
Mixed-Integer Linear Programming Heuristics
for the PrePack Optimization Problem

Matteo Fischetti, Michele Monaci, Domenico Salvagnin

DEI, University of Padova

Abstract

In this paper we consider a packing problem arising in inventory allocation ap-

plications, where the operational cost for packing the bins is comparable, or

even higher, than the cost of the bins (and of the items) themselves. This is the

case, for example, of warehouses that have to manage a large number of different

customers (e.g., stores), each requiring a given set of items. For this problem,

we present Mixed-Integer Linear Programming heuristics based on problem sub-

structures that lead to easy-to-solve and meaningful subproblems, and exploit

them within an overall meta-heuristic framework. The new heuristics are evalu-

ated on a standard set of instances, and benchmarked against known heuristics

from the literature. Computational experiments show that very good (often

proven optimal) solutions can consistently be computed in short computing

times.

Keywords: Mixed-Integer Linear Programming, Matheuristics, Packing

problems, Prepack Optimization.

1. Introduction

Packing problems play an important role in practical industrial applications,

and have been studied in the literature since the early 60s. In these problems,

a given set of items has to be packed into one or more containers (bins) so as

Email address: {matteo.fischetti, michele.monaci, domenico.salvagnin}@unipd.it

(Matteo Fischetti, Michele Monaci, Domenico Salvagnin)

Preprint submitted to Discrete Optimization March 11, 2015

to satisfy a number of constraints and to optimize some objective function.5

Most of the contributions from the literature are devoted to the case where

all the items have to be packed into a minimum number of bins, so as to minimize

e.g. transportation costs; within these settings, only loading costs are taken into

account. The resulting problem is known as the Bin Packing Problem, which

has been widely studied in the literature, both in its one-dimensional version [1]10

and in its higher-dimensional variants [2].

A number of different packing problems arise in logistic applications: in [3]

an optimization problem is considered in which different customers have to be

served by a single depot so as to minimize the sum of the packing and of the

routing cost, whereas [4] and [5] addressed the problem in which different types15

of bins are available, each having a given capacity and cost.

In this paper we consider a different packing problem arising in inventory

allocation applications, where the operational cost for packing the bins is com-

parable, or even higher, than the cost of the bins (and of the items) themselves.

This is the case, for example, of warehouses that have to manage a large number20

of different customers (e.g., stores), each requiring a given set of items. Assum-

ing that automatic systems are available for packing, the required workforce is

related to the number of different ways that are used to pack the bins to be

sent to the customers. To keep this cost under control, a hard constraint can

be imposed on the total number of different box configurations that are used.25

Pre-packing items into box configurations has obvious benefits in terms of

easier and cheaper handling, as it reduces the amount of material handled by

both the warehouse and the customers. However, the approach can considerably

reduce the flexibility of the supply chain, leading to situations in which the set

of items that are actual shipped to each customer may slightly differ from the30

required one—at the expense of some cost in the objective function. Depending

on the retailer, the relative cost of markdown against the cost of lost sales can

be quite different, so that it is hard to predict the ratio between overstocking

and understocking costs. In addition, in certain scenarios, strict upper bounds

on the amount of over/understocking are imposed for each store.35

2

The resulting problem, known as PrePack Optimization Problem (POP),

was recently addressed in [6], where a real-world application in the fashion in-

dustry is presented, and heuristic approaches are derived using both Constraint

Programming (CP) and Mixed Integer Linear Programming (MILP) techniques.

POP is also the subject of recent patent applications, see [7, 8, 9, 10], where a40

number of heuristic approaches are proposed. Almost all these algorithms iter-

atively fix some part of the solution step by step. The algorithms differ on the

way this is actually done: some of them solve some relaxation of a mathematical

formulation of POP, whereas other algorithms fix part of the solution and try

to improve it by changing the current pre-pack configuration of some items by45

a small amount.

Our paper is organized as follows: in Section 2 we formalize POP and recap

the mathematical model given in [6]. In Section 3 we present some heuristic

algorithms that are based on the mathematical formulation, and test their com-

putational effectiveness in Section 4. Finally, Section 5 draws some conclusions50

and outlines future research directions.

2. Mathematical model

In this section we briefly formalize POP and review the mathematical model

introduced in [6], as the heuristic algorithms to be presented in Section 3 are

based on such a formulation.55

As already mentioned, in POP we are given a set I of types of products and

a set S of stores. Each store s ∈ S requires an integer number ris of products

of type i ∈ I. Bins with different capacities are available for packing items: we

denote by K ⊂ Z+ the set of available bin capacities.

Bins must be completely filled and are available in an unlimited number60

for each type. A box configuration describes the packing of a bin, in terms of

number of products of each type that are packed into it. We denote by NB

the maximum number of box configurations that can be used for packing all

products, and by B = {1, . . . , NB} the associated set.

3

Products’ packing into boxes is described by integer variables ybi: for each65

product type i ∈ I and box configuration b ∈ B, the associated variable indicates

the number of products of type i that are packed into the b-th box configuration.

In addition, integer variables xbs are used to denote the number of bins loaded

according to box configuration b that have to be shipped to store s ∈ S.

Understocking and overstocking of product i at store s are expressed by70

decisional variables uis and ois, respectively. Positive costs α and β penalize

each unit of under- and over-stocking, respectively, whereas an upper bound δis

on the maximum overstocking of each product at each store is also imposed.

Finally, for each box configuration b ∈ B and capacity value k ∈ K, a binary

variable tbk is introduced that takes value 1 iff box configuration b corresponds75

to a bin of capacity k.

Additional integer variables used in the model are qbis = xbs ybi (number of

items of type i sent to store s through boxes loaded with configuration b), hence∑
b∈B qbis gives the total number of products of type i that are shipped to store

s.80

A Mixed-Integer Nonlinear Programming (MINLP) model then reads:

min
∑
s∈S

∑
i∈I

(αuis + βois) (1)

qbis = xbsybi (b ∈ B; i ∈ I; s ∈ S) (2)∑
b∈B

qbis − ois + uis = ris (i ∈ I; s ∈ S) (3)∑
i∈I

ybi =
∑
k∈K

k tbk (b ∈ B) (4)∑
k∈K

tbk = 1 (b ∈ B) (5)

ois ≤ δis (i ∈ I; s ∈ S) (6)

tbk ∈ {0, 1} (b ∈ B; k ∈ K) (7)

xbs ≥ 0 integer (b ∈ B; s ∈ S) (8)

ybi ≥ 0 integer (b ∈ B; i ∈ I) (9)

4

The model is of course nonlinear, as the bilinear constraints (2) involve the

product of decision variables. As a matter of fact, it turns out to be by far too

difficult for the current state of the art of MINLP solvers. Indeed, none of the85

global solvers that we tried, namely Couenne [11] and SCIP [12], could solve

even the smallest instances in our testbed within a time limit of one hour.

To derive a MILP model, each xbs variable is decomposed in its binary

expansion using binary variables vbsl (l = 0, . . . , L), where L is easily computed

from an upper bound on xbs. When these variables are multiplied by ybi, the90

corresponding product wbisl = vbsl ybi are linearized with the addition of suitable

constraints.

A MILP is therefore obtained from (1)-(9) by adding

xbs =

L∑
l=0

2lvbsl (b ∈ B; s ∈ S) (10)

vbsl ∈ {0, 1} (b ∈ B; s ∈ S; l = 0, . . . , L) (11)

and by replacing each nonlinear equation (2) with the following set of new

variables and constraints:95

qbis =

L∑
l=0

2lwbisl (b ∈ B; i ∈ I; s ∈ S) (12)

wbisl ≤ Y vbsl (b ∈ B; i ∈ I; s ∈ S; l = 0, . . . , L) (13)

wbisl ≤ ybi (b ∈ B; i ∈ I; s ∈ S; l = 0, . . . , L) (14)

wbisl ≥ ybi − Y (1− vbsl) (b ∈ B; i ∈ I; s ∈ S; l = 0, . . . , L) (15)

wbisl ≥ 0 (b ∈ B; i ∈ I; s ∈ S; l = 0, . . . , L) (16)

(17)

where Y denotes an upper bound on the y variables.

Note that, because of (10) and of (12), variables xbs and qbis could be re-

moved from the model—in our implementation, we declare them as continuous

and free variable and let the preprocessing remove them automatically.

In case all capacities are even, the following constraint taken from [6]—100

though redundant—plays a very important role in improving the LP bound of

5

the MILP model:∑
i∈I

(uis + ois) ≥ 1 (s ∈ S :
∑
i∈I

ris is odd) (18)

Further details on the model can be found in [6].

3. Matheuristics

As also reported in [6], the MILP model of the previous section is too difficult105

to be attacked by standard solvers for practical instances. In addition, for real-

world cases even the LP relaxation at each node turns out to be very time

consuming—even by using the barrier method. For reference, the performance

of a black box MILP solver is given in Table 1. According to the table, only the

smallest instances can be solved to optimality, while real-sized instances cannot110

be solved within the time limit—while the best solutions found within that time

are quite poor.

So we designed ad-hoc heuristic approaches to exploit the special structure

of the MILP, following a so-called matheuristic paradigm [13].

Table 1: Performance of a black box MILP solver on the instances from [6]. Single run for each

instance. Times in CPU seconds (time limit of 3600 sec.s). Details about the computational

environment can be found in Section 4.

instance time (s) primal bound final gap

Black58 5.4 58 0.0%

Red58 5.1 160 0.0%

Green58 1.0 0 0.0%

Blue58 6.4 0 0.0%

BlackBlue10 352.7 10 0.0%

BlackBlue58 3600.0 583 90.2%

AllColor10 3600.0 407 98.8%

AllColor58 3600.0 6981 99.4%

Each heuristic is based on the idea of iteratively solving a restricted problem115

obtained by fixing a subset of the variables, so as to obtain a subproblem which

6

is (reasonably) easy to solve by a commercial MILP solver, but still able to

produce improved solutions.

We have implemented two kinds of heuristics: constructive and refinement

heuristics. Constructive heuristics are used to find a solution H starting from120

scratch. In a refinement heuristic, instead, we are given an incumbent heuristic

solution H = (xH , yH) that we would like to improve. We first fix some x

and/or y variables to their value in H, thus defining a solution neighborhood

N (H) of H. We then search N (H) by using a general-purpose MILP solver

on the model resulting from fixing. If an improved solution is found within the125

given time limit, we update H and repeat; otherwise, a new neighborhood is

defined in the attempt to escape the local optimum.

More elaborated schemes based on Tabu Search [14] or Variable Neighbor-

hood Search [15] are also possible but not investigated in the present paper.

3.1. Fixing all x or y variables130

A first obvious observation is that the basic MINLP model (1)-(9) reduces

to a MILP if all the x (or all the y) variables are fixed, as constraints (2) triv-

ially become linear. According to our experience, the resulting MILP (though

nontrivial) is typically solved very quickly by a state-of-the-art solver, meaning

that one can effectively solve a sequence of restricted MILP where x and y are135

fixed/unfixed, in turn, until no further improvement can be obtained.

Let Ny(H) and Nx(H) denote the solution neighborhoods of H obtained by

leaving y or x free, i.e., when imposing x = xH or y = yH , respectively.

A basic tool that we use in our heuristics is function REOPT(S′, yH) that

considers a store subset S′ ⊆ S and a starting yH , and returns the best solution140

H obtained by iteratively optimizing over the neighborhoods Nx(H), Ny(H),

Nx(H), . . . after having removed all stores not in S′, where H is updated after

each optimization.

3.2. Fixing y variables for all but one configuration

Another interesting neighborhood, say Nx(H, yβ), is obtained by leaving all145

x variables free, and by fixing ybi = yHbi for all i ∈ I and b ∈ B \ {β} for

7

a given β ∈ B. In other words, we allow for changing just one (out of NB)

configurations in the current solution, and leave the solver the possibility to

change the x variables as well.

In our implementation, we first define a random permutation {β1, . . . , βNB}150

of B. We then optimize, in a circular sequence, neighborhoods Nx(H, yβt) for

t = 1, . . . , NB, 1, . . . Each time an improved solution is found, we update H

and further refine it through function REOPT(S, yH). The procedure is stopped

when there is no hope of finding an improved solution, i.e., after NB consecutive

optimizations that do not improve the current H.155

A substantial speedup can be obtained by heuristically imposing a tight

upper bound on the x variables, so as to reduce the number L + 1 of binary

variables vbsl in the binary expansion (10). An aggressive policy (e.g., imposing

xbs ≤ 1) is however rather risky as the optimal solution could be cut off, hence

the artificial bounds must be relaxed if an improved solution cannot be found.160

3.3. Working with a subset of stores

Our basic constructive heuristic is based on the observation that removing

stores can produce a substantially easier model. A key property here is that

a solution H ′ = (x′, y′) with a subset of stores can easily be converted into a

solution H = (x, y) of the whole problem by just invoking function REOPT(S, y′).165

In our implementation, we first define a store permutation s1, . . . , s|S| accord-

ing to a certain criterion (to be discussed later). We then address, in sequence,

the subproblem with store set St = {s1, . . . , st} for t = 0, . . . , |S|.

For t = 0, store set S0 is empty and the MILP model just produces a y

solution with random (possibly repeated) configurations.170

For each subsequent t, we start with the best solution Ht−1 = (xt−1, yt−1) of

the previous iteration, and convert it into a solution Ht = (xt, yt) of the current

subproblem through the refining function REOPT(St, y
t−1). Then we apply the

refinement heuristics described in the previous subsection to Ht, reoptimizing

one configuration at a time in a circular vein. (To reduce computing time, this175

8

latter step can be skipped with a certain frequency—except of course in the

very last step when St = S.)

Each time a solution Ht = (xt, yt) is found, we quickly compute a solution

H = (x, y) of the overall problem through function REOPT(S, yt) and update the

overall incumbent where all stores are active.180

As to store sequence s1, . . . , s|S|, we have implemented three different pro-

cedures. For each store pair a, b, let the dissimilarity index dist(a, b) be defined

as the Hamming distance between the two demand vectors (ria : i ∈ I) and

(rib : i ∈ I).

• random: the sequence is just a random permutation of the integers 1, . . . , |S|;185

• most dissimilar: we first compute the two most dissimilar stores (a, b),

i.e., such that a < b and dist(a, b) is a maximum, and initialize s1 = a.

Then, for t = 2, . . . , |S| we define S′ = {s1, . . . , st−1} and let

st = argmaxa∈S\S′{min{dist(a, b) : b ∈ S′ }

• most similar: this is just the same procedure as in the previous item,

with max and min operators reverted.

The rational of the most dissimilar policy is to attach first a “core prob-

lem” defined by the pairwise most dissimilar stores (those at the beginning of

the sequence). The assumption here is that our method performs better in its190

first iterations (small values of t) as the size of the subproblem is smaller, and we

have plenty of configurations to accommodate the initial requests. The “similar

stores” are therefore addressed only at a later time, in the hope that the found

configurations will work well for them.

A risk with the above policy is that the core problem becomes soon too195

difficult for our simple refining heuristic, so the current solution in not updated

after the very first iterations. In this respect, policy most similar is more con-

servative: given for granted that we proceed by subsequently refining a previous

solution with one less store, it seems reasonable not to inject too much innova-

9

tion in a single iteration—as most dissimilar does when it adds a new store200

with very different demands with respect to the previous ones.

4. Computational experiments

The heuristics described in the previous section have been implemented in

C language. IBM ILOG CPLEX 12.6 [16] was used as MILP solver. Reported

computing times are in CPU seconds of an Intel Xeon E3-1220 V2 quad-core205

PC with 16GB of RAM. For each run a time limit of 900 seconds (15 minutes)

was imposed.

Four heuristic methods have been compared: the three construction heuris-

tics random, most dissimilar and most similar of Subsection 3.3, plus

• fast heu: the fast refinement heuristic of Subsection 3.2 applied starting210

from a null solution x = 0.

All heuristics are used in a multi-start mode, e.g., after completion they are

just restarted from scratch until the time limit is exceeded. At each restart, the

internal random seed is not reset, hence all methods natively using a random

permutation (namely, fast heu and random) will follow a different search path215

at each run as the permutations will be different. As to most dissimilar and

most similar, after each restart the sequence s1, . . . , s|S| is slightly perturbed

by 5 random pair swaps. In addition, after each restart the CPLEX’s random

seed is changed so as to inject diversification among each run even within the

MILP solver.220

Due to their heuristic nature, our methods—through deterministic—exhibit

a large dependency on the initial conditions, including the random seeds used

both within our code and in CPLEX. We therefore repeated several times each

experiment, starting with different (internal/CPLEX) seeds at each run, and

report statistical figures (median, average, . . .) in the forthcoming tables.225

In case all capacities are even (as it is the case in our testbed), we compute

10

the following trivial lower bound, introduced in [6] and based on constraint (18)

LB := min{α, β} × |{s ∈ S :
∑
i∈I

ris is odd}| (19)

and abort the execution as soon as we find a solution whose value meets the

lower bound.

4.1. Testbed230

Our testbed is composed by two benchmarks of instances. The first one is

the benchmark considered in [6], and contains a number of subinstances of a

real-world instance (named AllColor58 in [6]) with 58 stores that require 24 (=

6 × 4) different items: T-shirts available in six different sizes and four different

colors (black, blue, red, and green). The available box capacities are 4, 6, 8,235

and 10. Finally, each item has a fixed overstock limit (0 or 1) for all stores

but no understock limits, and the overstock and understock penalties are β = 1

and α = 10, respectively. From this basic instance we also derived a second

benchmark by considering only a subset of the stores (see Section 4.4). All the

new instances are available, on request, from the authors.240

Note that our testing environment is identical to that used in [6] (assuming

the PC used are substantially equivalent), so our results can fairly be bench-

marked against those therein reported.

4.2. Comparison metric

To better compare the performance of our different heuristics, we also make245

use of an indicator recently proposed by [17, 18] and aimed at measuring the

trade-off between the computational effort required to produce a solution and

the quality of the solution itself. In particular, let z̃opt denote the optimal

solution value and let z(t) be the value of the best heuristic solution found at a

time t. Then, a primal gap function p can be computed as250

p(t) =

 1 if no incumbent found until time t

γ(z(t)) otherwise
(20)

11

where γ(·) ∈ [0, 1] is the primal gap, defined as follows

γ(z) =


0 if |z̃opt| = |z| = 0,

1 if z̃opt · z < 0,

z−z̃opt
max{|z̃opt|,|z|}

otherwise.

(21)

Finally, the primal integral of a run until time tmax is defined as

P (tmax) =

∫ tmax

0
p(t) dt

tmax
(22)

and is actually used to measure the quality of primal heuristics—the smaller

P (tmax) the better the expected quality of the incumbent solution if we stopped

computation at an arbitrary time before tmax.255

4.3. Results on standard instances

Our first set of experiments addresses the instances provided in [6], with

the aim of benchmarking our heuristics against the methods therein proposed.

Results for the easiest cases involving only NB = 4 box configurations (namely,

instances Black58, Blue58, Red58, and Green58) are not reported as the cor-260

responding MILP model can be solved to proven optimality in less than one

seconds by our solver—thus confirming the figures given in [6].

Tables 2 and 3 report the performance of various heuristics in terms of

solution value and time, and refer to a single run for each heuristic and for each

instance.265

Table 2 is taken from [6], where a two-phase hybrid metaheuristic was pro-

posed. In the first phase, the approach uses a memetic algorithm to explore

the solution space and builds a pool of interesting box configurations. In the

second phase, a box-to-store assignment problem is solved to choose a subset

of configurations from the pool—and to decide how many boxes of each config-270

uration should be sent to each store. The box-to-store assignment problem is

modeled as a (very hard in practice) MILP and heuristically solved either by

a commercial solver (CPLEX) or by a sophisticated large neighborhood search

(LNS) approach.

12

Table 2: Performance of CPLEX and LNS heuristics from [6]. Single run for each instance.

Times in CPU seconds (time limit of 900 sec.s).

CPLEX LNS

instance NB value time (s) value time (s)

BlackBlue10 7 66 7 21 16

BlackBlue58 7 525 43 174 74

AllColor10 14 202 49 89 293

AllColor58 14 1828 273 548 900

Table 3: Performance of our heuristics. Single run for each instance. Times in CPU seconds

(time limit of 900 sec.s).

most most

fast heu random dissimilar similar

instance LB value time (s) value time (s) value time (s) value time (s)

BlackBlue10 10 10 1 10 2 10 1 10 1

BlackBlue58 58 58 4 58 3 58 2 58 4

AllColor10 6 6 29 17 82 17 734 17 379

AllColor58 42 141 71 273 722 614 105 53 66

Table 3 reports the performance of our four heuristics, as well as the lower275

bound value LB computed through (19). This value turned out to coincide with

the optimal value for all instances under consideration in the present subsection.

(For AllColor58, a solution matching the lower bound of 42 was actually found

during the multi-start experiments reported in Table 4).

Comparing Tables 2 and 3 shows that all our four heuristics outperform those280

in [6]. In particular, fast heu is able to find very good solutions (actually,

an optimal one in 3 out of 4 cases) within very short computing times. For

the largest instance (AllColor58), however, most similar qualifies as the best

heuristic both in terms of quality and speed.

To get more reliable information about the performance of our heuristics,285

13

Table 4: Average performance (out of 100 runs) of our heuristics.

instance heuristic time (s) time best (s) pint #opt

BlackBlue10 fast heu 1.08 1.08 0.34 100

random 1.44 1.44 0.27 100

most dissimilar 1.26 1.26 0.25 100

most similar 1.25 1.25 0.29 100

BlackBlue58 fast heu 4.61 4.61 9.88 100

random 6.40 6.40 10.11 100

most dissimilar 2.76 2.76 9.13 100

most similar 5.62 5.62 15.42 100

AllColor10 fast heu 71.82 71.82 3.81 100

random 600.29 304.06 18.63 36

most dissimilar 704.33 241.12 19.69 27

most similar 626.15 302.40 20.54 26

AllColor58 fast heu 900.00 332.43 328.20 0

random 874.87 329.59 562.95 2

most dissimilar 893.48 323.93 545.47 1

most similar 859.86 287.50 404.29 1

we ran them 100 times for each instance, with different random seeds, and

took detailed statistics on each run. Table 4 reports, for each instance and for

each heuristic, the average completion time (time), the average time to find its

best solution (time best), the primal integral after 900 seconds (pint, the lower

the better), and the number of provably-optimal solutions found (#opt) out of290

the 100 runs. Note that, for all instances, a solution matching the simple lower

bound (19) was eventually found by at least one of our heuristics. As to the final

value returned by the four heuristics, as well as the corresponding computing

time, Figures 1 and 2 give box plots on the hardest instances (AllColor10 and

AllColor58).295

The 100-run statistics confirm that fast heu is very effective in all cases,

though it is outperformed by most similar for the largest instance AllColor58.

14

fast_heu random most_dissimilar most_similar
0

5

10

15

20

25

S
o
lu

ti
o
n
 D

is
tr

ib
u
ti

o
n
:

b
e
st

o
b
j

AllColor10

fast_heu random most_dissimilar most_similar
0

200

400

600

800

1000

1200

S
o
lu

ti
o
n
 D

is
tr

ib
u
ti

o
n
:

b
e
st

o
b
j

AllColor58

Figure 1: Box plots for objective value of best solution found by our heuristic algorithms on

the hardest instances with all colors (100 runs for each method and for each instance).

The results suggest that a hybrid method running fast heu and most similar

(possibly in parallel) qualifies a robust heuristic with a very good performance

for all our instances.300

15

fast_heu random most_dissimilar most_similar
0

100

200

300

400

500

600

700

800

900

S
o
lu

ti
o
n
 D

is
tr

ib
u
ti

o
n
:

ti
m

e
_b

e
st

AllColor10

fast_heu random most_dissimilar most_similar
0

100

200

300

400

500

600

700

800

900

S
o
lu

ti
o
n
 D

is
tr

ib
u
ti

o
n
:

ti
m

e
_b

e
st

AllColor58

Figure 2: Box plots for time to best solution of our heuristic algorithms on the hardest

instances with all colors (100 runs for each method and for each instance).

4.4. Additional instances

To test our algorithms on a larger benchmark, we considered a number of

instances randomly derived from problem AllColor58. In particular, given a

parameter NS, we randomly selected NS stores and considered a sub-instance

16

induced by the selected stores and the original 24 products (six different sizes305

and four different colors). We considered different values of NS, namely 10, 20,

30, 40 and 50; for each value of NS, 10 different instances were generated, so

as to produce a benchmark with 50 new problems.

Table 5 reports the outcome of our experiments on the new instances and

provides, for each algorithm, the same information given in Table 4. To make310

results comparable to those of Table 4, we ran each algorithm 10 times on each

instance, using 10 different random seeds, and grouped instances according to

the value of NS. Thus, each table line refers to the 100 runs associated to a set

of 10 instances (10 executions on each instance).

Computational results confirm the effectiveness of algorithms fast heu and315

most similar, the latter being the clear winner for the largest cases. As ex-

pected, instances with a large number of stores are harder to be solved to proven

optimality, and correspond to larger values for the associated primal integral.

5. Conclusions

We have presented MILP-based heuristics for the prepack optimization prob-320

lem. Working with a subset of the variables (after fixing the other) we were able

to squeeze useful solutions out of an impossible-to-solve MILP model. This was

obtained by identifying problem substructures that lead to easy-to-solve and

meaningful MILP subproblems, and to exploit them within an overall meta-

heuristic framework—an approach known as matheuristic.325

Our heuristics have been evaluated on a standard set of instances, and bench-

marked against the heuristics given in [6]. Computational experiments show

that very good (often proven optimal) solutions can consistently be computed

in a matter of seconds or minutes. This compares very favorably with the most

effective heuristics reported in [6]; in particular, we were able to solve to proven330

optimality all the instances therein provided.

Future work can be devoted to designing alternative MILP-based schemes

based on different substructures of the problem and/or on more sophisticated

17

Table 5: Average performance (out of 100 runs) of our heuristics on randomly generated

instances.

#stores heuristic time (s) time best (s) pint #opt

10 fast heu 13.50 12.98 2.17 99

random 28.93 27.62 2.95 98

most dissimilar 28.53 27.88 2.82 99

most similar 25.08 24.75 2.88 99

20 fast heu 475.92 288.52 67.62 44

random 481.45 257.67 55.01 43

most dissimilar 608.64 314.64 63.90 34

most similar 360.29 232.75 49.43 50

30 fast heu 607.74 335.04 172.41 30

random 571.61 284.02 185.58 25

most dissimilar 654.78 251.82 184.60 22

most similar 497.63 258.20 175.77 33

40 fast heu 900.00 353.69 225.49 0

random 752.04 316.71 331.19 15

most dissimilar 812.51 297.55 337.96 8

most similar 690.88 280.07 238.32 26

50 fast heu 900.00 293.99 309.66 0

random 863.61 281.75 532.17 3

most dissimilar 894.37 227.64 465.91 1

most similar 866.94 282.08 355.46 4

meta-heuristic schemes.

Acknowledgements335

This research was supported by the University of Padova (Progetto di Ateneo

“Exploiting randomness in Mixed Integer Linear Programming”), and by MiUR,

Italy (PRIN project “Mixed-Integer Nonlinear Optimization: Approaches and

Applications”). We thank Louis-Martin Rousseau for kindly providing the orig-

inal instances. Thanks are also due to two anonymous referees for their helpful340

18

comments.

References

[1] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Im-

plementations, John Wiley & Sons, Chichester, 1990.

[2] A. Lodi, S. Martello, M. Monaci, Two-dimensional packing problems: A345

survey, European Journal of Operational Research 141 (2002) 241–252.

[3] M. Iori, J. Salazar-Gonzales, D. Vigo, An Exact Approach for the Vehicle

Routing Problem with Two-Dimensional Loading Constraints, Transporta-

tion Science 41 (2007) 253–264.

[4] M. Monaci, Algorithms for packing and scheduling problems, 4OR 1 (2004)350

85–87.

[5] I. Correia, L. Gouveia, F. S. da Gama, Solving the variable size bin pack-

ing problem with discretized formulations, Computers and Operations Re-

search 35 (2008) 2103–2113.

[6] M. Hoskins, R. Masson, G. Melanon, J. Mendoza, C. Meyer, L.-M.355

Rousseau, The PrePack Optimization Problem, in: H. Simonis (Ed.), In-

tegration of AI and OR Techniques in Constraint Programming, Vol. 8451

of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2014,

pp. 136–143.

[7] R. Pratt, Computer-Implemented Systems And Methods For Pack Opti-360

mization, SAS Institute A1 (2009) US20090271241.

[8] C. Erie, J. Lee, R. Paske, J. Wilson, Dynamic bulk packing and casing,

International Business Machines Corporation A1 (2010) US20100049537.

[9] A. Vakhutinsky, Retail pre-pack optimization system, Oracle International

Corporation A1 (2012) US20120284071.365

19

[10] A. Vakhutinsky, S. Subramanian, Y. Popkov, A. Kushkuley, Retail pre-pack

optimizer, Oracle International Corporation A1 (2012) US20120284079.

[11] P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, Branching and bounds

tightening techniques for non-convex MINLP, Optimization Methods and

Software 24 (4-5) (2009) 597–634.370

[12] T. Achterberg, SCIP: Solving constraint integer programs, Mathematical

Programming Computation 1 (1) (2009) 1–41.

[13] M. Boschetti, V. Maniezzo, M. Roffilli, A. R. Bolufé, Matheuristics: Op-

timization, Simulation and Control, in: Hybrid Metaheuristics, Springer

Berlin Heidelberg, 2009, pp. 171–177.375

[14] F. Glover, Tabu Search: A Tutorial, Interfaces 20 (4) (1990) 74–94.

[15] N. Mladenovic, P. Hansen, Variable neighborhood search, Computers and

Operations Research 24 (11) (1997) 1097–1100.

[16] I. IBM, CPLEX 12.6 User’s Manual (2014).

[17] T. Achterberg, T. Berthold, G. Hendel, Rounding and Propagation Heuris-380

tics for Mixed Integer Programming, Operations Research Proceedings 2011

(2012) 71–76.

[18] T. Berthold, Measuring the impact of primal heuristics, Operations Re-

search Letters 41 (6) (2013) 611–614.

20

	Introduction
	Mathematical model
	Matheuristics
	Fixing all x or y variables
	Fixing y variables for all but one configuration
	Working with a subset of stores

	Computational experiments
	Testbed
	Comparison metric
	Results on standard instances
	Additional instances

	Conclusions

