considered almost equivalent, in that none of the two dominates clearly the other,
though DRT2 seems to be preferable for large instances. As expected, the DRT
method with no first-level variables exhibits a quite poor performance.

A comparison between ILOG-Cplex 7.0 and Local Branching shows that the
latter tends to produce worse solutions. A similar behavior for UMTS network
design problems was observed in [6]. Evidently, the default Local Branching scheme
in not particularly suited for this kind of MIP instances. An explanation is that
this scheme, in its generality, makes no distinction between first- and second-level
variables, hence it cannot define very effective neighborhoods for UMTS instances.
As a matter of fact, the unsatisfactory performance of the original Local Branching
scheme on UMTS instances gave us motivation to investigate a Local Branching
variant capable of detecting automatically (and exploiting) certain relevant MIP
structures, thus originating the research reported in the present paper.

To better highlight the behavior of the five heuristics we compared, and in par-
ticular their capability of providing soon good heuristic solutions, we plot in Figure

14

2 the heuristic solution values they produced for instance UMTS-13 (for Cplex, the
monotonically non-increasing value of the incumbent solution is reported).

Figure 2: Heuristic trends when solving instance UMTS-13.

15

5 Conclusions

Many real-world optimization problems are difficult to solve. Very often, these prob-
lems are first approached within the MIP framework, and (sometimes quite sophis-
ticated) models are designed in the hope they can be solved to proven optimality–or
within an acceptable error–by a commercial MIP solver. If this is not the case, one
often forgets about the developed MIP models and concentrates on ad-hoc local-
search heuristics, often based on the enumeration of solution neighborhoods defined
by a series of more and more sophisticated problem-specific “moves”.

In this paper we have investigated a different approach, where the MIP model
plays an important role even in the heuristic phase. This is motivated by the fact
that commercial MIP solvers are nowadays quite stable and powerful tools, that
we would like to exploit even when they prove not adequate for the solution of the
original MIP as a whole. A key point of our method is that we use a local-search
paradigm where the solution neighborhoods are defined by suitable “locality” linear
constraints to be added to the original MIP model, so we can invoke an external
MIP solver for their exploration. This allows for a tight and fruitful cooperation
between the local-search framework and the MIP solver.

We have proposed a simple-to-implement local search scheme that we called Di-
versification, Refining, and Tight-refining (DRT). The new approach is particularly
suited for those MIPs in which the set of binary variables can be partitioned into
two sets (called levels), with the property that fixing the value of the first-level
variables produces a easier-to-solve (but nontrivial) subproblem.

Our method detects automatically the presence in the MIP model of the first-
level binary variables, if any, according to simple heuristic criteria. This information
is then exploited during the intensification phase of the local search, so as to explore
nested solution neighborhoods defined by local branching cuts constraining the vari-
ation of the first- and second-level variables in a different way. In particular, during
the refining phases the first-level variables are (almost) fixed to their current value
in a certain reference solution, so as to allow for an effective redefinition of all other
variables.

Computational results on a hard UMTS telecommunication network design
problem are presented. The outcome is that, on our test-bed, the DRT method
clearly outperforms other heuristics from the literature, including an ad-hoc (and
quite sophisticated) implementation of a classical tabu-search method based on a
series of problem-specific moves.

Future research should investigate the effectiveness of the DRT method on other
network design problems. Also to be investigated is the possibility of implementing
more powerful procedures to detect first-level variables in a more general setting.

6 Acknowledgements

Work partially supported by M.I.U.R. and C.N.R., Italy, and by the EU project
DONET. Special thanks are due to Andrea Lodi who provided us with his imple-
mentation of the Local Branching framework.

16

References

[1] E. Amaldi, A. Capone and F. Malucelli. Planning UMTS Base Station Lo-
cation: Optimization Models with Power Control and Algorithms. Tehcnical
Report, University of Milano, 2002

[2] E. Balas, S. Ceria, M. Dawande, F. Margot and G. Pataki. OCTANE: A New
Heuristic For Pure 0-1 Programs. Operations Research 49(2), 207–225, 2001.

[3] A. Balakrishnan, T.L. Magnanti and P. Mirchandani. Network Design, in: M.
DellAmico, F. Maffioli, S. Martello (Eds.), Annotated Bibliographies in Com-
binatorial Optimization, Wiley, New York, 311–334, 1997.

[4] E. Balas and C.H. Martin. Pivot-and-Complement: A Heuristic For 0-1 Pro-
gramming. Management Science 26(1), 86–96, 1980.

[5] Cplex. ILOG Cplex 7.0 User’s Manual and Reference Manual. ILOG, S.A.,
2001 (http://www.ilog.com)

[6] M. Fischetti and A. Lodi. Local Branching. Mathematical Programming Ser.
B, 98, 23-47, 2003.

[7] M. Fischetti, G. Romanin Jacur and J.J. Salazar Gonzáles. Optimization of
the Interconnecting Network of a UMTS Radio Mobile Telephone System. Eu-
ropean Journal of Operational Research, 144, 56-67, 2003.

[8] F. Glover and M. Laguna. General Purpose Heuristics For Integer Program-
ming: Part I. Journal of Heuristics 2, 343–358, 1997.

[9] F. Glover and M. Laguna. General Purpose Heuristics For Integer Program-
ming: Part II. Journal of Heuristics 3, 161–179, 1997.

[10] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston,
Dordrecht, London, 1997.

[11] F. S. Hillier. Effcient Heuristic Procedures For Integer Linear Programming
With An Interior. Operations Research 17(4), 600–637, 1969.

[12] T. Ibaraki, T. Ohashi and H. Mine. A Heuristic Algorithm For Mixed-Integer
Programming Problems. Mathematical Programming Study 2, 115–136, 1974.

[13] M. Labbé and F.L. Louveaux. Location Problems, in: M. DellAmico, F. Maf-
fioli, S. Martello (Eds.), Annotated Bibliographies in Combinatorial Optimiza-
tion, Wiley, New York, 261-281, 1997.

[14] A. Laspertini. Third-generation Mobile Telephone Systems: Optimal Design of
the Interconnecting Network. Master Dissertation, University of Padova, Italy,
1997 (in Italian).

[15] A. Løkketangen. Heuristics for 0-1 Mixed-Integer Programming. In P.M. Parda-
los and M.G.C. Resende (ed.s) Handbook of Applied Optimization, Oxford Uni-
versity Press, 474–477, 2002.

17

[16] A. Løkketangen and F. Glover. Solving Zero/One Mixed Integer Programming
Problems Using Tabu Search. European Journal of Operational Research 106,
624-658, 1998.

[17] N. Mladenov́ıc and P. Hansen. Variable Neighborhood Search. Computers and
Operations Research 24, 1097–1100, 1997.

[18] M. Nediak and J. Eckstein. Pivot, Cut, and Dive: A Heuristic for 0-1 Mixed
Integer Programming. Research Report RRR 53-2001, RUTCOR, Rutgers
University, October 2001.

[19] C. Polo. Heuristic Methods for the Optimal Design of the Interconnecting
Network in a UMTS Radio Mobile Telephone System. Master Degree thesis,
University of Padova, 2002 (in Italian).

[20] H. Yaman. Concentrator location in telecommunication network. Master Dis-
sertation, University of Bruxelles, 2002

A Appendix: the DRT and DRT2 pseudo code

We next outline a possible pseudo-code of the DRT algorithm and of its variant
DRT2 (where big diversification steps are allowed).

The main function DRT has been divided in four subroutines. In the main
while loop we alternate the big diversification, diversification, refining and tight
refining phases. Diversification and big diversification are basically the same–they
only differ for the diversification parameters k’s, which become kbig’s in case of a
big diversification. The termination condition is based on the time limit and on the
maximum number of diversifications and big diversifications allowed.

Function solve(parms) represents a call to the external MIP solver (e.g., ILOG-
Cplex); the argument parms represents a set of parameters passed to the solver (such
as time limit, MIP emphasis, etc.). The function returns the best feasible solution
found within the given termination conditions (time limit, etc.); in case no solution
if found, the function returns a dummy empty solution.

All parameters can be set by the user, through an appropriate parameter file,
and include:

18

name meaning

time limit maximum computational time for the whole DRT
max big div number maximum number of big diversifications allowed
max div number maximum number of diversifications allowed
max div with no improv maximum number of diversifications without im-

provement before performing a big diversification
percgap percentage gap used to check whether a solution

leads to a significant improvement
kini
1 (TY PE) starting value for the TY PE (diversification or big

diversification) parameter kmin
1 (TY PE) used in con-

straint (10)
kstep
1 (TY PE) step-size for kmin

1 (TY PE)
k1 used in the refining constraint (8)
kstep
2 neighborhood-size step used during the tight refining

phase
kmax
2 maximum neighborhood-size allowed during the

tight refining phase

Additional input parameters include the time limit for each phase (initial search, di-
versification, big diversification, refining, tight refining), plus some extra parameters
possibly required by the MIP solver.

19

function DRT(DRT parms)
current solution = solver(start parms)
if current solution is optimal then

output(current solution)
return

end if
if current solution is empty then

output(”no starting solution can be found”)
return

end if
num div=0; num div with no improv=0
while (execution time < time limit) and (num div < max div number) and
(num big div < max big div number) do

add the tabu constraint (11) with respect to the current solution
if num div with no improv==max div with no improv then

num div with no improv=0
num big div++
DIVERSIFICATION(current solution,BIG)

else
DIVERSIFICATION(current solution,NO BIG)

end if
abort execution if time limit exceeded
REFINING(current solution)
if current solution is not guranteed to be optimal for its neighborhood then

TIGHT-REFINING(current solution)
end if
update best solution
remove the refining and tight refining constraints (8) and (9), respectively
if best solution is percgap percent better than the one of the previous diver-
sification then

num div no improv=0; num div no improv=0
else

num div no improv++
end if

end while
output(best solution)

20

function DIVERSIFICATION(current solution, TYPE)
kmin
1 = kini

1 (TY PE)
repeat

kmax
1 = kmin

1 + kstep
1 (TY PE)

add constraint (10) for diversification with respect to current solution
current solution = solve(diversif parms)
kmin
1 = kmin

1 + kstep
1 (TY PE) + 1

remove the constraint for diversification
num div++

until (execution time=time limit) or (current solution is not empty)
update best solution

function REFINING(current solution)
add constraint (8) for refining with respect to current solution
current solution = solve(refining parms)
if current solution is guaranteed optimal for the current neighborhood then

remove the constraint for refining
end if

function TIGHT-REFINING(current solution)
k2 = 0
repeat

add constraint (9) for tight refining with respect to current solution
new solution = solve(tightref parms)
if new solution is better than current solution then

current solution=new solution
k2 = 0

else
k2 = k2 + kstep

2

end if
remove the tight refining constraint

until (execution time > time limit) or (k2 > kmax
2)

B Appendix: parameter setting

We next report the parameter files we used for the computational tests.

B.1 DRT setting

Total time limit (hours) : 3

Maximum number of diversifications : 1000

Global algorithm Cplex parameters

21

Tree memory limit : 128

Node storage file indicator : 1

Parameters for initial general research

Time limit (minutes) : 60

Maximum number of nodes : 5000000

Precedence to optimality (0) or to feasibility (1) : 1

Which number of admissible solutions before stopping : 4

Parameters for diversification

Time limit (minutes) : 30

Maximum number of nodes : 5000000

Minimum number of level-1 variable changes of status : 1

Step increment : 2

Parameters for refining

Time limit (minutes) : 5

Maximum number of nodes : 5000000

Parameters for tight refining

Time limit (minutes) : 3

Maximum number of nodes : 5000000

Abs tolerance on gap between best solution and lower bound : 1e-009

Rel tolerance on gap between best solution and lower bound : 1e-009

Minimum number of level-2 variable changes of status : 1

Maximum number of level-2 variable changes of status : 4

Step increment : 2

B.2 DRT2 setting

Total time limit (hours) : 3

Maximum number of diversifications : 10000

Maximum number of big diversifications : 4

Parameters for big diversification

Maximum number of diversifications without improvement : 5

Minimum Gap of improvement (percentage 0-100) : 5

Minimum number of level-1 variable changes of status : 5

Step increment : 2

Global algorithm Cplex parameters

Tree memory limit : 128

Node storage file indicator : 1

22

Parameters for initial general research

Time limit (minutes) : 60

Maximum number of nodes : 5000000

Precedence to optimality (0) or to feasibility (1) : 1

Which number of admissible solutions before stopping : 4

Parameters for big and small diversification

Time limit (minutes) : 10

Maximum number of nodes : 5000000

Minimum number of level-1 variable changes of status : 1

Step increment : 2

Parameters for refining

Time limit (minutes) : 5

Maximum number of nodes : 5000000

Parameters for tight refining

Time limit (minutes) : 3

Maximum number of nodes : 5000000

Abs tolerance on gap between best solution and lower bound : 1e-009

Rel tolerance on gap between best solution and lower bound : 1e-009

Minimum number of level-2 variable changes of status : 1

Maximum number of level-2 variable changes of status : 4

Step increment : 2

B.3 Local Branching setting

Total time limit (hours): 3

Node time limit (seconds) : 600

MIP emphasis: 1 (ILOG-Cplex emphasis on feasibility)

MIP presolve: 1 (do apply ILOG-Cplex presolver)

MIP heuristic frequency : 10 (ILOG-Cplex heuristics applied at each 10th

node)

MIP precision: 0 (ILOG-Cplex default precision)

MIP print interval : 10

MIP number of time intervals : 100

Local Branching neighborhood size k : 20

Local Branching type of cuts: 0 (default=symmetric local branching constraints)

Local Branching exact/heuristic flag: 0 (heuristic version)

Video output: 1 (yes)

23

