
Branching on nonchimerical fractionalities

Matteo Fischetti and Michele Monaci

DEI, Università di Padova, Italy

{matteo.fischetti, michele.monaci}@unipd.it

Submitted: 6 April 2011; Revised: 26 October 2011

Abstract

In this paper we address methods for selecting the branching variable in an enumerative
exact algorithm for Mixed-Integer Programs—a crucial step for the effectiveness of the
resulting method. Many branching rules have been proposed in the literature, most
of which are based on the impact of branching constraints on the LP solution values
at the child nodes. Among them, strong branching turns out to be the most effective
strategy in reducing the number of branching nodes, though its associated overhead may
be substantial in most cases.

In this paper we present heuristics to speed-up the strong branching computation, and
also to reduce the set of candidate branching variables by removing the variables whose
fractionality is just chimerical, in the sense that it can be fixed by allowing for a little
worsening of the objective function. Extensive computational results on instances from
the literature are presented, showing that an average speedup of two can be achieved
with respect to a standard full strong branching implementation. This is particularly
encouraging if one considers the proof-of-concept nature of our implementation.

1 Introduction

In this paper we address branching strategies for the exact solution of a generic MIP, in
minimization form

min{cTx : Ax ≤ b, xj integer ∀j ∈ I}

where x ∈ <n, b ∈ <m, and I ⊆ N := {1, · · · , n} denotes the (nonempty) index set of the
integer-constrained variables. At any given branching node, we denote by x∗ the optimal
solution available for the current LP relaxation, and by F (x∗) := {j ∈ I : x∗j is fractional} its
fractional support (restricted to the integer-constrained variables). When no confusion arises,
we write F instead of F (x∗).

Computationally speaking, branching is one of the most crucial steps in Branch&Cut
methods for the optimum solution of general Mixed-Integer Linear Programs (MIPs). In this
paper we will concentrate on branching on a single variable (still the most commonly used
policy in practice), and will address the key problem of how to select the fractional variable
to branch on. This topic has received considerable attention in the last years, starting from
the computational study by Linderoth and Savelsbergh [10] on different branching rules.

Several branching criteria have been adopted in the literature. The simplest criterion is to
branch on the most-fractional variable, i.e., to select a branching variable xb (b ∈ F ), whose
fractional part in the LP relaxation solution x∗ is as close as possible to 0.5. This is however
well known to be a very poor choice in most cases, in that it performs not significantly
better then just choosing xb at random; see Achterberg, Koch, Martin [3]. This behavior
can be illustrated in a qualitative way as follows. Consider a 0-1 knapsack problem with
side constraints (possibly including previously-generated cutting planes), where both large
and small items are present. Due to side constraints, many fractionalities might arise as a

1



consequence of the fact that an optimal LP solution has to squeeze 100% optimality, taking
full advantage of any possible option in “breaking” the items. As a result, one could face a
situation where a single large item with small fractionality is present, together with several
small items with any kind of fractionality. A clever branching rule should of course be able
to detect the large fractional item, but the presence of a lot of other “disturbing but less
relevant” fractionalities might trick it and favor an ineffective branching on a small item. The
picture is even worse for MIPs involving big-M coefficients to model conditional constraints,
where an “important” binary variable activating a critical constraint often has an LP value
very close to zero, so it is seldom used for branching.

A much more robust branching policy, known as Full Strong Branching (FSB), was pro-
posed by Applegate, Bixby, Chvátal and Cook [4]. It consists in simulating branching on all
fractional variables and in selecting the actual branching variable xb among those that give
the best progress in the dual bound. This approach typically leads to much smaller branch-
ing trees, but introduces a quite large overhead at each node because of the need of solving
two LPs for each candidate branching variable. Cheaper versions are therefore preferred in
practice, where strong branching is applied to a (small) subset of the fractional variables, LP
reoptimizations are aborted after a small number of dual pivots, and other information such
as pseudocosts [5] is used to avoid LP reoptimizations as much as possible. A quite effective
scheme based on pseudocosts is known as reliability branching and was proposed by Achter-
berg, Koch, Martin [3]. The approach by Patel and Chinneck [12] and by Pryor and Chinneck
[13], instead, does not use pseudocost information but is based on the impact of branching
on the constraints that are active in the current LP relaxation; computational experiments
show that this allows one to get an integer solution faster than in the traditional approaches.
Achterberg [1, 2] proposed inference branching, a method strictly related to SAT solvers that
considers domain reductions deriving from branching constraints. Karzan, Nemhauser, and
Savelsbergh [8] recently proposed a more sophisticated approach where a restart strategy is
used to collect information that is used in the branching variable selection. In [7] we analyzed
a backdoor branching strategy also based on restart.

Extensive computational experiments on different branching policies have been performed
in Achterberg [2] by using the open-source Branch&Cut software SCIP. A comparison between
FSB and the best available branching rule (reliability branching) shows that FSB reduces the
average number of nodes by 75%, while doubling computing time. As a consequence, a
speedup of 2x in the FSB implementation would suffice to make it be the fastest option—at
least, in the considered SCIP environment.

In the present paper we aim at finding a computationally cheaper way to gather the
same information as FSB by solving fewer LPs. In order to test new research ideas and
directions, we decided to try to escape the “local optimal” common practice where a clever
mixture of strong branching and pseudocost information is used. In particular, we deliberately
avoided to exploit any pseudocost information in our methods, so as to be forced to find
valid alternatives—though future practical implementations of our ideas could benefit from
exploiting pseudocost information as well, as outlined in our concluding remarks.

The paper is organized as follows. In Section 2 we discuss three FSB variants that allows
one to obtain similar information as FSB by solving a significantly smaller number of LPs.
In Section 3 we evaluate the effect of the new branching rules on a large testbed of hard
MIPs from the literature, showing that a speedup of two can be achieved with respect to
a standard FSB implementation, thus making the proposed variants comparable with more
sophisticated branching rules implemented in the state-of-the-art codes. Some conclusions

2



are finally drawn in Section 4, with a preliminary analysis with a hybrid branching scheme
making use of pseudocost information.

2 Chimerical vs nonchimerical fractionalities

According to the previous discussions, we found it useful to qualitatively distinguish between:

i) chimerical fractionalities x∗j that can be fixed by only a small deterioration of the objec-
tive function, i.e., such that an almost-optimal LP feasible solution x̃ exists satisfying
either x̃j ≤ bx∗jc or x̃j ≥ dx∗je

ii) nonchimerical fractionalities x∗j , for which branching on xj has a large impact on the
LP solution.

According to the discussion on knapsack problems of the previous section, we may think of
chimerical fractionalities as being associated with small items, whereas nonchimerical frac-
tionalities correspond to large items.

FSB can be viewed as a computationally-expensive way to detect nonchimerical fraction-
alities. (Another very interesting option to detect nonchimerical fractionalities is to study
the implication of branching constraints through, e.g., constraint propagation, as suggested
by Patel and Chinneck [12]).

In Section 2.1 we address the design of a specialized FSB implementation. This proce-
dure turns out to produce the same information as the standard implementation of FSB, but
requires the solution of a smaller number of LPs. Sections 2.2 and 2.3 present two computa-
tionally cheaper alternatives to FSB, that are still able to get rid of chimerical fractionalities
that would confound branching.

2.1 Parametrized full strong branching

A standard FSB implementation works as follows. Recall that F denotes the fractional
support of the optimal LP solution x∗ found at a given branching node. Let score(l0, l1)
be the score function to be maximized when selecting the branching variable, e.g., score =
min(l0, l1), or score = l0 ∗ l1, or alike. We assume function score to be monotone, in the
sense that decreasing argument l0 and/or l1 cannot improve the associated score—as it is
the case in practice for all reasonable score functions one can think of. For each j ∈ F ,
one solves two LPs to compute LB0j (resp. LB1j) as the LP-value increase when branching
down (resp. up) on xj , thus obtaining scorej = score(LB0j , LB1j). In the end, a variable
xb with maximum scoreb is selected for branching.

In order to save the solution of as many LPs as possible, a parametrized version can
be designed along the following lines. Values LB0j and LB1j are treated as just upper
bounds on the corresponding LP worsenings, and a flag f0j (respectively, f1j) is used to
indicate whether LB0j (resp., LB1j) has been computed exactly. A key observation is that
the LP solution computed when simulating branching on a certain variable xk can be used
to update the upper bound values LB0j and/or LB1j for other variables xj , thus hopefully
saving LP computations at a later time. (We became recently aware that a similar technique
was independently suggested, for disjunction branching, by Ashutosh Mahajan in his PhD
dissertation [11].)

Here is a rough sketch of how our parametrization works.

3



1. Initialize LB0j := LB1j :=∞ and f0j := f1j := FALSE for all j ∈ F

2. Updating algorithm

(a) Look for the candidate variable xk that has maximum score,

(b) if (f0k = f1k = TRUE) DONE

(c) exactly compute LB0k (or LB1k), update f0k (or f1k), and repeat

(d) KEY STEP: whenever a new LP solution x̃ is available:

i. possibly update LB0j if x̃j ≤ bx∗jc for some j ∈ F
ii. possibly update LB1j if x̃j ≥ dx∗je for some j ∈ F

A more detailed description is given in Algorithm 1.

Algorithm 1: Parametrized Full Strong Branching—the basic scheme.

input : the current LP solution x∗ and its fractional support F 6= ∅;
output: index k of the branching variable;

1 initialize LB0j := LB1j :=∞ and f0j := f1j := FALSE ∀j ∈ F ;
2 while TRUE do
3 compute scorej =score(LB0j , LB1j) for all j ∈ F ;
4 let k := arg max{scorej : j ∈ F};
5 if (f0k = f1k = TRUE) then return(k);
6 if (f0k = FALSE) then
7 solve LP with the additional constraint xk ≤ bx∗kc, thus obtaining solution x̃;
8 set δ := cT x̃− cTx∗, LB0k := δ, and f0k := TRUE

9 else
10 solve LP with the additional constraint xk ≥ dx∗ke, thus obtaining solution x̃;
11 set δ := cT x̃− cTx∗, LB1k := δ, and f1k := TRUE

12 end
13 for j ∈ F s.t. x̃j ≤ bx∗jc do
14 LB0j := min{LB0j , δ};
15 if (δ = 0) then f0j := TRUE

16 end
17 for j ∈ F s.t. x̃j ≥ dx∗je do
18 LB1j := min{LB1j , δ};
19 if (δ = 0) then f1j := TRUE

20 end

21 end

As already mentioned in the introduction, the standard implementation of FSB embedded
within almost all commercial solvers halts each LP reoptimization after a small number of dual
pivots, so as to keep computing time under control. When such a limit is imposed, one can
still use the parametrization algorithm, in which case some of the LB0 and LB1 values may
not represent valid upper bounds on the associated LP worsenings. Indeed, computational
experiments reported in Section 3 show that the use of such pivot limits does not affect the
viability of our method.

4



2.2 Perseverant branching

A common practice to limit strong-branching overhead is to restrict the list F of the fractional
variables candidate for branching. A rather effective heuristic is based on the use of pseudocost
information collected in the previous nodes, that provide statistics on the effect of branching
on certain variables; we refer the reader to Achterberg [1] for an in-depth discussion of this
topic.

We next propose a different approach to reduce the candidate branching list, based on
the observation that the use of a “robust” criterion such as strong branching makes it very
unlikely to select a chimerical branching variable at the top of the branching tree. So, it makes
sense to insist as much as possible on branching on a variable that was already selected as the
branching variable at a previous node. A further motivation for such a choice is to hopefully
reduce the size of the overall branching set needed to complete the enumeration, acting as a
heuristic for the so-called backdoor introduced by Dilkina et al. [6].

The resulting policy, that we call perseverant branching, is a simple variant of FSB that
consists of keeping in the candidate strong-branching list F only the indexes of the variables
that were already selected for branching in a previous branching node. Of course, in the case
the reduced list would be empty (as it happens, e.g., at the root node) we restore the original
list F containing the indexes of all fractional variables, and apply FSB to it.

2.3 Asymmetric branching

Our third modification of standard FSB is based on the observation that, for most practical
instances, the “down branching” xk ≤ bx∗kc is more critical than the “up branching” xk ≥
dx∗ke. This is particularly true for 0-1 MIPs where setting a certain binary variable to 1
corresponds to a relevant choice that implies tight restrictions, whereas the opposite setting
to 0 leaves the problem almost unchanged (as, e.g., in set covering/partitioning or set packing
problems, or in network design problems modeled through big-M conditions triggered by the
value 1 of certain binary variables). For these problems, just a few up branches in a diving
path suffice in fathoming the current node, and the total number of branching nodes mainly
depends of down-branching choices.

In this situation, one can argue that the entries of LB1 do not convey relevant branching
information, in the sense that a sensible score would mainly depend on the entries of LB0.
Therefore one would like to avoid solving the LPs needed for the exact computation of any
LB1k. With this aim, we define an “asymmetric” variant of our parametrized FSB where the
flags f1j are all initialized to TRUE, meaning that values LB1j will be possibly updated (for
free) but never be responsible for the overhead incurred when solving a new LP.

Finally, we observe that asymmetric branching is very much related to the structure of the
problem at hand, hence it has to be used with some care as we cannot expect it to work well in
all cases—e.g., flipping the binary variables of a 0-1 MIP model does not change the problem
at hand, but likely would have a bad impact on the performance of asymmetric branching.

3 Computational results

The following two main score functions, denoted as min and prod, respectively, have been
proposed in the literature:

• score(LB0, LB1) = min(LB0, LB1)

5



• score(LB0, LB1) = max(LB0, ε) ∗max(LB1, ε)

where ε is a small value used to break ties in case one of the two terms LB0, LB1 is zero. The
latter function was proposed by Achterberg [1], and is currently considered the best option
for full strong branching. We also report results on the min score to see the effects of our
criteria on top of this option.

All experiments were performed on a PC Intel Core i5 running at 2.67GHz. Our procedures
were coded in C language and were embedded within the general solver IBM ILOG Cplex 12.2
using callback functions. All codes were run in single-thread mode. We addressed all the
instances considered in Achterberg, Koch, Martin [3], plus all those from Karzan, Nemhauser,
Savelsbergh [8] that are not classified as “easy” and all instances of the recent MIPLIB2010
library of instances [9] that belong to classes “benchmark”, “hard” and “tree”. For each
such problem, we considered a modified instance obtained after the root-node preprocessing
routines have been applied. Following [8], to have a fair comparison of branching rules, in
all runs we disabled all further preprocessing, heuristic and cut generation procedures, and
provided the solver with the optimal solution value as the upper cutoff.

Firstly, we solved all instances with our implementation of the standard FSB strategy
with an upper bound of 20 dual pivots for each LP reoptimization inside the branch-selection
procedure, prod score function, and a time limit of 10,000 CPU seconds. We removed all
instances not solved to optimality within the given time limit, plus those just solved by the
preprocessing routine, thus obtaining our final testbed containing 60 instances.

For each instance we compared:

• a standard full strong branching implementation (FSB); for a fair comparison, we did
not use IBM ILOG Cplex’s internal procedure CPXstrongbranch for computing strong-
branching information, because this procedure has direct access to the internal data-
structure and does not need, e.g., to refactor the basis each time the optimal LP basis
is restored and a new branching is simulated;

• the parametrized version of FSB described in Section 2.1 (PFSB);

• the perserverant (parametrized) branching procedure described in Section 2.2 (PPFSB);

• the asymmetric perseverant (parametrized) branching procedure described in Section
2.3 (APPFSB);

• our implementation of Reliability Branching (RB) [3, 1], intended as a proxy for the
default branching rule adopted by state-of-the-art solvers. According to this rule, the
prod score is used, the score for a given candidate variable being computed according
to pseudocosts only if the variable is reliable, i.e., if it has been selected for branching
at least ηrel times; as suggested in [1], we used ηrel = 8. For non-reliable candidates,
the highly-optimized CPXstrongbranch Cplex’s function was used to compute strong
branching information.

Table 1 gives the outcome of our experiments; more details are reported in the Appendix
(Table 4). For each algorithm and score function we report the geometric mean of computing
time (in CPU seconds) and, in parenthesis, the associated ratio with respect to the computing
time of the reference algorithm (i.e., the standard implementation of FSB), the number #uns.
of instances that are not solved to optimality within the time limit, and the number of

6



min prod

Time #uns. #nodes Time #uns. #nodes

FSB 749.25 (1.59) 5 36,240 471.00 (1.00) 0 20,916
PFSB 446.82 (0.95) 4 39,096 355.68 (0.76) 0 20,852

PPFSB 262.36 (0.56) 2 39,193 214.08 (0.45) 0 21,563
APPFSB 212.62 (0.45) 1 45,923 199.41 (0.42) 1 43,956

RB 226.19 (0.48) 1 49,681

Table 1: Average results (geometric means) for different branching rules with at most 20 dual
pivots for each LP reoptimization.

branching nodes. Note that our implementation of both FSB and PSFB uses exactly the
same lexicographic rule to break ties in the choice of the branching variable, so the two
methods produce the same enumeration tree—small variations in the total number of nodes
only depend on very rare numerical issues that trick the lexicographic order. As the optimal
solution value is provided on input and cut generation is deactivated, the number of nodes
explored during enumeration should in principle only depend on the branching policy, i.e.,
node selection should play no role in our setting. However, numerical considerations related,
e.g., to the frequency of LP basis refactorization may change the LP solution and hence
the whole search path in an erratic way, so in our experiments we decided to use IBM ILOG

Cplex’s default node selection rule.
As expected, Table 1 shows that the min function is much worse than its prod counterpart

in the standard FSB setting, as it leads to an almost doubled number of branching nodes and
to an increase of more than 50% of the overall computing time (on average, 749 instead of
471 seconds). However, our parametrization scheme proved very well suited for the min score,
and the difference between the two scores is less pronounced in the PFSB setting (on average,
446 seconds for min instead of 355 seconds for prod). The difference between the two score
functions becomes even smaller for PPFSB and for APPFSB. In any case, the prod score
qualifies as the best option for all methods.

As to the computing time required by the four methods when using the same prod score,
PSFB, PPFSB and APPFSB exhibit a speedup factor with respect to FSB of about 1.3, 2.2
and 2.3, respectively. Still with respect to FSB, the number of nodes is almost unchanged
for PFSB (as expected), slightly increased by PPFSB, and doubled by APPFSB. As already
mentioned, the number of FSB and PSFB nodes are not always identical because ties can be
broken in a different way. The perseverant branching rule seems to be beneficial in reducing
the time per node without significantly affecting the total number of nodes, whereas the main
merit of the asymmetric rule is the reduction of the computational overhead spent at each
node to detect the branching variable. For the instances in our testbed, RB produced slightly
worse results than APPFSB, in terms of both computing time and number of nodes.

Tables 2 gives the same information as in Table 1, when the algorithms are executed with
different limits on the number of dual pivots for each LP reoptimization within the branching
procedure, namely 10, 50 and no upper bound, respectively. For the sake of comparison, the
last line of the table reports the performance of our Reliability Branching implementation,
taken from Table 1.

7



pivot min prod

k Time #uns. #nodes Time #uns. #nodes

FSB 10 944.77 (2.01) 13 83,843 909.15 (1.93) 16 71,964
PFSB 10 734.77 (1.56) 12 94,345 721.98 (1.53) 13 82,268

PPFSB 10 580.32 (1.23) 8 92,776 574.34 (1.22) 12 84,536
APPFSB 10 485.77 (1.03) 9 122,676 496.69 (1.05) 9 125,035

FSB 50 775.92 (1.65) 8 31,635 431.90 (0.92) 0 16,419
PFSB 50 432.25 (0.92) 4 35,209 312.30 (0.66) 0 16,489

PPFSB 50 254.52 (0.54) 1 34,581 204.51 (0.43) 0 17,934
APPFSB 50 226.50 (0.48) 2 47,236 224.08 (0.48) 1 45,255

FSB inf 871.27 (1.85) 8 26,597 513.99 (1.09) 2 13,273
PFSB inf 438.86 (0.93) 5 32,782 335.79 (0.71) 1 13,988

PPFSB inf 278.61 (0.59) 2 33,866 222.76 (0.47) 1 15,144
APPFSB inf 211.23 (0.45) 2 41,826 212.43 (0.45) 3 41,228

RB 226.19 (0.48) 1 49,681

Table 2: Average results (geometric means) for different branching rules with at most k dual
pivots for each LP reoptimization within the branching procedure.

The results confirm that PFSB leads to a considerable speedup with respect to the stan-
dard FSB implementation, whichever the score function and the upper limit on the number
of dual pivots. Again, further reductions of the computing times can be obtained by also
implementing the perseverant and asymmetric branching rules.

4 Conclusions and future work

We have proposed simple modifications of the well-known full strong branching policy and
have shown through computational tests that they lead to a significant performance improve-
ment.

Future research should investigate a tighter integration of the new policies with state-of-
the-art strategies for branching using pseudocost information. As a first step in this direction,
we next report the outcome of preliminary experiments with a simple hybrid branching
strategy using pseudocost information. To be specific, we use a method based on full strong
branching (FSB or PFSB or PPFSB) at the first 10 levels of the branching tree and for the
first θ branching nodes, where θ is an input parameter, and then switch strong branching
computation off and resort to a standard pseudocost selection rule. The rational of this
scheme is that, when enough branching nodes have been explored, pseudocost information is
assumed to be reliable enough to allow for an effective selection of the branching variable.
Note that, in this new context, the APPFSB scheme is less attractive in that most of the
computing time is expected to be spent after the first θ nodes, so the increased number of
nodes expected as a consequence of the use of the asymmetric branching rule is not likely to
be compensated by a substantial reduction of the average computing time per node.

Table 3 reports the average values (geometric means) of the computing time and number
of nodes, along with the number of unsolved instances, for different different values of θ of the
hybrid algorithm when strong branching is implemented, respectively: (i) in the standard

8



way, (ii) in the parametric version of Section 2.1, and (iii) in the perseverant parametrized of
Section 2.2. All these algorithms were run with the dual pivot limit k = 20. The performance
of our Reliability Branching implementation is also given. For benchmarking purposes, the
table also reports the performance of IBM ILOG Cplex 12.2 in its default setting (without
heuristics and any further preprocessing) when the optimal solution value is given on input.
Observe however that this software has a native (highly-optimized) access to its own internal
structures, and is allowed to fully exploit strong branching information for variable fixing,
propagation, and early node fathoming. Hence a direct comparison of IBM ILOG Cplex’s
performance with that of the other methods would be not completely fair. For the methods
for which the value of θ is immaterial, only the first row of the table is used.

FSB+pcosts PFSB+pcosts PPFSB+pcosts RB IBM ILOG Cplex

θ Time #nodes #uns. Time #nodes #uns. Time #nodes #uns. Time #nodes #uns. Time #nodes #uns.

0 223.24 95,727 1 214.14 96,055 0 143.03 75,855 0 226.19 49,681 1 48.00 32,825 0
500 212.90 64,134 1 194.98 64,152 0 133.68 55,419 0

1,000 226.50 58,848 1 203.12 58,959 1 131.60 50,374 0
5,000 258.38 41,092 0 214.74 41,067 0 138.32 39,205 0

10,000 282.23 36,268 0 237.67 36,268 0 148.31 34,964 0

Table 3: Average results (geometric means) for hybrid algorithms exploiting pseudocosts.

According to Table 3, for any value of θ our parametrized full strong-branching version
(PFSB+pcosts) is about 10% faster than the standard one (FSB+pcosts), while the addi-
tional use of our perseverant rule (PPFSB+pcosts) adds a further 30% speedup. As long
as computing time is concerned, the best results for both FSB+pcosts and PFSB+pcosts
are obtained for θ = 500, whereas increasing the value of θ to 1,000 allows PPFSB+pcosts
to reduce by more than 30% the computing time, and by about 20% the number of nodes.
Reliability Branching turns out to be competitive in terms of number of nodes, but it does
not produce improved results in terms of average computing time—at least, in our implemen-
tation. As expected, IBM ILOG Cplex 12.2 turns out to be significantly faster than all other
methods, as its proprietary dynamic search policy leads to a number of nodes comparable to
case θ = 10, 000 but requires much shorter computing time as a result of its tight integration
within the solver.

Future work should address the integration of the ideas presented in this paper into more
sophisticated (open source or commercial) solvers; a first step in this direction has been
already performed by the IBM ILOG Cplex’s team [14] in the latest version.

5 Appendix

Table 4 gives more detailed results on the performance of FSB, FSB+pcosts, APPFSB,
PPFSB+pcosts, each with its best-tuned parameter θ. For all algorithms, an upper bound
of 20 dual pivots is imposed for each LP reoptimization within the branching procedure, and
the prod function is used. In addition, results for both Reliability Branching and IBM ILOG

Cplex 12.2 (the latter in its default setting, providing the optimal solution value on input
and disabling preprocessing and heuristics) are given. The last two lines of the table report
geometric means for each algorithm: the former considers all the 60 instances in our testbed,
whereas the latter includes only those problems that were solved to proven optimality by all

9



the algorithms—all instances but problems neos-1396125, neos13 and ns1688347.
Performance profile plots about computing time and number of nodes are given in Figure 1

for all the algorithms considered in Table 4. As already observed, IBM ILOG Cplex 12.2 is the
clear winner in terms of speed, PPFSB+pcosts being its best alternative. As to branching
nodes, the best method is FSB (as expected), followed by IBM ILOG Cplex and APPFSB.

Acknowledgments

This research was supported by the Progetto di Ateneo on “Computational Integer Program-
ming” of the University of Padova, and by MiUR, Italy (PRIN project “Integrated Approaches
to Discrete and Nonlinear Optimization”). Thanks are also due to an anonymous referee for
his/her helpful comments.

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität
Berlin; Fakultät II - Mathematik und Naturwissenschaften. Institut für Mathematik,
2007.

[2] T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming
Computation, 1:1–41, 2009.

[3] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research
Letters, 33:42–54, 2005.

[4] D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook. Finding cuts in the tsp. Technical
report 95-09, DIMACS, March 1995.

[5] M. Bénichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and O. Vincent.
Experiments in mixed integer linear programming. Mathematical Programming, 1:76–94,
1971.

[6] B.N. Dilkina, C.P. Gomes, Y. Malitsky, A. Sabharwal, and M. Sellmann. Backdoors to
combinatorial optimization: Feasibility and optimality. In Willem Jan van Hoeve and
John N. Hooker, editors, CPAIOR, volume 5547 of Lecture Notes in Computer Science,
pages 56–70. Springer, 2009.

[7] M. Fischetti and M. Monaci. Backdoor branching. In O. Günlük and G.J. Woeginger,
editors, Integer Programming and Combinatorial Optimization (IPCO 2011), pages 183–
191, Berlin Heidelberg, 2011. Springer Lecture Notes in Computer Science 6655.

[8] F.K. Karzan, G.L. Nemhauser, and M.W.P. Savelsbergh. Information-based branching
schemes for binary linear mixed integer problems. Mathematical Programming Compu-
tation, 1:249–293, 2009.

[9] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R.E. Bixby, E. Danna,
G. Gamrath, A.M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D.E. Steffy, and K. Wolter. MIPLIB 2010 mixed integer programming library version 5.
Mathematical Programming Computation, 3:103–163, 2011.

10



FSB FSB+pcosts(1) APPFSB PPFSB+pcosts(2) RB IBM ILOG Cplex

Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes Time #nodes
aflow30a 19.70 1,751 13.44 2,951 7.92 3,891 6.28 2,381 9.98 4,361 2.33 3,520
aflow40b 4,624.44 64,383 2,015.43 1,219,621 8,962.26 899,513 1,151.24 698,563 1,301.33 677,531 307.67 141,435
air04 128.09 69 125.41 69 129.28 3,245 56.11 101 128.47 37 18.17 913
ash608gpia-3col 1,842.05 49 1,647.31 49 287.88 47 537.16 47 8,697.42 39 175.74 1,493
bc1 155.30 2,075 100.05 3,419 412.20 16,051 133.40 8,779 464.62 11,049 69.33 8,799
biella1 5,226.06 485 4,970.47 485 5,168.81 28,565 1,521.67 686 4,311.37 595 379.45 11,785
bienst1 107.01 8,317 65.19 10,875 56.82 8,307 61.23 10,947 84.99 13,227 32.01 7,525
bienst2 3,661.54 169,285 1,264.50 220,573 1,296.70 133,893 1,548.85 342,837 1,384.96 286,209 377.64 76,033
cap6000 0.52 2,091 0.38 2,256 0.38 2,436 0.42 2,531 0.55 2,439 0.18 2,543
eil33-2 295.85 5,481 149.99 12,093 71.71 7,425 129.50 10,577 668.68 5,661 36.90 10,747
eilB101 2,134.55 3,785 857.13 25,789 388.37 7,693 587.67 7,545 2,167.19 6,137 84.29 10,380
k16x240 3,473.72 1,076,605 9,707.63 25,497,899 3,935.35 4,274,309 6,809.97 18,380,957 8,122.28 21,201,137 2,787.99 6,899,304
markshare 4 0 160.32 1,318,751 70.16 2,121,453 113.82 1,684,491 67.25 1,958,071 90.07 1,958,373 45.37 1,579,769
mas284 19.94 11,403 11.38 56,013 15.41 27,109 9.57 43,337 9.32 49,691 2.43 14,931
mas74 1,658.65 2,458,293 976.87 13,233,467 1,928.81 7,669,915 1,504.19 21,358,187 2,309.28 26,375,957 268.32 3,482,938
mas76 158.91 314,153 82.69 1,279,467 83.48 471,849 83.51 1,382,135 105.81 1,422,433 19.82 322,265
mine-166-5 275.27 2,089 299.77 21,615 397.53 15,081 110.19 7,569 439.00 3,617 52.72 14,095
misc07 164.83 24,715 60.92 137,995 17.41 15,491 19.95 39,385 36.11 48,909 19.95 47,543
neos-1109824 1,373.63 5,985 265.27 10,331 6,414.92 374,257 142.59 12,321 394.68 12,627 63.79 10,007
neos-1200887 7,160.53 71,089 1,148.97 652,047 715.35 57,766 773.53 700,709 866.04 767,645 107.20 69,794
neos-1211578 502.97 133,201 170.24 491,769 86.54 89,355 103.26 266,009 103.74 285,937 19.56 47,000
neos-1228986 312.91 96,783 741.41 2,909,265 164.24 187,035 291.97 968,813 212.41 659,949 35.28 79,615
neos-1396125 4,974.97 31,858 10,000.00 621,701 651.80 39,433 900.87 111,778 5,168.72 316,927 6,222.77 386,111
neos-1440447 224.99 35,835 130.86 162,282 48.26 23,801 121.37 154,275 110.50 150,724 54.58 77,220
neos-476283 904.43 676 847.13 795 154.89 405 426.05 740 457.87 1,162 67.71 525
neos-480878 1,582.92 40,307 280.55 102,847 1,373.16 267,803 275.53 132,871 551.03 94,335 24.30 14,645
neos-504674 2,656.27 47,347 550.73 402,409 332.49 40,851 361.47 303,805 384.99 241,489 43.53 44,945
neos-538867 1,779.52 114,385 417.23 676,531 83.75 40,929 124.45 169,985 120.21 151,941 58.59 78,747
neos-538916 1,002.72 50,553 189.84 212,627 60.56 17,993 121.28 154,765 163.25 180,441 137.01 176,225
neos-598183 1,517.60 146,948 369.29 225,764 1,062.14 281,719 286.68 186,089 308.25 192,469 82.06 54,919
neos-803220 540.93 101,929 345.07 495,005 798.91 348,657 212.90 300,631 374.16 502,265 52.04 72,497
neos-807639 177.88 10,859 58.48 15,411 39.15 11,861 45.27 15,295 45.14 15,489 13.58 11,944
neos-860244 458.08 7,643 122.72 22,495 115.59 7,133 85.72 11,209 1,464.66 67,547 41.44 13,175
neos-863472 1,282.09 354,815 880.16 2,615,739 274.52 299,947 867.62 2,553,195 285.67 750,681 622.35 1,777,647
neos13 42.94 25 38.08 25 10,000.00 17,185 30.10 25 60.14 25 7.07 99
neos2 264.83 30,911 36.00 38,525 59.34 41,123 29.67 38,233 1,302.24 213,769 26.15 38,452
neos22 8,327.22 176,935 582.83 254,899 387.26 79,649 554.88 265,399 896.31 291,275 62.01 25,748
neos23 2,480.39 846,309 255.03 777,665 217.44 206,807 102.38 296,189 120.37 310,025 27.50 94,990
neos3 3,487.84 266,887 372.65 474,621 1,429.89 837,805 354.45 452,707 1,468.85 236,231 169.17 236,268
neos5 3,175.48 2,453,537 3,104.57 28,172,115 2,821.20 7,431,395 2,230.36 20,404,671 2,138.79 17,938,181 109.16 932,657
ns1688347 5,499.38 6,491 3,206.77 8,455 1,044.36 2,577 1,897.09 5,871 10,000.00 834 1,182.93 3,162
ns1766074 1,276.08 1,042,239 217.31 1,243,865 404.83 1,103,621 231.52 1,331,353 234.11 1,272,179 210.64 1,244,037
pk1 243.60 231,363 146.09 1,501,235 110.49 342,931 131.23 1,391,093 138.30 1,315,035 24.54 219,590
pp08aCUTS 4.59 687 4.31 767 1.66 1,285 2.32 881 2.91 1,263 0.51 1,035
prod1 219.14 38,091 618.67 1,982,291 104.40 90,495 205.19 615,511 622.39 1,902,529 24.43 59,360
prod2 576.96 40,803 280.31 483,459 320.30 129,515 189.30 319,749 369.66 521,169 65.12 102,094
qiu 5,930.59 254,317 353.55 61,589 233.61 19,775 230.68 45,781 641.10 87,705 53.70 12,388
rail507 4,436.85 1,905 3,189.70 3,213 673.09 6,561 353.91 1,585 754.64 1,847 118.12 3,029
ran10x26 68.60 5,499 29.78 21,203 63.54 39,735 23.32 30,465 27.72 15,437 8.04 13,815
ran12x21 398.86 36,961 121.37 194,267 341.21 214,105 112.44 181,239 128.55 197,025 38.46 70,902
ran13x13 75.63 12,793 30.16 45,635 39.26 36,537 27.06 49,043 44.01 64,323 12.05 29,664
ran16x16 968.11 98,959 291.21 509,191 653.40 362,427 289.62 535,639 295.60 504,823 124.42 206,191
ran8x32 18.48 3,501 11.06 18,223 15.61 16,969 10.52 21,913 12.65 24,943 3.74 10,899
rmatr100-p10 284.18 959 279.44 989 601.37 8,681 124.91 1,049 173.25 1,169 42.96 1,037
rmatr100-p5 226.51 489 227.79 489 319.76 2,469 104.04 519 323.24 509 46.78 484
rocII-4-11 1,305.37 11,863 354.21 62,571 4,302.84 339,747 276.04 143,608 181.83 14,131 718.78 378,793
stein45 86.26 23,817 29.41 67,593 19.09 29,857 17.60 64,953 15.56 85,895 6.89 45,721
swath1 466.44 29,387 106.96 68,591 20.23 5,017 36.57 12,661 38.19 11,921 122.59 96,924
swath2 3,677.27 260,607 803.04 668,455 86.41 24,229 139.33 105,321 81.52 50,729 542.16 418,494
vpm2 2.56 971 2.25 1,143 1.87 3,171 1.56 1,817 1.79 1,601 0.37 1,679
Avg. (all) 471.00 20,917 212.90 64,134 199.41 43,957 131.60 50,374 226.19 49,681 54.19 33,238
Avg. (opt) 451.42 23,849 195.56 73,288 177.12 47,057 124.60 58,950 205.05 59,031 43.09 36,264

Table 4: Detailed results with at most k = 20 dual pivots for each LP reoptimization inside
the branching procedure. (1)θ = 500, (2)θ = 1, 000.

11



1 2 3 4 5 6 7 8 9 10
time ratio

0.0

0.2

0.4

0.6

0.8

1.0

FSB
FSB+pcost
APPFSB
PPFSB+pcost
RB
IBM_ILOG_Cplex

1 2 3 4 5 6 7 8 9 10
node ratio

0.0

0.2

0.4

0.6

0.8

1.0

FSB
FSB+pcost
APPFSB
PPFSB+pcost
RB
IBM_ILOG_Cplex

Figure 1: Performance profiles.

12



[10] J.T. Linderoth and M.W.P. Savelsbergh. A computational study of branch and bound
search strategies for mixed integer programming. INFORMS Journal on Computing,
11:173–187, 1999.

[11] A. Mahajan. On selecting disjunctions for solving mixed integer programming problems.
PhD thesis, Lehigh University, 2009.

[12] J. Patel and J.W. Chinneck. Active-constraint variable ordering for faster feasibility of
mixed integer linear programs. Mathematical Programming, 110:445–474, 2007.

[13] J. Pryor and J.W. Chinneck. Faster integer-feasibility in mixed-integer linear programs
by branching to force change. Computers & OR, 38(8):1143–1152, 2011.

[14] R. Wunderling. Private communication, 2011.

13


