
Proceedings of the Twenty-Sixth RAMP Symposium
©The Operations Research Society of Japan

Proximity search heuristics for Mixed Integer
Programs

Martina Fischetti1∗, Matteo Fischetti2†, and Michele Monaci2‡

Abstract Large-Neighborhood Search heuristics for general Mixed-Integer Programs (MIPs)
such as local branching and RINS define a neighborhood of the current incumbent by introduc-
ing invalid constraints into the MIP formulation, and use a black-box MIP solver to optimize
the restricted problem. Proximity search is an alternative approach, still aimed at improving a
given feasible solution: instead of modifying the constraints of the MIP at hand with the aim
of reducing search space, one modifies the objective function to make the search easier. More
specifically, proximity search replaces the objective function by a “proximity” one, with the goal
of enhancing the heuristic behavior of the MIP black-box solver. The approach can be quite
effective in quickly improving a given starting feasible solution, at least when the landscape of
feasible solutions is not too irregular. In the present paper we first review the general proxim-
ity search paradigm, and then apply it to turbine layout optimization in a wind farm context.
Computational results on very large scale instances prove the practical viability of the overall
approach.

Keywords Mixed Integer Linear Programming, Heuristics, Wind Farm Optimization.

1. Introduction

What is the role of the objective function in optimization? This apparently naive question
has a first obvious answer: the objective function defines the criterion to select the final
optimal solution. However, the objective function plays a crucial role also to guide the search
towards the optimal solution within a solution algorithm, and is not clear whether one should
necessarily use the same function for both purposes. This is particularly true when the main
goal of the search is to quickly provide a sequence of improved feasible solutions. The prox-
imity search approach introduced in [5] is a refinement heuristic that replaces the objective
function of the given model by a “proximity” one, with the goal of enhancing the heuristic
behavior of the solver at hand.

Proximity search focuses on a generic 0-1 Mixed Integer (possibly nonlinear) Program
(MIP, for short) of the form

min f(x) (1)
g(x) ≤ 0 (2)

1 Department of Electronic Systems, University of Aalborg, Denmark
2 Department of Information Engineering, University of Padova, Italy
∗ E-mail address: martina.fischetti@gmail.com
† E-mail address: matteo.fischetti@unipd.it
‡ E-mail address: michele.monaci@unipd.it

The Twenty-Sixth RAMP Symposium

xj ∈ {0, 1} ∀j ∈ J (3)

where f : <n → <, g : <n → <m, and J ⊆ N := {1, · · · , n}, J 6= ∅, indexes binary variables.
Although this is not strictly required by the method, in the following we assume that both f
and g are convex functions with the property that dropping the integrality condition in (3)
leads to a polynomially solvable relaxation.

Proximity search starts with a feasible solution x̃, and adds an explicit cutoff constraint

f(x) ≤ f(x̃)− θ (4)

to the MIP, where θ > 0 is a given cutoff tolerance. At this point one is free to modify the
objective function to heuristically drive the search and to hopefully discover better feasible
solutions in the early part of the search. A natural option is to use a proximity function that
penalizes a solution x according to its distance from x̃, e.g., by taking the Hamming distance

∆(x, x̃) :=
∑

j∈J : x̃j=0
xj +

∑
j∈J : x̃j=1

(1− xj) (5)

The paper is organized as follows. The proximity search approach is outlined in Section 2.
Three different implementations of the basic approach are sketched in Section 3. Our opti-
mal turbine location problem is described in Section 4, and heuristically solved by using the
proximity search engine.

The present paper is based on [5], where the proximity search approach is introduced and
computationally evaluated on some relevant classes of MIPs, and on the first author’s master
thesis [4] and the follow-up paper [6] where the optimal turbine location problem is studied.

2. Proximity search

The basic proximity search approach is sketched in Figure 1 below.

Proximity Search:

1. let x̃ be the initial heuristic feasible solution to refine;
repeat

2. explicitly add the cutoff constraint f(x) ≤ f(x̃)− θ to the MIP model;
3. replace f(x) by the “proximity” objective function ∆(x, x̃);
4. run the MIP solver on the new model until a termination condition is

reached, and let x∗ be the best feasible solution found (x∗ empty if none);
if x∗ is nonempty and J ⊂ N then

5. refine x∗ by solving the convex program
x∗ := argmin{f(x) : g(x) ≤ 0, xj = x∗

j ∀j ∈ J}
end

6. recenter ∆(x, ·) by setting x̃ := x∗, and/or update θ
until an overall termination condition is reached;

Figure 1 The basic Proximity Search algorithm (from [5])

At Step 1, the initial feasible solution x̃ is defined. In practical applications, this initial

The Twenty-Sixth RAMP Symposium

x-range θ = 0 θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 θ = 10 θ = 20 θ = 30 θ = 50 θ = 99 θ = 121
= 0 1920 1919 1919 1919 1924 1920 1619 1619 1600 1565 1276 682
(0.0, 0.1] 0 0 0 0 0 0 303 297 293 281 420 926
(0.1, 0.2] 0 0 0 0 0 4 0 6 26 65 194 380
(0.2, 0.3] 0 1 0 5 0 0 0 3 7 15 64 169
(0.3, 0.4] 0 0 0 0 0 0 0 1 2 8 75 29
(0.4, 0.5] 0 0 6 0 0 0 8 4 3 16 91 0
(0.5, 0.6] 0 0 0 0 0 0 5 5 9 19 47 1
(0.6, 0.7] 0 0 0 0 0 0 0 2 9 35 17 0
(0.7, 0.8] 0 5 0 1 0 1 0 10 25 88 3 0
(0.8, 0.9] 0 0 0 0 0 11 0 28 101 68 0 0
(0.9, 1.0) 0 0 0 0 0 0 249 209 110 26 0 0
= 1 267 262 262 262 263 251 3 3 2 1 0 0
time (sec.s) 0.00 0.04 0.03 0.03 0.04 0.21 0.45 0.54 0.57 0.90 4.77 30.91
LP-iter.s 0 352 341 357 358 1180 2164 2543 2637 3627 6829 11508
∆-distance 0.00 1.50 3.00 4.50 6.00 7.88 17.45 37.13 56.86 96.90 208.71 292.67

Table 1 Number of integer components in the LP relaxation solution at the proximity-search root node,
for various values of the cutoff parameter θ (from [5]).

solution can be found by a fast ad-hoc heuristic, and the approach can be used to refine it
by exploiting an underlying MIP model whose solution from scratch turned out to be prob-
lematic. Otherwise, x̃ can be found by running the black-box MIP solver until a first feasible
solution is found, or by setting a conservative time/node limit. In all cases, we assume that
finding a feasible solution is not really an issue for the problem at hand. If this is not the
case, one should resort to a problem reformulation where some constraints are imposed in a
soft way through violation penalties attached to slack variables.

At Step 2, the cutoff tolerance θ is defined and a new constraint is added that is valid for
all solutions improving over x̃.

At Step 3, the Hamming distance between x and x̃ is used, computed according to
(5). Step 4 invokes the black-box MIP solver to hopefully find a new incumbent x∗ with
f(x∗) ≤ f(x̃) − θ. A crucial property here is that the root-node solution of the convex re-
laxation, say x′, is expected to be not too different from x̃, as this latter solution would be
optimal without the cutoff constraint, that for a small θ can typically be fulfilled with just
local adjustments. This is instrumental for the success of the method, in that it has two main
positive effects: (i) the computing time spent at the root node is often very small, and (ii) x′

is typically “almost integer” (i.e., with a small number of fractional components indexed by
J), hence it is more effective in driving the internal heuristics of the black-box MIP solver,
as well as in guiding the search path towards integer solutions.

The increased number of integer components in the solution of the convex relaxation
is illustrated in Table 1 (from [5]) for the set covering (pure binary) MIPLIB2010 instance
ramos3 with n = 2, 187 variables, when a reference solution x̃ of value 267 is chosen. The
table reports the number of components of the LP relaxation solution x′ that belong to the
intervals [0,0], (0, 0.1], ..., (0.9, 1], and [1,1], along with computing time (in CPU sec.s),
number of simplex iterations (dual pivots), and objective value—i.e., distance ∆(x′, x̃). The
LP relaxation becomes infeasible for θ > 121. For small values of θ, the effect on the LP-
solution time is striking, and the number of integer components increases dramatically—from
682 (θ = 121) to 1,622 (θ = 10) and 2,181 (θ = 1).

The Twenty-Sixth RAMP Symposium

If no new solution x∗ is found at Step 4 (possibly because the MIP solver was aborted
before convergence), one proceeds directly to Step 6 where tolerance θ is reduced. Of course,
if the MIP solver proved infeasibility for the given θ, one has that f(x̃) − θ is a valid lower
bound on the optimal value of the original MIP.

At Step 5, the new solution x∗, if any, is possibly improved by solving a convex problem
where all binary variables have been fixed to their value in x∗ so as to find the best solution
within the neighborhood induced by ∆(x, x∗) = 0.

At Step 6, the approach is reapplied on a different x̃ (if available) so as to recenter the
distance function ∆, and/or by modifying the cutoff tolerance θ.

3. Proximity search implementations

In this section we sketch three implementations of the basic proximity search method, as
described in [5].

All three implementations start with a given solution x̃, replace the original objective
function f(x) by a proximity one ∆(x, ·), and use a cutoff constraint to force the detection
of improved solutions.

In the first implementation “without recentering” (see Subsection 3.1), ∆(x, ·) remains
centered on the very first solution x̃, and the cutoff constraint is modified on the fly inside
the MIP solver.

In the second implementation “with recentering” (Subsection 3.2), the MIP solver is
aborted as soon as the first improved solution x′ (say) is found, and is reapplied from scratch
after replacing x̃ by x′ both in the objective ∆(x, ·) and in the cutoff constraint.

The third implementation “with an incumbent” (Subsection 3.3) is a variant of the sec-
ond one where the cutoff constraint is imposed in a soft way that makes the choice x = x̃

feasible—though highly penalized. In this way the current solution x̃ can be used to initialize
the modified-MIP incumbent.

3.1. Proximity search without recentering
In this version, one assumes the MIP solver can be controlled through a callback function
invoked each time the incumbent is going to be updated—as it happens in many modern
solvers. Within the callback function, the new incumbent x̂ (say) is first internally recorded
in a user’s data structure. Then, a new global cut f(x) ≤ f(x̂)− θ is added to the model so
as make x̂ infeasible—thus preventing the solver to update its own incumbent.

This approach is also applied to the initial solution x̃, which is immediately made infeasi-
ble through the cutoff constraint f(x) ≤ f(x̃)−θ. In this way the optimal relaxation solution
x′ at the root node is different from x̃, and violated MIP cuts can possibly be generated at
the root node.

Notice that the proximity objective function ∆(x, ·) is never changed during the search,
as it remains “centered” with the initial x̃—hence the name of “proximity search without
recentering” used for this scheme.

It should be observed that the simple implementation above has some obvious drawbacks

The Twenty-Sixth RAMP Symposium

that can affect its performance in a negative way. In particular, as one never updates the
MIP incumbent explicitly, propagation and variable-fixing schemes—as well as refinement
heuristic—are never applied.

3.2. Proximity search with recentering
As already noticed, the implementation in the previous subsection has a number of drawbacks
related to the need of interacting with the underlying MIP solver through a callback function.
In fact, this kind of control might be not available for the MIP solver at hand—or its use
can deactivate some important features of the solver itself. In addition, after a significant
number of updates of x̃ it would make sense to “recenter” the proximity objective function
∆(x, ·) with respect the new x̃, an operation that cannot be done without restarting the MIP
solver—at least, by using MIP solvers where the objective function cannot be changed on the
fly.

A different implementation that uses the MIP solver as a black box (with no callbacks)
is outlined next, that just restarts it as soon as a new x̃ if found.

In the new implementation, called “proximity search with recentering”, Steps 1 to 3 are
the same as in Figure 1. At Step 4, after having added the cutoff constraint and changed
the objective function, one invokes the MIP solver as a black box, in its default mode and
without any callback, and aborts its execution as soon as a first feasible solution is found.
Because of the cutoff constraint, this solution (if any) is a strict improvement of x̃, so at Step
6 one can replace x̃ with the new solution and repeat (without changing θ) from Step 2, until
the overall time limit is reached. Of course, if no improving solution is found at Step 4, the
algorithm either proves θ-optimality of the incumbent x̃ or hits the time limit.

3.3. Proximity search with an incumbent
Both implementations above prevent the MIP solver to update its internal incumbent, so
powerful refinement heuristics such as RINS [2] are never activated. To avoid this drawback,
the following simple variant of the “proximity search with recentering” can be used. The
cutoff constraint (4) is just replaced with its “soft version”

f(x) ≤ f(x̃)− θ + z (6)

where z ≥ 0 is a continuous slack variable, and the proximity objective function is modified
to

∆(x, x̃) +Mz (7)

where M is a large positive value compared to the feasible values of ∆. In this way, the
reference solution x̃ can be provided on input to the sub-MIP as a feasible (though very ex-
pensive) warm-start solution to be used to initialize the incumbent and to trigger the internal
refinement heuristic. Of course, execution is aborted as soon as a new incumbent with z = 0
is found, meaning that a θ-improving solution has been found.

4. Application: optimal turbine location

Green energy became a topic of great interest in the last years. Indeed, every year the de-

The Twenty-Sixth RAMP Symposium

mand for energy is increasing and the old resources, fossil fuels in particular, are becoming
rare and pollutant. As a result, many countries have ambitious plans regarding green energy
production, and lots of money and energies are spent in wind energy research.

The way a turbine produces power is essentially by transferring kinetic energy from the
wind to the blades, which causes a decrease of the wind speed immediately behind the rotor—
if another turbine is placed downstream, a reduction in the incoming wind speed—and hence
a reduction in power production—is experienced. This phenomenon is known as “turbine
wake”. It is estimated in that in large offshore wind farms, the average power loss due to
turbine wakes is around 10-20% of the total energy production. It is then obvious that power
production can increase significantly if the farm layout is designed so as to reduce the effect
of turbine wake as much as possible.

4.1. Choosing the MIP model
A basic MIP model from the literature is first outlined, that focuses on turbine proximity
constraints and on the wake effect; see, e.g., [3]. We consider the following constraints:

a)a minimum and maximum number of turbines that can be built is given;
b)there should be a minimal separation distance of between two turbines to ensure that the
blades do not physically clash (turbine proximity constraints);

c)if two turbines are installed, their interference will cause a loss in the power production
that depends on their relative position and on wind conditions.

Let V denote the set of possible positions for a turbine, called “sites” in what follows,
and let

• Iij be the interference (loss of power) experienced by site j when a turbine is installed at
site i, with Ijj = 0 for all j ∈ V ;

• Pi be the power that a turbine would produce if built (alone) at site i;
• NMIN and NMAX be the minimum and maximum number of turbines that can be built,

respectively;
• DMIN be the minimum distance between two turbines;
• dist(i, j) be the symmetric distance between sites i and j.

In addition, let GI = (V,EI) denote the incompatibility graph with

EI = {[i, j] : i, j ∈ V, dist(i, j) < DMIN , j > i}

and let n := |V | denote the total number of sites.
In the model, two sets of binary variables are defined for each i, j ∈ V :

xi =
{

1 if a turbine is built at site i ∈ V ;
0 otherwise

zij =
{

1 if two turbines are built at both sites i ∈ V and j ∈ V ;
0 otherwise

The Twenty-Sixth RAMP Symposium

The model then reads:

max z =
∑
i∈V

Pixi −
∑
i∈V

∑
j∈V

Iijzij (8)

s.t. NMIN ≤
∑
i∈V

xi ≤ NMAX (9)

xi + xj ≤ 1 ∀[i, j] ∈ EI (10)
xi + xj − 1 ≤ zij ∀i, j ∈ V, j > i (11)

xi ∈ {0, 1} ∀i ∈ V (12)
zij ∈ {0, 1} ∀i, j ∈ V (13)

Objective function (8) maximizes the total power production by taking interference losses
Iij into account. Constraints (11) force zij = 1 whenever xi = xj = 1; because of the objec-
tive function, this is in fact equivalent to setting zij = xixj . Constraints (10) model pairwise
site incompatibility, and can be strengthened to their clique counterpart∑

h∈Q xh ≤ 1 ∀Q ∈ Q (14)

where Q is a family of maximal cliques of GI , such that every edge in EI is contained in at
least one member of Q.

The definition of the turbine power vector (Pi) and of interference matrix (Iij) depends
on the wind scenario considered, that greatly varies in time. Using statistical data, one can
in fact collect a large number K of wind scenarios k, each associated with a pair (P k, Ik) and
with a probability πk. Using that data, one can write a straightforward Stochastic Program-
ming variant of the previous model where only the objective function needs to be modified
into

z =
K∑
k=1

πk (
∑
i∈V

P k
i xi −

∑
i∈V

∑
j∈V

Ikijzij) (15)

while all constraints stay unchanged as they only involve “first-stage” variables x and z. It
is therefore sufficient to define

Pi :=
K∑
k=1

πkP
k
i ∀i ∈ V (16)

Iij :=
K∑
k=1

πkI
k
ij ∀i, j ∈ V (17)

to obtain the same model (8)–(13) as before.
Though alternative proposals are available in the literature (see, e.g., [1]), we decided

to stick to the model above for two main reasons: (i) the model is quite standard and well
understood by practitioners, (ii) as already mentioned, a suitable definition of the input data
allows one to easily take different wind scenarios into account, whereas more sophisticated
models would lead to really huge stochastic programming variants.

While (8)–(13) turns out to be a reasonable model when just a few sites have to be con-
sidered (say n ≈ 100), it becomes hopeless when n ≥ 1, 000 because of the huge number of

The Twenty-Sixth RAMP Symposium

variables and constraints involved, that grows quadratically with n. Therefore, when fac-
ing instances with several thousand sites an alternative (possibly weaker) model is required,
where interference can be handled by a number of variables and constraints that grows just
linearly with n. The model below is a compact reformulation of model (8)–(13) that follows
a recipe of Glover [9] which is widely used, e.g., in the Quadratic Assignment Problem [7].
The original objective function (to be maximized)∑

i∈V
Pixi −

∑
i∈V

(
∑
j∈V

Iijxj)xi (18)

is restated as ∑
i∈V

(Pixi − wi) (19)

where

wi := (
∑
j∈V

Iijxj)xi =
{ ∑

j∈V Iijxj if xi = 1;
0 if xi = 0.

denotes the total interference caused by site i. Our compact model then reads

max z =
∑
i∈V

(Pixi − wi) (20)

s.t. NMIN ≤
∑
i∈V

xi ≤ NMAX (21)

xi + xj ≤ 1 ∀[i, j] ∈ EI (22)∑
j∈V

Iijxj ≤ wi +Mi(1− xi) ∀i ∈ V (23)

xi ∈ {0, 1} ∀i ∈ V (24)
wi ≥ 0 ∀i ∈ V (25)

where the big-M term Mi >> 0 is used to deactivate constraint (23) in case xi = 0. In our
implementation, we set

Mi =
∑
j∈V

[i,j] 6∈EI

Iij

and did not try to reduce it even further. Indeed, modern MIP solvers are able to strengthen
the input constraints in their preprocessing phase, so the big-M values provided in the model
are automatically reduced by the solver by taking the whole model into account, thus easing
the modeling task.

As to (22), we decided not to improve them to their clique form (14), for two main reasons:
(i) the number of cliques can be exceedingly large, and (ii) a family of cliques is automati-
cally generated during preprocessing by the MIP solver, which can control their number and
can handle them very efficiently. As we have no additional information about which cliques
should be generated explicitly, we preferred to leave clique management to the solver itself.

4.2. Designing a proximity search heuristic
We now address how to improve a given feasible solution (x̃, w̃) by exploiting MIP model (20)–
(25). One standard option would be to just use (x̃, w̃) to initialize the incumbent solution

The Twenty-Sixth RAMP Symposium

of the MIP solver, and to run it in its default mode. However, it is common experience that
this strategy is unlikely to produce improved solution within acceptable computing times,
the main so if the underlying MIP model is very large and the formulation is weak—as it
happens in out context. So, we preferred to address a different use of the MIP solver, to
be applied to “search a neighborhood” of (x̃, w̃). In particular we focused on the proximity
search strategy described in the previous sections, that seems particularly suited for models
involving big-M constraints.

The approach can be cast into the so-called MIP-and-refine framework recently investi-
gated in [8], and works as shown in Figure 2. The approach makes also use of very fast (1-
and 2-opt) heuristics; see [4, 6] for details.

Step 1. apply ad-hoc heuristics (iterated 1-opt) to get a first incumbent x̃;
Step 2. apply quick ad-hoc refinement heuristics (few iterations of iterated 1- and 2-opt) to possibly
improve x̃;
Step 3. if n > N , randomly remove points i ∈ V with x̃i = 0 so as to reduce the number of
candidate sites (in our tests, N = 2, 000 was used);
Step 4. build a MIP model for the resulting subproblem and apply proximity search to refine x̃
until the very first improved solution is found (or time limit is reached);
Step 5. if the time limit has not been reached, repeat from Step 2.

Figure 2 Our overall heuristic framework

Two different MIP models are used to feed the proximity-search heuristic at Step 4. Dur-
ing the first part of the computation, we use a simplified MIP model obtained from (20)–(25)
by removing all interference constraints (23), thus obtaining a much easier relaxation. A
short time limit (60 sec.s, in our tests) is imposed for each call of proximity search when
this simplified model is solved. In this way we aggressively drive the solution x̃ to increase
the number of built turbines, without being bothered by interference considerations and only
taking pairwise incompatibility (22) into account. This approach quickly finds better and
better solutions (even in terms of the true profit), until either (i) no additional turbine can
be built, or (ii) the addition of new turbines does in fact reduce the true profit associated
to the new solution. In this situation we switch to the complete model (20)–(25) with all
interference constraints, which is used in all next executions of Step 4. Note that the simpli-
fied model is only used at Step 4, while all other steps of the procedure always use the true
objective function that takes interference into full account.

4.3. Computational experiments
The following alternative solution approaches were implemented in C language, some of which
using the commercial MIP solver IBM ILOG Cplex 12.5.1 [11]; because of the big-M’s in-
volved in the models, all Cplex’s codes use zero as integrality tolerance (CPX_PARAM_EPINT
= 0.0).

a)proxy: the MIP-and-refine heuristic, as outlined in the previous section, using Cplex with
the following aggressive parameter tuning: all cuts deactivated, CPX_PARAM_RINSHEUR =

The Twenty-Sixth RAMP Symposium

1, CPX_PARAM_POLISHAFTERTIME = 0.0, CPX_PARAM_INTSOLLIM = 2;
b)cpx_def: the application of IBM ILOG Cplex 12.5.1 in its default setting, starting from
the same heuristic solution x̃ found by proxy after the first execution of Step 2 of Figure 2;

c)cpx_heu: same as cpx_def, with the following internal tuning intended to improve
Cplex’s heuristic performance: all cuts deactivated, CPX_PARAM_RINSHEUR = 100,
CPX_PARAM_POLISHAFTERTIME = 20% of the total time limit;

d)loc_sea: a simple local-search procedure not based on any MIP solver, that just loops
on Steps 2 of Figure 2 and randomly removes installed turbines from the current best
solution after 10,000 iterations without improvement of the incumbent.

In our view, loc_sea is representative of a clever but not oversophisticated metaheuristic,
as typically implemented by practitioners, while cpx_def and cpx_heu represent a standard
way of exploiting a MIP model once a good feasible solution is known.

Our testbed refers to an offshore 3, 000× 3, 000 (m) square with DMIN = 400 (m) mini-
mum turbine separation, with no limit on the number of turbines to be built (i.e., NMIN = 0
and NMAX = +∞). Turbines are all of Siemens SWT-2.3-93 type (diameter 93m), producing
a power of 0.0 MW for wind speed up to 3 m/s, of 2.3 MW for wind speed greater than or
equal to 16 m/s, and intermediate values for winds in range 3-16 m/s according to a nonlinear
function [14]. Pairwise interference (in MW) was computed using Jensen’s model [12], by
averaging 250,000+ real-world wind samplings grouped into about 500 macro-scenarios. A
pairwise average interference of 0.01 MW or less is treated as zero. The reader is referred to
[4] for details.

Five classes of medium-to-large problems with n ranging from 1,000 to 20,000 have been
generated. For each class, 10 instances have been considered by generating n uniformly ran-
dom points in the 3, 000 × 3, 000 square. In what follows, reported computing times are in
CPU sec.s of an Intel Xeon E3-1220 V2 quad-core PC with 16GB of RAM.

Computational results on our instances are given in Table 4.3, where each entry refers to
the performance of a given algorithm at a given time limit. In particular, the left part of
the table reports, for each algorithm and time limit, the number of wins, i.e, the number of
instances for which a certain algorithm produced the best solution at the given time limit
(ties allowed).

According to the table, proxy outperforms all competitors by a large amount for medium
to large instances. As expected, cpx_heu performs better for instances with n = 1, 000 as
it is allowed to explore a large number of enumeration nodes for the original model and
objective function. Note that loc_sea has a good performance for short time limits and/or
for large instances, thus confirming its effectiveness, whereas cpx_heu is significantly better
than loc_sea only for small instances and large time limits.

A different performance measure is given in the right-hand side part of Table 4.3, where
each entry gives the average optimality ratio, i.e., the average value of the ratio between the
solution produced by an algorithm (on a given instance at a given time limit) and the best
solution known for that instance—the closer to one the better. It should be observed that

The Twenty-Sixth RAMP Symposium

number of wins optimality ratio
n Time limit (s) proxy cpx_def cpx_heu loc_sea proxy cpx_def cpx_heu loc_sea

1,000 60 6 1 3 0 0.994 0.983 0.987 0.916
300 4 2 4 0 0.997 0.991 0.998 0.922
600 7 3 7 0 0.997 0.992 0.997 0.932
900 5 2 3 0 0.998 0.993 0.996 0.935

1,200 5 1 5 0 0.998 0.992 0.997 0.939
1,800 5 1 4 0 0.998 0.992 0.996 0.942
3,600 4 2 5 0 0.998 0.995 0.997 0.943

5,000 60 9 6 6 5 0.909 0.901 0.901 0.904
300 10 0 0 0 0.992 0.908 0.908 0.925
600 10 0 10 0 0.994 0.908 0.994 0.935
900 10 0 0 0 0.994 0.908 0.908 0.936

1,200 10 0 0 0 0.994 0.908 0.925 0.939
1,800 9 0 1 0 0.996 0.908 0.971 0.946
3,600 5 0 5 0 0.996 0.932 0.994 0.948

10,000 60 9 9 8 10 0.914 0.913 0.914 0.914
300 10 2 2 2 0.967 0.927 0.927 0.936
600 10 0 10 0 0.998 0.928 0.998 0.944
900 10 0 0 0 1.000 0.928 0.928 0.948

1,200 10 0 0 0 1.000 0.928 0.928 0.951
1,800 10 0 0 0 1.000 0.928 0.928 0.957
3,600 9 0 0 1 1.000 0.928 0.928 0.964

15,000 60 9 10 9 9 0.909 0.912 0.911 0.909
300 10 8 7 8 0.943 0.937 0.935 0.937
600 10 0 10 0 0.992 0.939 0.992 0.942
900 10 0 0 0 1.000 0.939 0.939 0.956

1,200 9 0 0 1 1.000 0.939 0.939 0.959
1,800 9 0 0 1 1.000 0.939 0.939 0.965
3,600 9 0 0 1 1.000 0.939 0.939 0.972

20,000 60 9 9 9 10 0.901 0.902 0.901 0.902
300 10 8 10 10 0.933 0.933 0.933 0.933
600 9 0 9 1 0.956 0.935 0.956 0.941
900 10 0 0 0 0.978 0.935 0.935 0.945

1,200 10 0 0 0 0.991 0.935 0.935 0.950
1,800 10 0 0 0 0.999 0.935 0.935 0.963
3,600 9 0 0 0 1.000 0.935 0.935 0.971

ALL 60 42 35 35 34 0.925 0.922 0.922 0.909
300 44 20 23 20 0.966 0.939 0.940 0.930
600 46 3 46 1 0.987 0.941 0.987 0.938
900 45 2 3 0 0.994 0.941 0.941 0.944

1,200 44 1 5 1 0.997 0.940 0.945 0.947
1,800 43 1 5 1 0.999 0.940 0.954 0.955
3,600 36 2 10 2 0.999 0.946 0.959 0.959

Table 2 Number of times each algorithm finds the best solution within the time limit (wins), and optimality
ratio with respect to the best known solution—the larger the better (from [6]).

an improvement of just 1% has a very significant economical impact due to the very large
profits involved in the wind farm context. The results show that proxy is always able to
produce solutions that are quite close to the best one. As before, loc_sea is competitive for
large instances when a very small computing time is allowed, whereas cpx_def and cpx_heu
exhibit a good performance only for small instances, and are dominated even by loc_sea for
larger ones.

Acknowledgements

This research was supported by the University of Padova (Progetto di Ateneo “Exploiting
randomness in Mixed Integer Linear Programming”), and by MiUR, Italy (PRIN project

The Twenty-Sixth RAMP Symposium

“Mixed-Integer Nonlinear Optimization: Approaches and Applications”).

References
[1] R. Archer, G. Nates, S. Donovan, H. Waterer: Wind turbine interference in a wind farm layout

optimization mixed integer linear programming model. Wind Engineering 35, no.2, 165–178 (2011)
[2] E. Danna, E. Rothberg, C. Le Pape: Exploring relaxation induced neighborhoods to improve MIP

solutions. Mathematical Programming, 102(1):71–90 (2005).
[3] S. Donovan: Wind farm optimization. In: Proceedings of the 40th Annual ORSNZ Conference, pp.

196–205 (2005)
[4] Martina Fischetti: Mixed-integer models and algorithms for wind farm layout optimization. Mas-

ter’s thesis, University of Padova and Aalborg (2014)
[5] Matteo Fischetti, M. Monaci: Proximity search for 0-1 mixed-integer convex programming. Tech.

rep., DEI, University of Padova (submitted) (2012)
[6] Martina Fischetti, M. Monaci: Proximity search heuristics for wind farm optimal layout. Tech.

rep., DEI, University of Padova (submitted) (2014)
[7] Matteo Fischetti, M. Monaci, D. Salvagnin: Three ideas for the quadratic assignment problem.

Operations Research 60(4), 954–964 (2012)
[8] Matteo Fischetti, G. Sartor, A. Zanette: A MIP-and-refine matheuristic for smart grid energy

management. International Transactions in Operational Research 1–11 (2013).
[9] F. Glover: Improved linear integer programming formulations of nonlinear integer problems. Man-

agement Science 22, 455–460 (1975)
[10] F. Glover: Tabu search: A tutorial. Interfaces 20(4), 74–94 (1990)
[11] IBM ILOG CPLEX: Optimization Studio (2013). http://www.cplex.com
[12] N. Jensen: A note on wind generator interaction. Tech. rep., Technical Report Riso-M-2411(EN),

Riso National Laboratory, Roskilde, Denmark (1983)
[13] N. Mladenovic, P. Hansen: Variable neighborhood search. Computers & OR 24(11), 1097–1100

(1997)
[14] Siemens AG: SWT-2.3-93 Turbine, Technical Specifications. http://www.energy.siemens.com

