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Abstract Symmetry plays an important role in optimization. The usual ap-
proach to cope with symmetry in discrete optimization is to try to eliminate
it by introducing artificial symmetry-breaking conditions into the problem,
and/or by using an ad-hoc search strategy. This is the common approach
in both the mixed-integer programming (MIP) and constraint programming
(CP) communities. In this paper we argue that symmetry is instead a benefi-
cial feature that we should preserve and exploit as much as possible, breaking
it only as a last resort. To this end, we outline a new approach, that we call
orbital shrinking, where additional integer variables expressing variable sums
within each symmetry orbit are introduced and used to “encapsulate” model
symmetry. This leads to a discrete relaxation of the original problem, whose
solution yields a bound on its optimal value. Then, we show that orbital shrink-
ing can be turned into an exact method for solving arbitrary symmetric MIP
instances. The proposed method naturally provides a new way for devising hy-
brid MIP/CP decompositions. Finally, we report computational results on two
specific applications of the method, namely the multi-activity shift scheduling
and the multiple knapsack problem, showing that the resulting method can
be orders of magnitude faster than pure MIP or CP approaches.
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1 Introduction

Symmetry has long been recognized as a curse for the traditional enumera-
tion approaches used in both the MIP and CP communities—we refer to [22,
9] for recent surveys on the subject. The usual approach to cope with this
redundancy source is to destroy symmetry by introducing artificial conditions
into the problem, or by using a clever branching strategy such as isomorphism
pruning [20,21] or orbital branching [27]. We will outline a different approach,
that we call orbital shrinking, where additional integer variables expressing
variable sums within each orbit are introduced and used to “encapsulate”
model symmetry. This leads to a discrete relaxation of the original problem,
whose solution yields a bound on its optimal value. The underlying idea here
is that we see symmetry as a positive feature of our model, so we want to
preserve it as much as possible, breaking it only as a last resort.

While orbital shrinking can, in some cases, provide an exact (and symmetry
free) reformulation of the original model, in general the shrunken reformulation
yields only a relaxation. Thus, we devise a general decomposition framework to
turn orbital shrinking into an exact method for arbitrary symmetric MIPs. The
proposed method naturally provides a new way for designing hybrid MIP/CP
decompositions, although pure MIP/MIP decompositions are allowed as well.

Finally, we specialize the general framework above to two applications,
namely multi-activity shift scheduling and multiple knapsack problems. Al-
though this paper is squarely in the mathematical programming field, follow-
ing a relatively recent trend we exploit a degree of integration between mathe-
matical and constraint programming [25,12] in the applications of the orbital
shrinking theory. Computational results show that the resulting method can
be orders of magnitude faster than pure MIP or CP approaches.

The outline of the paper is as follows. In Section 2, we review some main
results on symmetry groups in the context of optimization problems. Then, in
Section 3, we present orbital shrinking, and show that it yields a relaxation of
the original problem. In Section 4 we discuss some features that help mining
the best formulation subgroup to apply orbital shrinking with, and show their
effect on a set of symmetric MILPs. In Section 5 we describe a general decom-
position framework based on orbital shrinking, while in Sections 6 and 7 we
specialize the general framework to multi-activity shift scheduling and multi-
ple knapsack problems, also reporting computational results. Conclusions are
finally drawn in Section 8.

We assume the reader is familiar with mixed-integer programming, con-
straint programming and basic group theory. The present paper extends and
is based on the preliminary results presented in [4,37,36], by the same authors.
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2 Optimization under Symmetry

Let P be an arbitrary mixed-integer nonlinear program of the form

min f(x) (1)

gi(x) ≤ 0 ∀i ∈ C (2)

xj ∈ Z ∀j ∈ J (3)

where J ⊆ [n] = {1, . . . , n} is the subset of integer variables. Without loss of
generality, the objective function f(x) is assumed to be convex.

Let F(P ) be the feasible set of P , and G(P ) be the set of global optima
of P . In general, deciding whether a permutation of the variables of P fixes
G(P ) requires knowledge of G(P ), which is the end goal of solving P anyhow.

We therefore restrict our attention to those variable permutations which
fix the formulation of P . Thus, we define the symmetry group GP of P as the
set of permutations π ∈ Sn that leave the formulation of P unchanged, except
for a possible reordering of the constraints. Since the latter bears no influence
on F(P ) and G(P ), the formulation group is clearly a group of symmetries of
P . This definition is easy to implement for linear formulations, be they Linear
Programs (LP), Mixed-Integer Linear Programs (MILP), since a permutation
of the variables directly translates to a permutation of the columns of the
data matrices. For Nonlinear Programs (NLP) and Mixed-Integer Nonlinear
Programs (MINLP), we restrict our attention to classes of problems whose
formulations involve functions represented by finite mathematical expressions,
which are sequences of operators (e.g. sum, difference, product, fraction, power,
exponential, logarithm and so on) applied to constants and variables. These
expressions are easily represented by trees, and whole NLP/MINLP formula-
tions can be represented by suitable Directed Acyclic Graphs (DAG). GP is
then obtained as a restriction of the automorphism group of this DAG to the
set of variable indices of P , see [17] for more details. GP can be computed by
means of any graph isomorphism package such as Nauty [24] or Saucy [16],
which perform satisfactorily in practice.

Note that any subgroup G of GP (or GP itself) partitions the set of vari-
ables into equivalence classes, called orbits (i.e., variables that are mapped one
to the other by some permutation in G). We denote with ΩG this orbital parti-
tion of [n]. Note that, by definition, integer and continuous variables cannot be
permuted with each other, so each orbit contains only integer or only continu-
ous variables. Note also that if the formulation group GP is used, constraints
of P are themselves partitioned into equivalence classes, called constraint or-
bits: in particular, two constraints are in the same orbit if and only if one is
mapped into the other (because of reordering) when some variable permuta-
tion π ∈ GP is applied. Finally, given a subset I ⊆ [n], we define the subgroup
of GP that keeps any i ∈ I fixed, i.e., such that π(i) = i for all i ∈ I; this is
called the point-wise stabilizer of GP w.r.t. I, and denoted as GP [I].
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3 Orbital Shrinking Relaxation

The main objective of this work is to discuss a new relaxation for symmetric
problems. Instead of trying to break symmetries, as is standard in the current
literature [20–22,27,17], our relaxation can be described as the “formulation
modulo a group”. We basically replace the original integer variables x by in-
teger variables assigned to each orbit of the action of (a subgroup of) the
formulation group on the variable index set. In this section, we will describe
how to construct the orbital shrinking reformulation (OSR) of a given opti-
mization problem P , and show that this is indeed a relaxation of the original
problem.

Let us consider a partition (V1, V2) and (C1, C2, C3) of the variables and
constraints of P , respectively, that satisfies the following conditions:

– All constraints in C1 are convex w.r.t. the variables in V1. In other words,
constraints in C1 are convex once the variables in V2 are fixed.

– All constraints in C2 are functions of sums of variables along the orbits
defined by the group GP [V2], the point-wise stabilizer of GP w.r.t. V2.

The meaning of the constraint partition will become clear in the following; a
remark is given after Corollary 2. In what follows, for notational simplicity,
we will denote GP [V2] by G and ΩGP [V2] by Ω.

Given a problem P and such a partition (V1, V2, C1, C2, C3), we define the
orbital shrinking reformulation POSR as the model obtained by the following
procedure:

– for each ω ∈ Ω, define a variable zω. If the orbit ω is made of integer
variables, zω is integer as well, if not it is continuous. Let z = (zω | ω ∈ Ω).

– for each constraint gi(x) ≤ 0 in C1 ∪C2, define a new constraint gi(z) ≤ 0,
obtained from gi(x) ≤ 0 through the formal substitution:

xj →
zω
|ω|

(4)

where j ∈ ω.
– define the objective function f(z) applying to f(x) the same formal sub-

stitution (4).
– ignore constraints in C3.

We now show that POSR is a relaxation of P . We start with a few lemmata.

Lemma 1 Let ω be an orbit of the action of G on [n] and f any function with
dom f = [n]. Then ∑

π∈G
f(π(j)) =

|G|
|ω|
∑
l∈ω

f(l) ∀j ∈ ω. (5)

Proof Let Tjl = {π ∈ G : π(j) = l}. It is easy to show that |Tjl| = |G[j]| for all
l ∈ ω. Indeed, given an arbitrary π ∈ Tjl, we can define the map f : G[j]→ Tjl
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as σ → πσ. This map is a bijection, with inverse f−1 : σ → π−1σ, hence the
two sets have the same cardinality. Finally∑

π∈G
f(π(j)) =

∑
l∈ω

∑
π∈Tjl

f(π(j)) =
∑
l∈ω

|Tjl|f(l) =
|G|
|ω|
∑
l∈ω

f(l),

where the last equality is justified by the orbit-stabilizer theorem. ut

Lemma 2 Let x∗ be an arbitrary feasible solution of P , and consider the
convex combination x defined as

x =
1

|G|
∑
π∈G

π(x∗) (6)

Then, for each j ∈ ω, we have

xj =
1

|ω|
∑
l∈ω

x∗l . (7)

Proof Define a function X : [n] → R as X(j) = x∗j . Applying Lemma 1 we
get:

xj =
1

|G|
∑
π∈G

π(x∗) =
1

|G|
∑
π∈G

X(π(j)) =
1

|ω|
∑
l∈ω

X(l) =
1

|ω|
∑
l∈ω

x∗l .

ut

Lemma 3 Let x∗ be an arbitrary feasible solution of P . Then, for any π ∈ G
and for any ω ∈ Ω ∑

j∈ω
x∗j =

∑
j∈ω

π(x∗)j =
∑
j∈ω

xj .

Proof By definition, all permutations inGmap variables in ω to other variables
in ω, so the sums of the variables in a given orbit is invariant to permutations
in G. This proves the first equality. The second equality then follows from (6).

ut

Theorem 1 POSR is a relaxation of P .

Proof Let x∗ be an arbitrary feasible solution of P . We will show that there
always exists a point z∗ feasible for POSR and such that o(z∗) ≤ f(x∗), hence
the claim. Given x∗, let us construct the two points x and z∗ as

x =
1

|G|
∑
π∈G

π(x∗)

and

z∗ω =
∑
j∈ω

x∗j .
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For each constraint in C1, gi(x) ≤ 0 because x[V2] = x∗[V2] and gi is convex
in V1. Similarly, for each constraint in C2, we have gi(x) = gi(x

∗) ≤ 0 because
of Lemma 3. So, all constraint in C1 ∪ C2 are satisfied by x.

Now let us consider z∗. The integrality requirements on z are automatically
satisfied, as x∗ is a feasible solution of P , and thus sums of integer values within
an orbit yield an integer result. In addition, for each constraint in C1 ∪C2, we
have by definition and by Lemma 2

gi(z
∗) = gi(x) ≤ 0

since x∗ itself is feasible for those constraints. Thus, z∗ is feasible for POSR.
As far as the objective function is concerned, we have f(z∗) = f(x) ≤ f(x∗)
where the equality is by definition of o(z) and Lemma 2, while the inequality
is by convexity of f(x) and because x is a convex combination of solutions
with the same cost (because of symmetry). ut

Corollary 1 If P is a convex optimization problem, then POSR is an exact
reformulation of P .

Proof In the convex case, we have J = C2 = C3 = V2 = ∅. Given an optimal
solution z∗ of POSR, we can construct a point x∗ as

x∗j =
z∗ω
|ω|

which, by convexity of constraints, is feasible for P and has the same objective
value as z∗. The result easily follows. ut

The result of Corollary 1 was already proved in [7].

Corollary 2 If there exists an optimal solution x∗ of P such that |ω| divides∑
j∈ω x

∗
j for all orbits ω associated to integer variables, and C3 = ∅, then POSR

is an exact reformulation of P .

Proof In this case, the point x∗ constructed as in the previous corollary is also
integer, and satisfies all the constraints of P . It is then feasible for P and thus
optimal. ut

Note that the set C3 of constraints is provided to give freedom in the choice
of which variables to put into V2. Intuitively, for a non-convex constraint we
have a choice between ignoring it completely in the orbital shrinking relaxation
and stabilizing its variables, which is clearly stronger but may reduce the
shrinking possibilities considerably. In addition, we note that the partition
(C1, C2, C3) is by definition consistent with the constraint orbits of P and that
all constraints in the same orbit will be mapped to the same constraint in POSR,
so in practice POSR has one variable for each variable orbit and one constraint
for each constraint orbit in P associated with a constraint in C1 ∪ C2.

Finally, note that convexity is crucial for the above arguments. Indeed,
given an arbitrary MINLP, a direct formal substitution according to (4) does
not yield a relaxation in general, as shown in the following example.
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Example 1 Let the feasible set of P be defined as

{(x1, x2) | (x1 − x2)(x2 − x1) ≤ −1}

This set is not empty and the two variables are clearly symmetric. However,
with the formal substitution xi → z/2 we obtain the set

{z | 0 ≤ −1}

which is empty. ut

4 Mining for the best subgroup: features and MILP results

Theorem 1 remains obviously valid if a subgroup G′ of G is used (instead of G)
in the construction of POSR. Different choices of G′ lead to different relaxations
and hence to different bounds. If G′ is the trivial group induced by the identity
permutation, no shrinking at all is performed and the relaxation coincides
with the original problem. As G′ grows in size, it generates longer orbits and
the relaxation becomes more compact and easier to solve (also because more
symmetry is encapsulated into the relaxation), but the lower bound quality
decreases.

Ideally, we wish the relaxation to be (a) as tight as possible and (b) as
efficient as possible with respect to the CPU time taken to solve it. In this
section we discuss and computationally evaluate a few ideas for generating
subgroups G′ which should intuitively yield “good” relaxations in a MILP
context. All experiments were conducted on a 1.4GHz Intel Core 2 Duo 64bit
with 3GB of RAM. The MILP solver of choice is IBM ILOG CPLEX 12.2.

4.1 Automatic generation of the whole symmetry group

The formulation group is detected automatically using the techniques dis-
cussed in [17]: the MILP is transformed into a Directed Acyclic Graph (DAG)
encoding the incidence of variables in objective and constraints, and a graph
automorphism software (nauty [24]) is then called on the DAG. The orbital-
shrinking relaxation is constructed automatically using a mixture of bash

scripting, GAP [6], AMPL [5], and ROSE [18].

4.2 The instance set

We considered the following 39 symmetric MILP instances (in their minimiza-
tion form):

ca36243 ca57245 ca77247 clique9 cod105 cod105r cod83 cod83r cod93 cod93r cov1053

cov1054 cov1075 cov1076 cov1174 cov954 flosn52 flosn60 flosn84 jgt18 jgt30

mered O4 35 oa25332 oa26332 oa36243 oa57245 oa77247 of5 14 7 of7 18 9 ofsub9

pa36243 pa57245 pa77247 sts135 sts27 sts45 sts63 sts81

all taken from F. Margot’s website http://wpweb2.tepper.cmu.edu/fmargot/index.html.
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4.3 Generator ranking

Using orbital shrinking with the whole symmetry group G has the merit of
yielding the most compact relaxation. On our test set, however, this approach
yields a relaxation bound which is not better than the LP bound 31 times out of
39, and for the remaining 8 times it is not better than the root-node CPLEX’s
bound (i.e., LP plus root node cuts)—although this will not necessarily be the
case for other symmetric instances (e.g., for instances with small symmetry
groups).

We observe that the final OSR relaxation only depends on the orbits of
G′ rather than on G′ itself. If G′ is trivial, then there are n orbits of size 1.
If G′ is the full symmetry group, then there is only 1 orbit of size n (since
G′ is transitive for these instances): so, in general, the smaller G′ is, the more
(and/or shorter) orbits it yields. We therefore consider the idea of testing
subgroups with orbits of varying size, from small to large. Since testing all
subgroups of G is impractical, we look at its generator list Π = (π0, . . . , πk)
(including the identity permutation). For any permutation π we let fix(π) be
the subset of [n] fixed by π, i.e., containing those i such that π(i) = i. We then
reorder our list Π so that

|fix(π0)| ≥ · · · ≥ | fix(πk)|

and for all ` ≤ k we define G` as the subgroup of G induced by the sublist
(π0, · · · , π`). This leads to a subgroup chain

G0, G1, · · · , Gk = G

with increasing number of generators and hence larger and larger orbits (G0

being the trivial group induced by the identity permutation). In our view,
the first generators in the list are the most attractive ones in terms of bound
quality—having a large fix(π) implies that the generated subgroup is likely to
remain valid for (P ) even when several variables are fixed by branching.

For each instance in our test set, we generated the relaxations correspond-
ing to each G` and recorded bound values and CPU times, plotting the results
against `. We set a maximum user CPU time of 1800s, as we deemed a relax-
ation useless if it takes too long to solve. The typical behavior of the relaxation
in terms of bound value and CPU time was observed to be mostly monoton-
ically decreasing in function of the number ` of involved generators. Figure 1
shows an example of these results on the sts81 instance.

4.4 Choosing a good set of generators

Our generator ranking provides a “dial” to trade bound quality versus CPU
time. We now consider the question of how to set this dial automatically, i.e.,
how to choose a value of ` ∈ [k] leading to a good subgroup G`.

Out of the 39 instances in our test set, 16 yields the same bound indepen-
dently of `, and were hence discarded from this experiment. The remaining 23
instances:
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sts81

`/k obj CPU

1/14 45 3.60
2/14 45 1.51
3/14 45 1.18
4/14 45 1.13
5/14 33 0.01
6/14 33 0.01
7/14 33 0.02
8/14 33 0.00
9/14 29 0.02
10/14 29 0.00
11/14 29 0.01
12/14 28 0.01
13/14 28 0.00
14/14 27 0.00

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

 46

 0  2  4  6  8  10  12  14

obj

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  2  4  6  8  10  12  14

CPU

Fig. 1 Bound values and CPU times against the number ` of generators for instance sts81.

ca36243 clique9 cod105 cod105r cod83 cod83r cod93 cod93r cov1075 cov1076 cov954

mered O4 35 oa36243 oa77247 of5 14 7 of7 18 9 pa36243 sts135 sts27 sts45 sts63

sts81

yield a nonzero decrease in bound value as ` increases, so they are of interest
for our test.

Having generated and solved relaxations for all ` ≤ k, we hand-picked good
values of ` for each instance, based on these prioritized criteria:

1. bound provided by G` strictly tighter than LP bound;
2. minimize CPU time, with strong penalty for choices of ` leading to excess

of 10 seconds;
3. on lack of other priorities, choose ` leading to bounds around midrange in

[bnd(Gk),bnd(G1)], where bnd(G′) denotes the bound value obtained by
solving the OSR based on the subgroup G′.

This choice led to the first three columns of Table 1 (the fourth will be ex-
plained later).
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Instance G` LP CPU
inc(G`)
inc(G)

ca36243 49 48 0.07 0.50
clique9 ∞ 36 0.06 0.87
cod105 -16 -18 4.91 0.99
cod105r -13 -15 0.25 0.99
cod83 -26 -28 0.12 0.98
cod83r -22 -25 4.44 0.88
cod93 -48 -51 3.07 0.98
cod93r -46 -47 2.74 0.97
cov1075 19 18 3.03 0.86
cov1076 44 43 185.83 0.73
cov954 28 26 0.45 0.79
mered ∞ 140 0.12 0.92
O4 35 ∞ 70 0.07 0.75
oa36243 ∞ 48 0.75 0.50
oa77247 ∞ 112 0.00 0.98
of5 14 7 ∞ 35 0.13 0.62
of7 18 9 ∞ 63 0.04 0.91
pa36243 -44 -48 1.26 0.50
sts135 60 45 0.05 0.88
sts27 12 9 0.01 0.88
sts45 24 15 0.39 0.66
sts63 27 21 0.00 1.00
sts81 33 27 0.00 0.88

Table 1 Hand-picked choice of the subgroup G`.

Next we looked for a feature of the solution data over all ` ≤ k and over
all instances, whose average value corresponds to values of ` that are close
to the hand-picked ones in Table 1. Again, intuition led our choice for this
feature. Our reasoning is as follows. We observe that, given any orbit ω, the
OSR relaxation replaces

∑
j∈ω xj with a single variable zω. Suppose now that

a constraint
∑
j∈ω xj ≤ bi happens to exist in the MILP formulation (P ):

this is simply reformulated to a bound constraint zω ≤ bi, thus replacing a
|ω|-ary original relation on the decision variables x with a unary relation on
the decision variables z. Intuitively, this will over-simplify the problem and
will likely yield a poor relaxation. Instead, we would like to deal with orbits
that are somehow “orthogonal” to the problem constraints.

To this aim, consider the i-th (out of, say, r) MILP constraint, namely∑
j∈[n] aijxj ≤ bi, and define the incidence of an orbit ω with respect to

the support of this constraint as |ω ∩ {j ∈ [n] : aij 6= 0}|. Intuitively, the
lower the incidence of an orbit, the farther we are from the situation where
problem constraints become over-simplified range constraints in the relaxation.
Lower incidence orbits should yield tighter relaxations, albeit perhaps harder
to solve. Given a subgroup G′ with orbits Ω′ = {ω′1, · · · , ω′m′}, we then extend
the incidence notion to G′

inc(G′, i) :=

∣∣∣∣∣ ⋃
ω′∈Ω′

ω′ ∩ {j ∈ [n] : aij 6= 0}

∣∣∣∣∣ , (8)
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and finally to the whole MILP formulation

inc(G′) =
∑
i∈[r]

inc(G′, i). (9)

The rightmost column of Table 1 reports the relative incidence ofG`, computed
as inc(G`)/ inc(G), for those ` that were hand-chosen to be “best” according to
the prioritized criteria listed above. Its average is 0.82 with standard deviation
0.17. This value allows us to generate a relaxation which is hopefully “good”,
by automatically selecting the value of ` such that inc(G`)/ inc(G) is as close
to 0.82 as possible.

4.5 Bound strength

The quality of the OSR relaxation we obtain with the method of Section 4.4
is reported in Table 2 whose columns include: the instance name, the auto-
matically determined value of ` and the total number k of generators, the
best-known optimal objective function value for the instance (starred values
correspond to guaranteed optima), the bound given by G1 which provides the
tightest non-trivial OSR bound, the bound given by G` and the associated
CPU time, the CPU time “cpx t” spent by CPLEX 12.2 (default settings) on
the original formulation to get the same bound as OSR (only reported when
the OSR bound is strictly better than the LP bound), and the LP bound. En-
try limit marks an exceeded time limit of 1800 sec.s, while boldface highlights
the best results for each instance.

The results show that the “fix” and “inc” features we chose are meaningful:
our bound is often stronger than the LP bound, whilst often taking only a
fraction of a second to solve. The effect of orbital shrinking can be noticed by
looking at the “cpx t” column, where it is evident that the original formulation
takes significantly longer to reach the bound given by our relaxation.

5 A general Orbital Shrinking based decomposition method

Let P be a MINLP as in the previous sections and let G be the chosen symme-
try group for P . Using G, we can construct the orbital shrinking reformulation
POSR of P , which will act as the master problem in our decomposition scheme,
much like in a traditional Benders decomposition scheme. Indeed, the scheme
is akin to a logic-based Benders decomposition [13], although the decomposi-
tion is not based on a traditional variable splitting, but on aggregation, and
the OSR master works with the aggregated variables z. A similar approach,
although problem specific, was also used in [19].
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Instance `/k best G1 G` CPU cpx t LP

ca36243 3/6 49∗ 49 48 0.02 48
clique9 5/15 ∞∗ ∞ ∞ 0.06 0.17 36
cod105 3/11 -12∗ limit -14.09† limit -18
cod105r 3/10 -11∗ -11 -11 24.12 28.36 -15
cod83 3/9 -20∗ -21 -24 16.78 9.54 -28
cod83r 3/7 -19∗ -21 -22 4.44 7.85 -25
cod93 3/10 -40 -46.11† limit -51
cod93r 3/8 -38 -39 -44 271.74 446.48 -47
cov1075 3/9 20∗ 20 19 3.03 79.79 18
cov1076 3/9 45 44 43 2.78 43
cov954 3/8 30∗ 28 26 0.11 26
mered 21/31 ∞∗ ∞ ∞ 0.15 3.37 140
O4 35 3/9 ∞∗ ∞ 70 0.00 70
oa36243 3/6 ∞∗ ∞ 48 0.01 48
oa77247 3/7 ∞∗ ∞ ∞ 0.10 265.92 112
of5 14 7 7/9 ∞∗ ∞ 35 0.00 35
of7 18 9 7/16 ∞∗ ∞ ∞ 0.09 0.15 63
pa36243 3/6 -44∗ -44 -48 0.01 -48
sts135 3/8 106 75 60 0.11 109.81 45
sts27 4/8 18∗ 14 12 0.01 1.05 9
sts45 2/5 30∗ 24 15 0.00 15
sts63 4/9 45∗ 36 27 0.02 1.99 21
sts81 5/14 61 45 33 0.01 3.92 27

Table 2 OSR performance (in the G`/CPU columns). Entries marked ∗ denote guaranteed
optimal values; those marked † denote the best lower bound at the time limit. In sts27,
CPLEX closes the gap at the root node. Values for cpx t are only present when the OSR
bound is integer and better than the LP bound.

For each feasible solution z∗ of POSR, we can then define the following (slave)
feasibility check problem R(z∗)

gi(x) ≤ 0 ∀i ∈ C (10)∑
j∈ω

xj = z∗ω ∀ω ∈ Ω (11)

xj ∈ Z ∀j ∈ J (12)

If R(z∗) is feasible, then the aggregated solution z∗ can be disaggregated
into a feasible solution x∗ of P , with the same cost. Otherwise, z∗ must be
removed from POSR, in either of the following two ways:

1. Generate a nogood cut that forbids the assignment z∗ to the z variables.
As in logic-based Benders decomposition, an ad-hoc study of the problem
is needed to derive (strong) nogood cuts.

2. Branching. As z∗ is integer, branching on non-fractional z variables is
needed, and z∗ will still be a feasible solution in one of the two child
nodes. However, the method would still converge, because the number of
variables is finite and the search tree has finite depth, assuming that z
variables are bounded. Note that in this case the method may repeatedly



Orbital Shrinking: Theory and Applications 13

check for feasibility the same aggregated solution z∗: in practice, this can
easily be avoided by keeping a list (cache) of recently checked aggregated
solutions with the corresponding feasibility status.

It is important to note that, by construction, problem R(z∗) has the same
symmetry group of P , so symmetry may still be an issue while solving R(z∗).
This issue is usually solvable because (i) linking constraints (11) may make the
model much easier to solve, and (ii) the easier structure of R(z∗) may allow
for more effective symmetry breaking techniques. Note also that R(z∗) is a
pure feasibility problem, so a CP solver may be a better choice than a MINLP
solver.

The above decomposition strategy is well suited for pure integer problems,
but is not very convenient when continuous variables are present in the model
because in the mixed-integer case one should enumerate, in the master, all
possible values also for the continuous variables, which makes the method
impractical. However, the method can be modified to deal with continuous
variables more effectively. In particular, we can:

– zero out the objective coefficients of the zω variables in POSR;
– reintroduce the objective coefficients of the continuous variables in R(z∗);
– remove the linking constraints (11) associated to orbits of continuous vari-

ables.

The advantage of the above modification is that only the partial assign-
ments over the aggregated integer variables need to be checked, at the expense
of turning the feasibility check into an optimization problem itself. Such ex-
tended method has been used in [26] to solve a very challenging instance of
3-dimensional quadratic assignment problem. Interestingly, the role of MIP
and CP was swapped in [26]: a CP solver was used to enumerate all feasible
solutions of the master problem, while a MIP solver was used to solve the
optimization slaves.

6 Application to Shift Scheduling

A shift scheduling problem assigns a feasible working shift to a set of em-
ployees, in order to satisfy the demands for a given set of activities at each
period in a given time horizon. The set of feasible shifts that can be assigned
to employees is often defined by a complex set of work regulation agreements
and other rules. Assigning a shift to an employee means specify an activ-
ity for each period, which may be a working activity or a rest activity (e.g.,
lunch). The objective is usually to minimize the cost of the schedule, which
is usually a linear combination of working costs plus some penalties for un-
dercovering/overcovering the demands of the activities in each time period. If
the set of working activities W is made by a single activity, we talk of single-
activity shift scheduling, while if there are several working activities we talk
of multi-activity shift scheduling. In what follows we consider the latter case,
with the additional constraint that all employees are identical.
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In particular, suppose we are given a planning horizon divided into a set
of periods T , a set of activities A, a subset W ⊂ A of working activities, and
a set of employees E. For each period t ∈ T and for each working activity
a ∈ W , we are given a demand dat, an assignment cost cat, an undercovering
cost c−at and an overcovering cost c+at. Introducing the set of integer variables
yat, which count the number of employees assigned to activity a at period t,
and integer variables s−at, s

+
at that count the appropriate under/over covering,

we can formulate the problem as:

min
∑
a

∑
t

catyat +
∑
a

∑
t

c+ats
+
at +

∑
a

∑
t

c−ats
−
at (13)

yat − s+at + s−at = dat ∀a ∈W, ∀t ∈ T (14)∑
e

xeat = yat ∀a ∈W, ∀t ∈ T (15)

〈x defines a feasible shift ∀e ∈ E〉 (16)

yat, s
+
at, s

−
at ∈ Z+ (17)

xeat ∈ {0, 1} (18)

where xeat are binary variables, each of which is equal to 1 if employee
e is assigned to activity a in period t. Depending on how we formulate con-
straints (16), we may end up with very different models. A convenient way
to define the set of feasible shifts that can be assigned to a given employee is
to use a regular or a context-free language, i.e., the set of feasible shifts can
be viewed as the words accepted by a finite automaton or, more generally,
by a push-down automaton. It has been shown in [29,1] that it is possible
to derive a polyhedron that describes a given regular/context-free language.
Such representations are compact (in an appropriate extended space, i.e., in-
troducing additional variables) and thus lead directly to a MIP formulation of
the problem. In particular, the extended formulation for a regular language is
essentially a network flow formulation based on the expanded graph associated
with the accepting automaton (see [28,1] for details). The extended formula-
tion for the context-free language, on the other hand, is based on an and-or
graph built by the standard CYK parser [14] for the corresponding grammar
[29,33].

Note that it is not necessary to describe completely the set of feasible shifts
by a regular/context-free language. The formal language may capture only
some of the constraints defining a feasible shift, with the remaining ones de-
scribed as linear inequalities. This may simplify the corresponding automaton
considerably (for example, regular languages are notoriously bad at handling
counting arguments). However, describing the set of feasible shifts with for-
mal languages alone has some important implications. First of all, it has been
proven for both the regular and context-free languages that the derived poly-
hedron is integral [29], and thus, if the are no other constraints, it is possible
to optimize a linear function over the set of feasible shifts by solving just a
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linear program. Even more importantly, these results have been extended also
to polyhedra describing sets of feasible shifts [2]. It is then possible to con-
sider an aggregated (implicit) model and reconstruct an optimal solution of
the original one with a polynomial post-processing phase. From the OSR point
of view, this means that POSR is in this case an exact reformulation. Consider
for example the regular polytope in its extended form: the optimal solution is
always a flow of integral value, say k, and basic network flow theory guaran-
tees that it can be decomposed into k paths of unitary flow (and since each
path in the expanded graph corresponds to a word in the language, this is a
feasible solution for the original explicit problem). Similar reasoning applies to
the grammar polytope (although it is not a flow model), as successfully shown
in [2]. It is interesting to note that this gives the current state-of-the-art for
solving multi-activity shift scheduling problems.

Unfortunately, it is not always reasonable to describe the set of feasible
shifts completely with a formal language. While it is true that formal languages
can be extended without changing the complexity of the corresponding MIP
encoding (this is particularly true for context-free languages [33]), still some
cardinality constraints may be very awkward to express, see [37] for examples.
As such, we assume in the following that the formal language captures the
constraints that define the set of feasible shifts only partially, and thus we
need to apply the decomposition framework of Section 5 in order to turn OSR
into an exact procedure.

6.1 MIP model

The MIP model that we use is a simple modification of the general model (13)-
(18). The main difference is that we partition the set of feasible shifts Ω into k
subsets Ωk, each of which is described by a potentially different deterministic
finite automaton (DFA) and by cardinality constraints. This partition can
simplify a lot the structure of the DFAs, and in general makes the implicit
model more accurate, since the cardinality constraints are aggregated only
within employees of the same “kind”. This of course increases the size of the
relaxation, but since the aggregated model is quite compact, this is usually well
worth it. For each shift type Ωk, the MIP model decides how many employees
are assigned a shift in Ωk, and then computes an aggregated integer flow of
the same value. In details:
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min
∑
k

∑
a

∑
t

caty
k
at +

∑
a

∑
t

c+ats
+
at +

∑
a

∑
t

c−ats
−
at (19)∑

k

ykat − s+at + s−at = dat ∀a ∈W, ∀t ∈ T (20)

regular(yk, wk,DFAk) ∀k ∈ K (21)

〈cardinality constraints for yk〉 ∀k ∈ K (22)∑
k

wk ≤ E (23)

wk, ykat, s
+
at, s

−
at ∈ Z+ (24)

Note that we use the notation of constraint (21) to refer to the extended
MIP formulation of the regular constraint involving flow variables. The con-
straint ensures that variables yk can be decomposed into wk words accepted by
the automaton DFAk. Constraints (22) refers to the cardinality constraints ex-
pressed as linear constraints that complete the description of sets Ωk. Finally,
if an upper bound E is given on the number of employees that can scheduled,
it can be imposed in constraint (23).

6.2 CP checker

The decision to partition the set of feasible shifts into k subsets Ωk has an
important consequence on the structure of the CP checker: the model actually
decomposes into k separate CP models, one for each type of shift. Given an
index k, suppose the master (MIP) model assigns wk employees, with their ag-
gregated shifts described by yat; then the corresponding CP model can easily
be formulated by using several global constraints [35]. Global constraints are
used within a CP solver to represent general purpose and common substruc-
tures, for which efficient and effective constraint propagators are known. While
a global constraint is typically semantically redundant, in the sense that the
same effect can be obtained as the conjunction of several simpler constraints, it
is very convenient as a shorthand for expressing frequently recurring patterns.
Less obviously, global constraints also make the underlying CP solver more
efficient, as propagators can better exploit the substructures of the problem
at hand. In our case, the corresponding CP model, which is similar to the one
proposed in [3], reads:
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gcc(xe, σe, A) ∀e ∈ 1, . . . , wk (25)

τe =
∑
a∈W

σea ∀e ∈ 1, . . . , wk (26)

〈cardinality constraints for σe, τe〉 ∀e ∈ 1, . . . , wk (27)

regular(xe,DFAk) ∀e ∈ 1, . . . , wk (28)

gcc(xt, yt, A) ∀t ∈ T (29)

xe � xe+1 ∀e ∈ 1, . . . , wk − 1 (30)

Variables xet denote the activity assigned to employee e at time t. Variables
σea count the number of periods assigned to each activity for employee e, while
τe gives the sum over all working activities. Both are needed to specify the
cardinality constraints (27). Variables σea are linked to variables xet through
global cardinality constraints (25). We recall that a global cardinality con-
straint gcc(x, y, S) is satisfied if y (which can be either variable or constant)
counts the number of occurrences of values in S in the set of values assigned to
variables x [34]. Global constraints based on regular languages are used (28) to
complete the description of the sets of feasible shifts. We recall that a regular
constraint regular(x,DFA) is satisfied if the values assigned to the variables
x, in the given order, constitute a word accepted by the automaton DFA [28].
In (29) global cardinality constraints are used again to link the variables in
the CP model to the master solution yat. Finally, we impose a lexicographic
order among the shifts of the employees with constraints (30).

The CP model above is usually extremely fast in proving whether the aggre-
gated solution can be turned into a solution of the original model. However, as
the number of activities and employees increases, it can occasionally become
very time consuming. The main reason for this behavior is the weak inter-
action between the cardinality constraints (29) and the symmetry breaking
constraints (30). To overcome this issue, we implemented an ad-hoc propa-
gator that implements a custom symmetry breaking strategy based on the
cardinality constraints, see [37] for details.

Another issue with the CP model above is that the minimum/maximum
length of a working shift (i.e., the number of periods, breaks included, between
the first and last working period) is constrained only implicitly by the regular
constraints. Again, we implemented a custom propagator that deals with that.
The combined effect of these propagators is very significant: we often observed
reductions of 2−3 orders of magnitude in both the number of nodes and the
running times on hard instances. Sometimes, we observed even higher savings.
For example, on one instance with 9 full-time employees and 3 activities, we
reduced the running times from 6 minutes to 10−5 seconds, with a number of
nodes dropping from 765,026 to 1.
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6.3 Computational Results

We tested our method on the multi-activity instances used in [1,2,32]. This
testbed is derived from a real-world store, and contains instances with 1 to
10 working activities (each class has 10 instances). A basic description of the
problem is as follows:

– The planning horizon of 1 day is divided into 96 slots of 15 minutes.
– A part-time employee must work a minimum of 3 hours and less than 6

hours, and is entitled to one break of 15 minutes.
– A full-time employee can work between 6 and 8 hours, and is entitled to

have two breaks of 15 minutes plus a lunch break of 1 hour (in any order).
– When an employee starts working on one activity, it must do it for at least

1 hour. In addition, a break/lunch is needed before changing activity.
– A break cannot be scheduled at the beginning/end of the shift.
– At specific times of the day (e.g., when the store is closed), no employee is

allowed to work.
– Overcovering/undercovering is allowed, with an associated cost.
– The cost of a shift is the sum of the costs of all working activities performed

in the shift.

We implemented our method in C++, using IBM ILOG CPLEX 12.2 [15]
as black box MIP solver, and Gecode 3.7.3 [8] as CP solver. All tests have
been performed on a PC with an Intel Core i5 CPU running at 2.66GHz,
with 8GB of RAM (only one core was used by each process). Every method
was given a time limit of 1 hour per instance. Concerning the set of feasible
shifts Ω, we simply partitioned it into full-time and part-time shifts. We could
have partitioned the full-time shifts further (depending on the relative order of
breaks and lunch), but it seemed overkill because all full-time shifts share the
same cardinality constraints (this was confirmed by some preliminary tests). In
general, disaggregating shifts depending on the cardinality constraints seems
to work well in practice.

From the implementation point of view, our hybrid method is made of the
following phases:

– First, the aggregated model is solved with CPLEX, using the default set-
tings. The outcome of this (usually fast) first phase is a dual bound po-
tentially stronger than the LP bound, and the set of aggregated solutions
collected by the MIP solver during the solution process (not necessarily
feasible for the original model).

– We apply an ad-hoc MIP repair/improve heuristic (see [37] for details)
to each aggregated solution which is within 20% of the aggregated model
optimal solution. The outcome of this phase is always a feasible solution
for the original model, thus a primal bound. Note that if the gap between
the two is already below the 1% threshold, we are done.

– We solve the aggregated model again, this time implementing the hybrid
MIP/CP approach. This means that we disable dual reductions (other-
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wise the decomposition would not be correct) and use CPLEX callbacks
framework to implement the decomposition.

Here is a more detailed description of the last phase. Whenever the MIP
solver finds an integer solution, either with its own heuristics or because the
LP relaxation happens to be integer, we build the corresponding CP models
and solve them with Gecode DFS algorithm. As far as the branching strategy
of the CP solver is concerned, after some trial-and-error we found that ranking
the variables by increasing time period was the most successful policy. If the
check is successful, then we update the incumbent, otherwise the solution is
rejected. In both cases, we apply the MIP repair/improve heuristic on it to
try to find a new incumbent. If the solution was the optimal solution of an
LP relaxation, then we force a branching on a integer variable and keep going.
As to branching inside the MIP solver, we let CPLEX apply its own powerful
strategies whenever the relaxation has some fractional variables. If this is not
the case, we branch first on the w variables and then, if all w variables are
already fixed, on the y, again ranking them by increasing time period. The
rationale behind this strategy is that if the w variables are not fixed to some
value, then we cannot even formulate the CP checking model, so the sooner
we fix them the better. Note that as soon as the w variables are fixed, we can
build a CP model akin to (25)-(30) where the y variables are not necessarily
fixed but just take the domains of the current node. In this case, we let the
CP solver run with a strict fail limit (1000 in our code) and, if it detects
infeasibility, then we prune the node.

Table 3 reports a comparison between the proposed method and others in
the literature, for a number of activities from 1 to 10. As far as the number
of employees is concerned, we put an upper bound of 12 for instances with
up to 2 activities, of 24 for instances with 3 to 8 activities and of 30 for
instances with 9 or 10 activities. cpx-reg refers to the explicit model based on
the regular constraint in [1], while grammar refers to the implicit model based
on the grammar constraint in [2]. Note that for grammar we are reporting
the results from [2], which were obtained on a different machine and, more
importantly, with an older version of CPLEX, so the numbers are meant to
give just a reference. All methods were run to solve the instances to near-
optimality, stopping when the final integrality gap dropped below 1%.

According to Table 3, hybrid outperforms significantly the explicit model
cpx-reg, which scales very poorly because of symmetry issues and slow LPs.
When compared to grammar, hybrid is very competitive only for up to 2
activities, while after that threshold grammar clearly takes the lead. This is
somehow expected: the set of feasible shifts in these instances can indeed be
described without too much effort with an extended grammar, and it is no
surprise that the pure implicit MIP model outperforms our decomposition
approach. However, hybrid is likely to be the best approach if the extended
grammar is not a viable option.

Table 4 reports a closer comparison between cpx-reg and hybrid, report-
ing the average final gap, average number of variables in the model and average
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Table 3 Average computing times between the different methods to solve to near-optimality
(gap ≤ 1%) the instances with up to 10 activities.

# solved (10) time(s)
# act. cpx-reg hybrid grammar cpx-reg hybrid grammar

1 10 10 10 41.3 9.1 283.7
2 9 10 9 707.9 194.5 379.9
3 4 5 9 2957.3 1996.4 205.4
4 3 6 10 2970.2 1827.9 300.5
5 0 8 10 3600.0 1438.4 146.2
6 1 4 10 3530.6 2340.6 213.8
7 1 6 10 3438.7 2399.0 230.9
8 0 5 10 3600.0 2201.5 257.1
9 0 4 10 3600.0 2444.0 289.1

10 0 2 10 3600.0 3275.6 516.7

node throughput for each category. According to the table, hybrid consistently
yields very small gaps (always below 3% on average), while for cpx-reg is al-
ways above 60% with more than 4 activities. As far as the number of variables
of the models is concerned, hybrid needs approximately 1/10 of the number of
variables of cpx-reg, which promptly turns into a much faster node through-
put: hybrid is more than two order of magnitude faster in exploring nodes
than cpx-reg. Note that, according to [2], grammar models range from 70,000
variables for instances with 1 activity to 96,000 for instances with 10 activities,
so the hybrid model based on regular languages is significantly smaller.

Table 4 Comparison of average final gap between cpx-reg and hybrid.

gap(%) #vars node/sec
# act. cpx-reg hybrid cpx-reg hybrid cpx-reg hybrid

1 0.72 0.24 9,956 1,908 21.99 10.36
2 0.78 0.61 13,608 2,925 3.52 20.60
3 3.74 3.00 34,903 4,152 0.59 8.42
4 25.18 1.39 43,005 5,291 0.20 3.92
5 62.55 1.01 52,979 6,828 0.05 3.32
6 75.89 1.59 62,442 8,364 0.03 1.86
7 90.00 0.90 73,693 9,936 0.01 1.64
8 100.00 1.92 78,809 10,603 0.01 1.22
9 100.00 1.52 104,561 11,509 0.01 1.05
10 100.00 2.76 120,049 13,302 0.01 0.86

Finally, Table 5 shows the gap just before the beginning of the last phase
(but after the aggregated model has been solved and its solutions have been
used to feed the MIP repair/improve heuristic). On almost all categories the
average final gap is below 10%, with an average running time of 1 minute. This
heuristic alone significantly outperforms cpx-reg for a number of activities
greater than 3. It is also clear from the table that solving the OSR relaxations
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with a black box MIP solver is usually very fast. Interestingly, solving these
MIPs turn out to be often faster than solving the LP relaxations of the original
models, while providing better or equal dual bounds. For example, on one
instance with 1 activity, the LP relaxation of the original model takes 0.26
seconds to solve, yielding a dual bound of 142.48, while the OSR MIP takes
0.12 seconds and yields a dual bound of 182.54 (in this case, equal to the
value of the optimal solution). On another instance with 10 activities, the LP
relaxation takes 269.55 seconds, while the OSR MIP takes only 52.77 seconds,
both yielding the same dual bound in this case.

Table 5 MIP repair/improve heuristics standalone results.

# act. time(s) gap(%)

1 6.2 1.5
2 46.5 6.5
3 24.7 20.3
4 30.3 7.1
5 34.5 5.9
6 33.5 10.5
7 63.2 7.1
8 69.3 7.7
9 89.8 6.7

10 65.9 8.0

7 Application to the Multiple Knapsack Problem

In the present section, we specialize the general framework of the Section 5 to
the multiple knapsack problem (MKP) [38,30]. This a natural generalization of
the traditional knapsack problem [23], where multiple knapsack are available.
Given a set of n items with weights wj and profits pj , and m knapsacks with
capacity Ci, MKP reads

max

m∑
i=1

n∑
j=1

pjxij (31)

n∑
j=1

wjxij ≤ Ci ∀i = 1, . . . ,m (32)

m∑
i=1

xij ≤ 1 ∀j = 1, . . . , n (33)

x ∈ {0, 1}m×n (34)

where binary variable xij is set to 1 if and only if item j is loaded into knapsack
i. We assume that all m knapsacks are identical and have the same capacity
C, and that also some items are identical.
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When applied to problem MKP, the orbital shrinking reformulation POSR

reads

max

K∑
k=1

pkyk (35)

K∑
k=1

wkyk ≤ mC (36)

0 ≤ yk ≤ |Vk| ∀k = 1, . . . ,K (37)

y ∈ ZK+ (38)

Intuitively, in POSR we have a general integer variable yk for each set of iden-
tical items and a single knapsack with capacity mC. Given a solution y∗, the
corresponding R(y∗) is thus a one dimensional bin packing instance, whose
task is to check whether the selected items can indeed be packed into m bins
of capacity C.

To solve the bin-packing problem above, we propose two different ap-
proaches. The first approach is to deploy a standard compact CP model based
on the global binpacking constraint [39] and exploiting the CDBF [10] branch-
ing scheme for search and symmetry breaking. Given an aggregated solution
y∗, we construct a vector s with the sizes of the items picked by y∗, and sort
it in non-decreasing order. Then we introduce a vector of variables b, one for
each item: the value of bj is the index of the bin where item j is placed. Finally,
we introduce a variable li for each bin, whose value is the load of bin i. The
domain of variables li is {0, . . . , C}. With this choice of variables, the model
reads:

binpacking(b, l, s) (39)

bj−1 ≤ bj if sj−1 = sj (40)

where (40) are symmetry breaking constraints.
The second approach is to consider an extended model, akin to the well

known Gilmore and Gomory column generation approach for the cutting stock
problem [11]. Given the objects in y∗, we generate all feasible packings p of
a single bin of capacity C. Let P denote the set of all feasible packings and,
given packing p, let apk denote the number of items of type k picked. The
corresponding model is ∑

p∈P
apkxp = y∗k (41)

∑
p∈P

xp = m (42)

xp ∈ Z+ (43)

where integer variables xp count how many bins are filled according to pack-
ing p. In the following, we will denote this model with BPcg. Model BPcg is
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completely symmetry free, but it needs an exponential number of columns in
the worst case.

7.1 Computational Experiments

We implemented our codes in C++, using IBM ILOG CPLEX 12.4 [15] as
black box MIP solver and Gecode 3.7.3 [8] as CP solver. All tests have been
performed on a PC with an Intel Core i5 CPU running at 2.66GHz, with 8GB
of RAM (only one CPU was used by each process). Each method was given a
time limit of 1 hour per instance.

In order to generate hard MKP instances, we followed the systematic study
in [31]. According to [31], difficult instances can be obtained introducing some
correlation between profits and weights. Among the hardest instances pre-
sented in [31] are the so-called almost strongly correlated instances, in which
weights wj are distributed—say uniformly—in the range [1, R] and the profits
pj are distributed in [wj +R/10−R/500, wj +R/10+R/500]. These instances
correspond to real-life situations where the profit is proportional to the weight
plus some fixed charge value and some noise. Given this procedure, a possibil-
ity for generating hard-enough instances is to construct instances where the
coefficients are of moderate size, but where all currently used upper bounds
have a bad performance. Among these difficult classes, we consider the spanner
instances: these instances are constructed such that all items are multiples of
a quite small set of items—the so-called spanner set. The spanner instances
span(v, l) are characterized by the following three parameters: v is the size of
the spanner set, l is the multiplier limit, and we may have any distribution
of the items in the spanner set. More formally, the instances are generated as
follows: a set of v items is generated with weights in the interval [1, R], with
R = 1000, and profits according to the distribution. The items (pk, wk) in
the spanner set are normalized by dividing the profits and weights by l + 1,
with l = 10. The n items are then constructed by repeatedly choosing an item
(pk, wk) from the spanner set, and a multiplier a randomly generated in the in-
terval [1, l]. The constructed item has profit and weight (apk, awk). Capacities
are computed as C = (

∑n
i=1 wi)/8.

In order to have a reasonable test set, we considered instances with a
number of items n ∈ {30, 40, 50} and number of knapsacks m ∈ {3, 4, 5, 6}.
For each pair of (n,m) values, we generated 10 random instances following
the procedure described above, for a total of 120 instances. All the instances
are available from the authors upon request. For each set of instances, we
report aggregate results comparing the shifted geometric means of the number
of branch-and-cut nodes and the computation times of the different methods.
Note that we did not use specialized solvers, such as ad-hoc codes for knapsack
or bin packing problems, because the overall scheme is very general and using
the same (standard) optimization packages in all the methods allows for a
clearer comparison of the different approaches.
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As a first step, we compared 2 different pure MIP formulations. One is the
natural formulation (31)−(34), denoted as cpxorig. The other is obtained by
aggregating the binary variables corresponding to identical items. The model,
denoted as cpx, reads

max

m∑
i=1

K∑
k=1

pjzik (44)

K∑
k=1

wjzik ≤ C ∀i = 1, . . . ,m (45)

m∑
i=1

zik ≤ Uk ∀k = 1, . . . ,K (46)

z ∈ Zm×K+ (47)

where Uk is the number of items of type k. Note that cpx would be obtained
automatically from formulation cpxorig by applying the orbital shrinking pro-
cedure if the capacities of the knapsacks were different. While one could argue
that cpxorig is a modeling mistake, the current state-of-the-art in prepro-
cessing is not able to derive cpx automatically, while orbital shrinking would.
A comparison of the two formulations is shown in Table 6. As expected, cpx
clearly outperforms cpxorig, solving 82 instances (out of 120) instead of 65.
However, cpx performance is rapidly dropping as the number of items and
knapsacks increases.

Table 6 Comparison between cpxorig and cpx.

# solved time (s) nodes
n m cpxorig cpx cpxorig cpx cpxorig cpx

30 3 10 10 1.16 0.26 3,857 1,280
30 4 9 10 12.28 3.42 65,374 16,961
30 5 6 8 291.75 79.82 2,765,978 1,045,128
30 6 7 7 108.83 48.05 248,222 164,825

40 3 9 10 19.48 2.72 103,372 9,117
40 4 8 8 351.07 35.56 3,476,180 421,551
40 5 2 3 2,905.70 1,460.95 25,349,383 23,897,899
40 6 3 5 308.29 234.19 626,717 805,007

50 3 6 9 70.73 12.44 259,099 32,310
50 4 2 7 1,574.34 254.58 8,181,128 4,434,707
50 5 0 2 3,600.00 700.69 26,017,660 4,200,977
50 6 3 3 308.29 307.98 586,400 1,025,907

Then, we compared three variants of the hybrid MIP/CP procedure de-
scribed in Section 7, that differs on the models used for the feasibility check.
The first variant, denoted by BPstd, is based on the compact model (39)−(40).
The second and the third variants are both based on the extended model
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Table 7 Comparison between hybrid methods.

# solved time (s) nodes
n m BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP

30 3 10 10 10 0.07 0.05 0.05 245 270 270
30 4 10 10 10 0.18 0.12 0.08 157 160 160
30 5 10 10 10 1.28 0.26 0.14 90 88 88
30 6 10 10 10 1.24 0.25 0.13 42 40 40

40 3 10 10 10 0.64 0.42 0.17 502 540 540
40 4 10 10 10 0.54 0.20 0.17 225 224 224
40 5 9 10 10 8.63 1.20 0.62 202 225 225
40 6 8 10 10 17.96 1.65 0.46 48 60 60

50 3 10 10 10 1.59 0.93 0.44 837 914 914
50 4 10 10 10 4.06 1.11 0.60 337 335 335
50 5 6 8 10 137.52 23.97 3.58 172 245 335
50 6 7 7 10 17.15 12.73 2.85 17 16 140

(41)−(43), but differs on the solver used: a CP solver for BPcgCP and a MIP
solver for BPcgMIP. All variants use model (35)−(38) as a master problem,
which is fed to CPLEX and solved with dual reductions disabled, to ensure
correctness of the method. CPLEX callbacks are used to implement the de-
composition. A comparison of the three methods is given in Table 7. Note that
the number of nodes reported for hybrid methods refers to the master only—
the nodes processed to solve the feasibility checks are not added to the count,
since they are not easily comparable, in particular when a CP solver is used.
Of course the computation times refer to the whole solving process (slaves
included). According to the table, even the simplest model BPstd clearly out-
performs cpx, solving 110 instances (28 more) and with speedups up to two
orders of magnitude. However, as the number of knapsacks increases, sym-
metry can still be an issue for this compact model, even though symmetry
breaking is enforced by constraints (40) and by CDBF. Replacing the com-
pact model with the extended model, while keeping the same solver, shows
some definite improvement, increasing the number of solved instances from
110 to 115 and further reducing the running times. Note that for the instances
in our testbed, the number of feasible packings was always manageable (at
most a few thousands) and could always be generated by Gecode in a fraction
of a second. Still, on some instances, the CP solver was not very effective in
solving the feasibility model. The issue is well known in the column generation
community: branching on variables xp yields highly unbalanced trees, because
fixing a variable xp to a positive integer value triggers a lot of propagations,
while fixing it to zero has hardly any effect. In our particular case, replacing
the CP solver with a MIP solver did the trick. Indeed, just solving the LP
relaxation was sufficient in most cases to detect infeasibility. Note that if in-
feasibility is detected by the LP relaxation of model (41)−(43), then standard
LP duality can be used to derive a (Benders) nogood cut violated by the cur-
rent aggregated solution y∗, without any ad-hoc study. In our implementation,
however, we did not take advantage of this possibility, and just stuck to the
simpler strategy of branching on integer variables. BPcgMIP is able to solve all



26 Matteo Fischetti1 et al.

120 instances, in less than four seconds (on average) in the worst case. The
reduction in the number of nodes is particularly significant: while cpx requires
millions of nodes for some classes, BPcgMIP is always solving the instances in
fewer than 1,000 nodes.

Finally, Table 8 shows the average gap closed by the OSR relaxation with
respect to the initial integrality gap, and the corresponding running times
(obtained by solving the orbital shrinking relaxation with a black box MIP
solver, without the machinery developed in this section). According to the
table, orbital shrinking yields a much tighter relaxation than standard linear
programming, while still being very cheap to compute.

Table 8 Average gap closed by orbital shrinking and corresponding time.

n m gap closed time (s)

30 3 45.3% 0.007
30 4 46.6% 0.004
30 5 42.8% 0.004
30 6 54.4% 0.002

40 3 48.4% 0.013
40 4 67.2% 0.007
40 5 55.3% 0.005
40 6 58.6% 0.003

50 3 52.7% 0.031
50 4 64.5% 0.030
50 5 61.1% 0.006
50 6 76.7% 0.003

8 Conclusions

We discussed a new methodology for deriving a relaxation of symmetric dis-
crete optimization problems, based on variable aggregation within orbits. The
idea is that we view symmetry as a positive feature that we want to exploit—as
opposed to breaking, as commonly done in discrete optimization.

The approach, called orbital shrinking, sometimes leads to an exact and
symmetry-free reformulation of a given problem. This happens, for instance,
in case a standard ILP model for the asymmetric Traveling Salesman Problem
(TSP) is solved and the input arc costs happen to be symmetric. In this setting,
the symmetry group has an orbit {(i, j), (j, i)} for each node pair {i, j}, and
orbital shrinking automatically produces the symmetric TSP formulation of
the problem—which is of course a much better way to model it when costs
are symmetric. In this context, orbital shrinking can be seen as an automatic
preprocessing step to produce a more effective model for the actual input data,
capable of fixing some kind of modeling errors.
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In other cases, orbital shrinking produces just a relaxation of the origi-
nal problem, so it needs to be embedded in a more general solution scheme.
We have described a master-slave framework akin to Benders’ decomposi-
tion, where orbital shrinking acts as the master problem and generates a
sequence of aggregated solutions to be checked for feasibility by a suitable
slave subproblem—possibly based on Constraint Programming. Although the
framework itself is not entirely new, a novelty of our approach is that it is
driven by the automatically-detected symmetry group of the formulation at
hand. Computational results on two specific applications prove the effective-
ness of the scheme.

Future work should be devoted to the study of sufficient conditions under
which orbital shrinking produces an exact reformulation. Practical applications
of orbital shrinking decomposition to other symmetric problems are also worth
investigating.
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