Orbital shrinking

MATTEO FI1scHETTI', LEO LIBERTI?

L' DEI, Universita di Padova, Italy
Email:matteo.fischettiQunipd.it

2 LIX, Ecole Polytechnique, F-91128 Palaiseau, France
Email:1iberti@lix.polytechnique.fr

July 12, 2011

Abstract

Symmetry plays an important role in optimization. The usual approach to cope with symme-
try in discrete optimization is to try to eliminate it by introducing artificial symmetry-breaking
conditions into the problem, and/or by using an ad-hoc search strategy. In this paper we argue
that symmetry is instead a beneficial feature that we should preserve and exploit as much as
possible, breaking it only as a last resort. To this end, we outline a new approach, that we
call orbital shrinking, where additional integer variables expressing variable sums within each
symmetry orbit are introduces and used to “encapsulate” model symmetry. This leads to a
discrete relaxation of the original problem, whose solution yields a bound on its optimal value.
Encouraging preliminary computational experiments on the tightness and solution speed of this
relaxation are presented.

Keywords: Mathematical programming, discrete optimization, algebra, symmetry, relaxation,
MILP, convex MINLP.

1 Introduction

Nature loves symmetry. Artists love symmetry. People love symmetry. Mathematicians and
computer scientists also love symmetry, with the only exception of people working in discrete
optimization who always want to break it. Why? The answer is that symmetry is of great help in
simplifying optimization in a convex setting, but in the discrete case it can trick search algorithms
because symmetric solutions are visited again and again. The usual approach to cope with this
redundancy source is to destroy symmetry by introducing artificial conditions into the problem,
or by using a clever branching strategy such as isomorphism pruning [6, 7] or orbital branching
[10]. We will outline a different approach, that we call orbital shrinking, where additional integer
variables expressing variable sums within each orbit are introduces and used to “encapsulate” model
symmetry. This leads to a discrete relaxation of the original problem, whose solution yields a bound
on its optimal value. The underlying idea here is that we see symmetry as a positive feature of our
model, so we want to preserve it as much as possible, breaking it only as a last resort. Preliminary
computational experiments are presented.

2 Symmetry

We next review some main results about symmetry groups; we refer the reader to, e.g., [1] (pp.
189-190) and [6, 7, 4] for more details. For any positive integer n we use notation [n] := {1,--- ,n}.

For any optimization problem (Z) we let v(Z) and F(Z) denote the optimal objective function value
and the feasible solution set of (Z), respectively. To ease presentation, all problems considered in
this paper are assumed to be feasible and bounded.

Our order of business is to study the role of symmetry when addressing a generic optimization
problem of the form

(P) o(P):=min{f(z) :x € F(P)} (1)

where F(P) C R” and f : R” — R. To this end, let G = {Q",---,Q%} C R"*" be a finite group,
i.e., a finite set of nonsingular n X n matrices closed under matrix product and inverse, and assume
that, for all x € R" and for all k¥ € [K]:

(C1) the function f is G-invariant (or symmetric w.r.t. G), i.e., f(Q*z) = f(x);
(C2) = € F(P) = Q%x € F(P).
Let the fized subspace of G be defined as F := {z : Vk € [K] Q*2z = x}. Given a point z, we define

s
Ti= e ZQkx (2)
k=1

as the new point obtained by “averaging x along GG”. By elementary group theory, left-multiplying
G by any of its elements Q¥ leaves G unchanged, hence one has T € F because

K

> (Q’“Qh Z Q"zr =7. (3)

Vk e [K] QFz =

In this paper we always consider the case where all Q*’s in G are permutation matrices, i.e.,
0-1 matrices with exactly one entry equal to 1 in each row and in each column. In this case,
y = Q*z if and only if there exists a permutation 7* of [n] such that y; = z; and j = 7*(i) for all
i € [n]. In other words, the elements of group G are just permutations 7% that simply relabel the
components of x. This naturally leads to a partition of the index set [n] into m > 1 disjoint sets
{wi, - ,wm} = Q, called the orbits of G, where i and j (i < j) belong to a same orbit w € Q if
and only if there exists k € [K] such that j = 7%(3).

From an algorithmic point of view, we can visualize the action of a permutation group G as
follows. Consider a digraph D = (V, A) whose n nodes are associated with the indices of the
x; variables. Each 7% in the group then corresponds to the digraph D* = (V, Ak) whose arcset

k.= {(i,5) : i € V,j = 7«*(i)} defines a family of arc-disjoint circuits covering all the nodes of
D. By definition, (i,7) € A* implies that i and j belong to a same orbit. So the orbits are just
the connected component of D when taking A = Ule Ak In practice, the group is defined by
a limited set of “basic” elements (called generators) whose product and inverse lead to the entire
group, and the orbits are quickly computed by initializing w; = {i} for all i € [n], scanning the
generators 7%, in turn, and merging the two orbits containing the endpoints of each arc (i, 7% (7))
for all i € V' [11].

In practical applications, the permutation group is detected automatically by analyzing the
problem formulation, i.e., the specific constraints used to define F'(P). In particular, a permutation
7 is part of the permutation groups only if there exist an associated permutation ¢ of the indices
of the constraints defining F'(P), that makes it trivial to verify condition (C2); see e.g. [4].

A key property of permutation groups is that, because of (3), the average point T defined in (2)
must have Z; constant within each orbit, so it can be computed efficiently by just taking z-averages
inside the orbits, i.e.,

1
Yw € Q, VjEij:ﬁin. (4)
w

€W
3 Optimization under symmetry

We next address the role of symmetry in optimization.

3.1 Convex optimization

Assume first that (P) is a convex problem, i.e., f is a convex function and F'(P) is a convex set.
Then = € F(P) implies T € F(P) and f(Z) = f(Cr, Q*z/K) < S5, f(Q*z)/K = f(x), so
one needs only consider average points T when looking for an optimal solution to (P). Because of
(4), for permutation groups this means that the only unknowns for (P) are the average z-values
inside each orbit or, equivalently, the sums z, = ;. z; for each w € Q. It is known that (P)
can therefore be reformulated as follows (see Cor. 3.2): (i) introduce a new variable z, for each
orbit w, (ii) replace variables x; for all j € w with their optimal expression z,/|w|. Optimizing
the resulting projected problem on the space of the z variables yields the same optimal objective
function value as for the original problem. As a result, symmetry is a very useful property in a
convex optimization setting, in that it allows one to simplify the optimization problem—provided
of course that the symmetry group (or a subgroup thereof) can be found effectively, as is often the
case [4].

3.2 Discrete optimization

We now address a discrete optimization setting where the objective function f is still convex but
the feasible set is defined as

F(P)={rxeX:VjeJuz;cl},

where X C R" is a convex set and J C [n] identifies the variables with integrality requirement. As
customary, we assume X be defined as

X ={xeR":Vie]r] fi(x) <0},

where f; : R — R, i € [r], are convex functions. This framework is quite general in that it covers
Mixed-Integer Linear Programming (MILP) as well many relevant cases of Mixed-Integer Nonlinear
Programming (MINLP).

A natural way to exploit symmetry in the above setting is based on the observation that the
well known Branch-and-Bound (BB) tree search can be seen as a way to subdivide (P) into a
number of convex subproblems, which provide relaxations of (P) that are then used to compute
bounds and henceforth prune the search tree. At each tree node one needs to solve a convex
subproblem corresponding to X subject to the branching conditions—that we assume be expressed
by additional convex constraints—hence symmetry can exploited to simplify this task. Note however
that branching conditions alter the symmetry group of the convex subproblem computed at the

root node of the search tree, so its recomputation (or heuristic update, as e.g. in [10]) at each node
becomes necessary. In addition, the use of symmetry inside each node does not prevent the tree
search to possibly enumerate symmetric solutions again and again, so ad-hoc branching strategies
are still of fundamental importance.

3.3 Orbital shrinking relaxation

We next propose a different approach, intended to eliminate problem symmetry by “encapsulating”
it in a new (relaxed) formulation. More specifically, instead of trying to break symmetries as is
standard in the current literature [12, 6, 7, 10, 9, 4], our approach is to solve a discrete relaxation
of the original problem, defined on a shrunken space with just one variable for each orbit.

Let G be the group for (P) (found e.g. as in [4]) and let Q = {w1,...,wy} be its set of orbits
(by construction integer and continuous variables will be in different orbits). WLOG, assume the
first m orbits involve integer variables only, and let © = {w1,...,ws}, while the remaining orbits
(if any) involve continuous variables only (if any). In addition, for each x € R”, let z(x) € R™ be
defined as

Vw e N zy(x) = ij.
jEw
For any g : R — R let g : R™ — R be obtained from g(x) by replacing each z; by z,/|w| (j € w,
w € Q). Note that g(z(z)) = g(z) holds whenever z; is constant within each orbit, hence because
of (4) one has the identity

9(2(7)) = ¢(7). ()
Our Orbital Shrinking Relazation (OSR) is constructed from (P) in two steps:

1. Let (Pre) be the relaxed problem obtained from (P) by replacing the integrality conditions
xj € Z (j € J) by their surrogate version

Vwe® (Y w;) €L (6)
JEW
2. Reformulate (Pgg) as
(Posg) v(Posg) :=min{f(z):Vi € [r] f;(z) <0,Vw €O 2z, € Z} (7)

3.1 Theorem
/U(POSR) == U(PREL) S 'U(P)
Proof. Inequality v(FPre) < v(P) is obvious, so we only need to prove v(Posg) = v(PreL).
Let x be any optimal solution to (Pgg). We claim that T is an equivalent optimal solution to
(Prer). Indeed, because of (C2) one has Q¥z € X for all k € [K], hence T = (% 2kelK] Q’%U) eX

because of the convexity of X. In addition, because of (4), > ;c,Tj = > e, v; for all w €
©, hence T also satisfies (6) and is therefore feasible for (FPrg). The optimality of T for (FPge)

then follows immediately from the convexity of f, which implies f(Z) = f %ZkE[K} Q’“x) <

% Dkepr) F(QFx) = f(), ie., f(T) = v(Prer)-

Now take the point z(Z). Because of (5) and since Z € X, for all i € [r] we have f;(2(Z)) =
fi(®) < 0. In addition, z,(Z) € Z for all w € © because T € F(Pgg) satisfies (6), hence z(T) €
F(Posg) and then v(Posg) < f(2(T)) = f(T) = v(Fre), thus proving v(Posg) < v(FPre).

To show v(Posg) > v(FreL), let z be any optimal solution to (Posg) and consider the point z € R™
with z; 1= z,/|w| for all j € w and w € Q. By construction, T = x and z(Z) = z. Because of (5),
for all 7 € [r] one then has f;(z) = fi(%) = f,(2(Z)) = f;(2) <0, i.e.,, v € X. In addition, for all
wE O, ic,Tj =z €L, e, v also satisfies (6) and therefore € F'(Pre). Finally, again because

of (5), v(Prer) < f(2) = f(T) = f(2(T)) = f(2) = v(Posr), i-e., v(Pre.) < v(Posg) as required. O

3.2 Corollary
For convex optimization (case J = (), (Posg) is a reformulation of (P), in the sense that v(Posg) =
v(P).

Proof. Just observe that (Pgg) coincides with (P) when J = {). O

4 Experiments on finding the best subgroup

Theorem 3.1 remains obviously valid if a subgroup G’ of G is used (instead of @) in the construction
of (Posg)- Different choices of G’ lead to different relaxations and hence to different bounds v(Posg)-
If G’ is the trivial group induced by the identity permutation, no shrinking at all is performed
and the relaxation coincides with the original problem. As G’ grows in size, it generates longer
orbits and the relaxation becomes more compact and easier to solve (also because more symmetry
is encapsulated into the relaxation), but the lower bound quality decreases.

Ideally, we wish the relaxation to be (a) as tight as possible and (b) as efficient as possible
with respect to the CPU time taken to solve it. In this section we discuss and computationally
evaluate a few ideas for generating subgroups G’ which should intuitively yield “good” relaxations
in a MILP context. All experiments were conducted on a 1.4GHz Intel Core 2 Duo 64bit with 3GB
of RAM. The MILP solver of choice is IBM ILOG Cplex 12.2.

4.1 Automatic generation of the whole symmetry group

The formulation group is detected automatically using the techniques discussed in [4]: the MILP is
transformed into a Directed Acyclic Graph (DAG) encoding the incidence of variables in objective
and constraints, and a graph automorphism software (nauty [8]) is then called on the DAG. The
orbital-shrinking relaxation is constructed automatically using a mixture of bash scripting, GAP
[3], AMPL [2], and ROSE [5].

4.2 The instance set

We considered the following 39 symmetric MILP instances:

ca36243 cab7245 ca77247 clique9 codl05 cod105r cod83 cod83r cod93 cod93r cov1053
cov1054 cov1075 cov1076 covll74 cov954 flosnb52 flosn60 flosn84 jgtl8 jgt30 mered
04_35 0a25332 0a26332 0a36243 0ab7245 0a77247 o0f5.14.7 of7_18_9 ofsub9 pa36243 pab7245
pa77247 stsl135 sts27 sts4b sts63 sts81

all taken from F. Margot’s website.

4.3 Generator ranking

Using orbital shrinking with the whole symmetry group G has the merit of yielding the most
compact relaxation. On our test set, however, this approach yields a relaxation bound which is not
better than the LP bound 31 times out of 39, and for the remaining 8 times it is not better than
the root-node Cplex’s bound (i.e., LP plus root node cuts)—although this will not necessarily be
the case for other symmetric instances (e.g., for instances with small symmetry groups).

We observe that the final OSR only depends on the orbits of G’ rather than on G’ itself, and
the smaller G’ the more (and/or shorter) orbits it yields. We therefore consider the idea of testing
subgroups with orbits of varying size, from small to large. Since testing all subgroups of G is out
of the question, we look at its generator list Il = (7, ..., 7) (including the identity permutation).
For any permutation 7 we let fix(7m) be the subset of [n] fixed by m, i.e., containing those i such
that 7(i) = i. We then reorder our list II so that

| fix(mo)| = - - > [fix(mz)|

and for all £ < k we define Gy as the subgroup of G induced by the sublist (g, - -, 7). This leads
to a subgroup chain
Go, Gy, , G, =G

with increasing number of generators and hence larger and larger orbits (G being the trivial
group induced by the identity permutation). In our view, the first generators in the list are the
most attractive ones in terms of bound quality—having a large fix(7) implies that the generated
subgroup is likely to remain valid for (P) even when several variables are fixed by branching.

For each instance in our test set, we generated the relaxations corresponding to each G, and
recorded bound values and CPU times, plotting the results against £. We set a maximum user CPU
time of 1800s, as we deemed a relaxation useless if it takes too long to solve. The typical behavior
of the relaxation in terms of bound value and CPU time was observed to be mostly monotonically
decreasing in function of the number £ of involved generators. Figure 1 shows an example of these
results on the sts81 instance.

4.4 Choosing a good set of generators

Our generator ranking provides a “dial” to trade bound quality versus CPU time. We now consider
the question of how to set this dial automatically, i.e., how to choose a value of ¢ € [k] leading to
a good subgroup Gy.

Out of the 39 instances in our test set, 16 yields the same bound independently of ¢, and were
hence discarded from this test. The remaining 23 instances:

ca36243 clique9 codl05 cod105r cod83 cod83r cod93 cod93r cov1075 covl076 cov954 mered
04_35 0a36243 0a77247 o0f5_14.7 of7_18_9 pa36243 stsl35 sts27 sts4b5 sts63 sts81

yields a nonzero decrease in bound value as ¢ increases, so they are of interest for our test.
Having generated and solved relaxations for all / < k, we hand-picked good values of ¢ for each
instance, based on these prioritized criteria:

1. bound provided by Gy strictly tighter than LP bound;

46

44

42 + \
40
38 \

‘obj—O—

sts81 wl \
(/k [obj| CPU \
1/14 | 45| 3.60 *T \
2/14 | 45| 1.51 2t
3/14 | 45| 1.18 0|

4/14 | 45| 113
5/14 | 33| 0.01

28 -

6/14 | 33| 0.01 ®s 2 7 6 5 10 12 1
7/14 | 33| 0.02 a r—
8/14 | 33| 0.00 .
9/14 | 29| 0.02 o
10/14 | 29 | 0.00 st
11/14 | 29| 0.01
12/14 | 28| 0.01 251
13/14 | 28| 0.00 L1
14/14 | 27| 0.00
15 | \
1+ 7""'*\
05
o _ .
0 2 4 6 8 10 12 14

Figure 1: Bound values and CPU times against the number ¢ of generators for instance sts81.

2. minimize user CPU time, with strong penalty for choices of ¢ leading to excess of 10 seconds;

3. on lack of other priorities, choose ¢ leading to bounds around midrange in [bnd(Gg), bnd(G1)],
where bnd(G’) denotes the bound value obtained by solving the orbital-shrinking relaxation
based on the subgroup G'.

This choice led to the first three columns of Table 1 (the fourth will be explained later). Next

Instance | G, LP CPU i;i:((GGe))

ca36243 | 49 48 0.07 0.50
clique9 | co 36 0.06 0.87
cod105 -16 -18 4.91 0.99
cod105r | -13 -15 0.25 0.99
cod83 -26 -28 0.12 0.98
cod83r =22 -25 4.44 0.88
cod93 -48 -51 3.07 0.98
cod93r -46 47 2.74 0.97
cov1075 19 18 3.03 0.86
cov1076 44 43 185.83 0.73
cov954 28 26 0.45 0.79
mered oo 140 0.12 0.92
04_35 oo 70 0.07 0.75
0a36243 oo 48 0.75 0.50

00

00

00

0a77247 112 0.00 0.98
0f5.14.7 35 0.13 0.62
0f7.18_9 63 0.04 0.91
pa36243 | -44 -48 1.26 0.50
sts135 60 45 0.05 0.88

sts27 12 9 0.01 0.88
sts4b 24 15 0.39 0.66
sts63 2T 21 0.00 1.00
sts81 33 27 0.00 0.88

Table 1: Hand-picked choice of the subgroup Gy.

we looked for a feature of the solution data over all £ < k and over all instances, whose average
value corresponds to values of ¢ that are close to the hand-picked ones in Table 1. Again, intuition
led our choice for this feature. Our reasoning is as follows. We observe that, given any orbit w,
our OSR replaces > jew i with a single variable z,. Suppose now that a constraint »_ jewTi < b;
happens to exist in the MILP formulation (P): this is simply reformulated to a bound constraint
2w < b;, thus replacing a |w|-ary original relation on the decision variables = with a unary relation
on the decision variables z. Intuitively, this will over-simplify the problem and will likely yield a
poor relaxation. Instead, we would like to deal with orbits that are somehow “orthogonal” to the
problem constraints.

To this aim, consider the i-th (out of, say,) MILP constraint, namely Eje[n} a;jr; < b;, and
define the incidence of an orbit w with respect to the support of this constraint as |w N {j € [n] :
a;j # 0}|. Intuitively, the lower the incidence of an orbit, the farther we are from the situation where
problem constraints become over-simplified range constraints in the relaxation. Lower incidence

orbits should yield tighter relaxations, albeit perhaps harder to solve. Given a subgroup G’ with

orbits ' = {w],--- ,w!,}, we then extend the incidence notion to G’
inc(G',i) :== U Ww'N{jen]:aj#0}, (8)
w’' eV

and finally to the whole MILP formulation

inc(G') = inc(G,i). (9)

i€lr

The rightmost column of Table 1 reports the relative incidence of Gy, computed as inc(Gy)/ inc(G),
for those ¢ that were hand-chosen to be “best” according to the prioritized criteria listed above. Its
average is 0.82 with standard deviation 0.17. This value allows us to generate a relaxation which
is hopefully “good”, by automatically selecting the value of ¢ such that inc(Gy)/inc(G) is as close
to 0.82 as possible.

5 Computational experiments

The quality of the OSR we obtain with the method of Section 4.4 is reported in Table 2 whose
columns include: the instance name, the automatically determined value of ¢ and the total number
k of generators, the best-known optimal objective function value for the instance (starred values
correspond to guaranteed optima), the bound given by G which provides the tightest non-trivial
OSR bound, the bound given by G, and the associated CPU time, the CPU time “cpx_t” spent
by CPLEX 12.2 (default settings) on the original formulation to get the same bound as OSR (only
reported when the OSR bound is strictly better than the LP bound), and the LP bound. Entry
limit marks an exceeded time limit of 1800 sec.s, while boldface highlights the best results for each
instance.

The results are quite encouraging: our bound is very often stronger than the LP bound, whilst
often taking only a fraction of a second to solve. The effect of orbital shrinking can be noticed by
looking at the “cpx_t” column, where it is evident that normal branching takes significantly longer
to reach the bound given by our relaxation.

6 Conclusions

We discussed a new methodology for deriving a tight relaxation of a given discrete optimization
problem, based on orbit shrinking. Results on a testbed of MILP instances are quite encouraging.
Our work opens up several directions: how to find a good generator set, whether it is possible to
find extensions to general MINLPs, how will the relaxation perform when used within a Branch-
and-Bound algorithm and how to dynamically change it along the search tree, and which insights
for heuristics can be derived from the integer solution of the relaxed problem.

Acknowledgements

The first author was supported by the Progetto di Ateneo on “Computational Integer Programming”
of the University of Padova. The second author was partially supported by grants Digiteo Chair

Instance | (/k best G Gy CPU cpxt | LP
ca36243 | 3/6 49* 49 48 0.02 48
clique9 | 5/15 oo™ 00 00 0.06 0.17 | 36
cod105 | 3/11 | -12* limit | -14.097 limit -18
cod105r | 3/10 | -11* -11 -11 24.12 28.36 | -15
cod83 3/9 -20* -21 -24 16.78 9.54 | -28
cod83r 3/7 -19* -21 -22 4.44 7.85 | -25
cod93 3/10 | -40 -46.111 limit -51
cod93r 3/8 -38 -39 -44 271.74 446.48 | -47
cov1075 | 3/9 20* 20 19 3.03 79.79 | 18
cov1076 | 3/9 45 44 43 2.78 43
cov954 3/8 30* 28 26 0.11 26
mered 21/31 | oo* 00 00 0.15 3.37 | 140
04_35 3/9 oo™ 00 70 0.00 70
0a36243 | 3/6 oo™ 00 48 0.01 48
0a77247 | 3/7 oo™ 00 00 0.10 265.92 | 112
0f5.14.7 | 7/9 oo™ 00 35 0.00 35
0of7.18.9 | 7/16 oo™ 00 00 0.09 0.15 | 63
pa36243 | 3/6 -44* -44 -48 0.01 -48
sts135 3/8 106 75 60 0.11 109.81 | 45
sts27 4/8 18* 14 12 0.01 1.05 9
sts4b 2/5 30* 24 15 0.00 15
sts63 4/9 45* 36 27 0.02 199 | 21
sts81 5/14 61 45 33 0.01 3.92 | 27

Table 2: OSR performance (in the Gy/CPU columns). Entries marked * denote guaranteed optimal values;
those marked T denote the best lower bound at the time limit. In sts27, CPLEX closes the gap at the root

node. Values for cpx_t are only present when the OSR bound is integer and better than the LP bound.

2009-14D “RMNCCO” and Digiteo 2009-55D “ARM”. We thank Mauro Diligenti who asked the
question that originated the present work—Why do you discrete optimization guys hate symmetry
and want to destroy it?

References

[1] S. Boyd and L. Vandenberghe. Convez Optimization. Cambridge University Press, Cambridge,

2004.

[2] R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

[3] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4.10, 2007.

[4] L. Liberti. Reformulations in mathematical programming: Automatic symmetry detection and
exploitation. Mathematical Programming, DOI 10.1007/s10107-010-0351-0.

[5] L. Liberti, S. Cafieri, and D. Savourey. Reformulation optimization software engine.

In

K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, editors, Mathematical Software,
volume 6327 of LNCS, pages 303-314, New York, 2010. Springer.

10

[6] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71-90,
2002.

[7] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming B, 98:3-21, 2003.

[8] B. McKay. nauty User’s Guide (Version 2.4). Computer Science Dept. , Australian National
University, 2007.

[9] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Constraint orbital branching. In A. Lodi,
A. Panconesi, and G. Rinaldi, editors, IPCO, volume 5035 of LNCS, pages 225-239. Springer,
2008.

[10] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathematical Pro-
gramming, 126:147-178, 2011.

[11] A. Seress. Permutation Group Algorithms. Cambridge University Press, Cambridge, 2003.

[12] H. Sherali and C. Smith. Improving discrete model representations via symmetry considera-
tions. Management Science, 47(10):1396-1407, 2001.

11

