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Abstract

The concept of dominance among nodes of a branch-decision tree,
although known since a long time, is not exploited by general-purpose
Mixed-Integer Linear Programming (MILP) enumeration codes, due
to the intrinsic difficulties arising when using the classical dominance
definition in a completely general context.

The starting point of our work was the general-purpose dominance
procedure proposed in the 80’s by Fischetti and Toth, where the domi-
nance test at a given branching node consists in the (possibly heuristic)
solution of a restricted MILP only involving the fixed variables. Both
theoretical and practical issues concerning this procedure are analyzed,
and important improvements are proposed. In particular, we use the
dominance test not only to fathom the current branching node, but
also to derive variable configurations called “nogoods” (a concept bor-
rowed from Constraint Programming) and, more generally, “improving
moves” (a basic concept in the theory of test sets). These latter con-
figurations, that we rename “pruning moves” so as to stress their use
in a node fathoming context, are stored into an internal pool and used
during the enumeration to fathom large sets of dominated solutions in
a computationally effective way.

Computational results on a test-bed of MILP instances whose struc-
ture is amenable to dominance are reported, showing that the proposed
method can lead to a considerable speedup when embedded in a com-
mercial MILP solver.

Keywords: mixed-integer programming, constraint programming, dom-
inance procedure, nogoods, test sets, knapsack problem, network de-
sign.

1 Introduction

The Mixed-Integer Linear Programming (MILP, for short) paradigm is among
the most powerful and most used methods for modeling and solving both
real-life and theoretical combinatorial optimization problems; see, e.g., [7,
18,22]. Almost fifty years of active research in the field have produced huge
improvements in the solving capability of the MILP codes, as reported e.g.
in [2].
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A concept playing a potentially relevant role in trying to keep the size of
the enumeration tree as small as possible is that of dominance. Following e.g.
Papadimitriou and Steiglitz [18], a branching node α is said to be dominated
by another node β if every feasible solution in the subtree of α corresponds to
a solution in the subtree of β having a better cost (tie breaks being handled
by a suitable lexicographic rule). This concept seems to have been studied
first by Kohler and Steiglitz [14], and has been developed in the subsequent
years, most notably by Ibaraki [11]. However, although known since a long
time, dominance criteria are not exploited in general-purpose MILP codes,
due to number of important limitations of the classical definition. In fact, as
stated, the dominance relationship is too vague and of difficult application in
a generic MILP context—in principle, every node not leading to an optimal
solution could be declared as being dominated.

In this paper we build on the general-purpose dominance procedure pro-
posed in the late 80’s by Fischetti and Toth [6], that overcomes some of the
drawbacks of the classical dominance definition. The approach has its roots
in the concept of dominance among “states” in dynamic programming, and
works as follows. Given the current node α of the search tree, let Jα be
the set of variables fixed to some value. We construct an auxiliary problem
XPα that looks for a new partial assignment involving the variables in Jα

and such that (i) the objective function value is not worse than the one
associated with the original assignment, and (ii) every completion of the old
partial assignment is also a valid completion of the new one. If such a new
partial assignment is found (and a certain tie-break rule is satisfied), one is
allowed to fathom node α.

As far as we know, no attempt to actually use the above dominance
procedure within a general-purpose MILP scheme is reported in the litera-
ture. This is due to the fact that the approach, as described, tends to be
excessively time consuming—the reduction in the number of nodes does not
compensate for the large overhead introduced. In the attempt of finding
a viable way to implement the original scheme, we found that the concept
of nogood, borrowed from Constraint Programming (CP), can play a cru-
cial role for the practical effectiveness of the overall dominance procedure.
Roughly speaking, a nogood is a partial assignment of the variables such
that every completion is either infeasible (for constraint satisfaction prob-
lems) or nonoptimal (for constraint optimization problems). Though widely
used in the CP context, the concept of nogood is seldom used in Mathe-
matical Programming. One of the the first uses of nogoods in ILP was to
solve verification problems (Hooker and Yan [9]) and fixed-charge network
flow problems (Hooker et al. [13]). Further applications can be found in
Codato and Fischetti [3], where nogoods are used to generate cuts for a
MILP problem.

In the context of dominance, a nogood configuration is available, as
a byproduct, whenever the auxiliary problem is solved successfully. More
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generally, we show how the auxiliary problem can be used to derive “moves”
that capture in much more effective way the presence of general integer (as
opposed to binary) variables.

Improving moves are the basic elements of test sets. For an integer pro-
gramming problem, a test set is defined as a set T of vectors such that every
feasible solution x to the integer program is nonoptimal if and only if there
exists an element t ∈ T (the “improving move”) such that x+ t is a feasible
solution with strictly better objective function value; see, e.g., [8, 21, 23].
Within the classical test set environment, improving moves are meant to
be used within a primal heuristic scheme to convert any feasible solution
to an optimal one by a sequence of moves maintaining solution feasibility
and improving in a strictly monotone way the objective value. Computing
and using test sets for NP-hard problems is however by far too expensive in
practice. In our approach, instead, improving moves are exploited heuristi-
cally within a node fathoming procedure—hence the name “pruning moves”.
More specifically, we generate pruning moves on the fly, when solving the
dominance auxiliary problem XPα, and store them into a move pool that
is checked in a rather inexpensive way at each node of the branching tree.
Computational results show that this approach can be very successful for
problems whose structure is amenable to dominance.

The paper is organized as follows. In Section 2 we describe the Fischetti-
Toth technique in more details, and address some issues related to the
tie-break rule to be used in order to get a mathematically correct over-
all method. In Section 3 we introduce the concepts of nogood and pruning
move, and show how to derive them in an effective way. In Section 4 we deal
with some extensions of the basic scheme, whereas important implementa-
tion issues are addressed in Section 5. Computational results obtained on
hard knapsack and network design instances are given in Section 6. We
show that, for those problems, the proposed method can lead to a signifi-
cant speedup when embedded within a general-purpose MILP solver (ILOG
Cplex 11). Some conclusions are finally drawn in Section 7.

2 The Fischetti-Toth dominance procedure

In the standard Branch-and-Bound (B&B) or Branch-and-Cut (B&C) frame-
work, a node is fathomed in two situations:

1. the LP relaxation of the node is infeasible; or

2. the optimal value of LP relaxation is not better than the value of the
incumbent optimal solution.

There is however a third way of fathoming a node, by using the concept of
dominance. According to [18], a dominance relation is defined as follows: if
we can show that a descendant of a node β is at least as good as the best
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descendant of a node α, then we say that node β dominates node α, meaning
that the latter can be fathomed (in case of ties, an appropriate rule has to
be taken into account in order to avoid fathoming cycles). Unfortunately,
this definition may become useless in the context of general MILPs, where
we do not actually know how to perform the dominance test without storing
huge amounts of information for all the previously-generated nodes—which
is often impractical.

Fischetti and Toth [6] proposed a different dominance procedure that
overcomes many of the drawbacks of the classical definition, and resembles
somehow the logic cuts introduced by Hooker et al. in [10] and the iso-
morphic pruning introduced recently by Margot [15, 16]. Here is how the
procedure works.

Let P be the MILP problem

P : min{cTx : x ∈ F (P )}

whose feasible solution set is defined as

F (P ) := {x ∈ <n : Ax ≤ b, l ≤ x ≤ u, xj integer for all j ∈ J} (1)

where J ⊆ N := {1, · · · , n} is the index set of the integer variables. For any
J ′ ⊆ J and for any x′ ∈ <n, let

c(J ′, x′) :=
∑
j∈J ′

cjx
′
j

denote the contribution of the variables in J ′ to the overall cost cTx′. Now,
let us suppose to solve P by an enumerative (B&B or B&C) algorithm whose
branching rule fixes some of the integer-constrained variables to certain val-
ues. For every node k of the search tree, let Jk ⊆ J denote the set of indices
of the variables xj fixed to a certain value xkj (say). Every solution x ∈ F (P )
such that xj = xkj for all j ∈ Jk (i.e., belonging to the subtree rooted at
node k) is called a completion of the partial solution associated at node k.

Definition 1. Let α and β be two nodes of the search tree. Node β dominates
node α if:

1. Jβ = Jα

2. c(Jβ, xβ) ≤ c(Jα, xα), i.e., the cost of the partial solution at node β is
not worse than that at node α

3. every completion of the partial solution associated with node α is also
a completion of the partial solution associated with node β.

According to the classical dominance theory, the existence of a node
β unfathomed that dominates node α is a sufficient condition to fathom
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node α. A key question at this point is: Given the current node α, how
can we check the existence of a dominating node β? Fischetti and Toth
answered this question by modeling the search of dominating nodes as a
structured optimization problem, to be solved exactly or heuristically. For
generic MILP models, this leads to the following auxiliary problem XPα:

min
∑
j∈Jα

cjxj

∑
j∈Jα

Ajxj ≤ bα :=
∑
j∈Jα

Ajx
α
j (2)

lj ≤ xj ≤ uj , j ∈ Jα (3)
xj integer, j ∈ Jα (4)

If a solution xβ (say) of the auxiliary problem having a cost strictly
smaller than c(Jα, xα) is found, then it defines a dominating node β and the
current node α can be fathomed.

It is worth noting that the auxiliary problem is of the same nature as the
original MILP problem, but with a smaller size and thus it is often easily
solved (possibly in a heuristic way) by a general-purpose MILP solver. In
a sense, we are using here the approach of “MIPping the dominance test”
(i.e., of modeling it as a MILP), in a vein similar to the recent approaches
of Fischetti and Lodi [4] (the so-called local-branching heuristic, where a
suitable MILP model is used to improve the incumbent solution) and of
Fischetti and Lodi [5] (where an ad-hoc MILP model is used to generate
violated Chvátal-Gomory cuts). Also note that, as discussed in Section 4,
the auxiliary problem gives a sufficient but not necessary condition for the
existence of a dominating node, in the sense that some of its constraints
could be relaxed without affecting the validity of the approach. In addition,
inequalities (2) could be converted to equalities in order to reduce the search
space and get a simpler, although possibly less effective, auxiliary problem.

The Fischetti-Toth dominance procedure, called LD (for Local Domi-
nance) in the sequel, has several useful properties:

• there is no need to store any information about the set of previously-
generated nodes;

• there is no need to make any time-consuming comparison of the current
node with other nodes;

• a node can be fathomed even if the corresponding dominating one has
not been generated yet;

• the correctness of the enumerative algorithm does not depend on the
branching rule; this is a valuable property since it imposes no con-
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straints on the B&B parameters—though an inappropriate branching
strategy could prevent several dominated nodes to be fathomed;

• the LD test needs not be applied at every node; this is crucial from
the practical point of view, as the dominance test introduces some
overhead and it would make the algorithm too slow if applied at every
node.

An important issue to be addressed when implementing the LD test is
to avoid fathoming cycles arising when the auxiliary problem actually has
a solution xβ different from xα but of the same cost, in which case one is
allowed to fathom node α only if a tie-break rule is used to guarantee that
node β itself is not fathomed for the same reason. In order to prevent these
“tautological” fathoming cycles the following criterion (among others) has
been proposed in [6]: In case of cost equivalence, define as unfathomed the
node β corresponding to the solution found by a deterministic1 exact or
heuristic algorithm used to solve the auxiliary problem. Unfortunately this
criterion can be of difficult practical application, for two important reasons.
First of all, it is not easy to define a “deterministic” algorithm for MILP.
In fact, besides the possible effects of randomized steps, the output of the
MILP solver typically depends, e.g., on the order in which the variables
are listed on input, that can affect the choice of the branching variables as
well as the internal heuristics. Moreover, even very simple “deterministic”
algorithms may lead to wrong result, as shown in the following example.

Let P be the problem:

min−x1 − x2 − x3 − x4 − 99x5

s.t. x1 + x2 ≤ 1
x3 + x4 ≤ 1
x4 + x5 ≤ 1
x ∈ {0, 1}5

whose optimal solutions are [1, 0, 1, 0, 1] and [0, 1, 1, 0, 1], and let us consider
the enumeration tree depicted in Figure 1. The deterministic algorithm
used to perform the LD test is as follows: If the number of variables in
the auxiliary problem is smaller than 3, use a greedy heuristic trying to
fix variables to 1 in decreasing index order; otherwise use the same greedy
heuristic, but in increasing index order.

1In this context, an algorithm is said to be deterministic if it always provides the same
output solution for the same input set.
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x1 = 0 x1 = 1

x2 = 1 x2 = 0

x3 = 1

x4 = 0

x5 = 1

α

α′
β′

β

x3 = 1

x4 = 0

x5 = 1

Figure 1: A nasty situation for LD test

When node α (that corresponds to the partial solution x1 = 1, x2 = 0
with cost -1) is processed, the following auxiliary model is constructed

min−x1 − x2

s.t. x1 + x2 ≤ 1
x1, x2 ∈ {0, 1}

and the deterministic heuristic returns the partial solution x2 = 1, x1 = 0 of
cost -1 associated with node β, so node α is declared to be dominated by β
and node α is fathomed assuming (correctly) that node β will survive the
fathoming test. However, when the descendant node α′ (that corresponds to
the partial solution x1 = 0, x2 = 1, x3 = 1, x4 = 0 with cost -2) is processed,
the following auxiliary model is constructed

min−x1 − x2 − x3 − x4

s.t. x1 + x2 ≤ 1
x3 + x4 ≤ 1
x4 ≤ 1
x1, x2, x3, x4 ∈ {0, 1}
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and our deterministic heuristic returns the partial solution x1 = 1, x2 =
0, x3 = 1, x4 = 0 of cost -2 associated with node β′, so node α′ is declared to
be dominated by β′ and node α′ is fathomed as well. Therefore, in this case
the enumerative algorithm cannot find any of the two optimal solutions, i.e.,
the LD tests produced a wrong answer.

In view of the considerations above, in our implementation we used a
different tie-break rule, also described in [6], that consists in ranking cost-
equivalent solutions in lexicographical order (≺). To be more specific, in
case of cost ties we fathom node α if and only if xβ ≺ xα, meaning that the
partial solution xβ associated with the dominating node β is lexicographi-
cally smaller2 than xα. Using this tie-break rule, it is possible to prove the
correctness of the overall enumerative method.

Proposition 1. Assuming that the projection of the feasible set F (P ) on
the integer variable space is a bounded set, a B&B algorithm exploiting LD
with the lexicographical tie-break rule returns the same optimal value as the
classical B&B algorithm.

Proof. Let x∗ be the lexicographically minimal optimal solution, whose ex-
istence is guaranteed by the boundedness assumption and by the fact that
≺ is a well order. We need to show that no node α having x∗ among its
descendants (i.e. such that x∗j = xαj for all j ∈ Jα) can be fathomed by the
LD test. Assume by contradiction that a node β dominating α exists, and
define

zj :=

{
xβj j ∈ J∗

x∗j j 6∈ J∗

where J∗ := Jβ (= Jα). In other words, z is a new solution obtained from
x∗ by replacing its dominated part with the dominating one. Two cases can
arise:

1. c(J∗, xβ) < c(J∗, xα): we have

cT z =
∑
j∈J∗

cjx
β
j +

∑
j 6∈J∗

cjx
∗
j <

∑
j∈J∗

cjx
α
j +

∑
j 6∈J∗

cjx
∗
j = cTx∗

and
n∑
j=1

Ajzj =
∑
j∈J∗

Ajx
β
j +

∑
j 6∈J∗

Ajx
∗
j ≤

∑
j∈J∗

Ajx
α
j +

∑
j 6∈J∗

Ajx
∗
j ≤ b

so z is a feasible solution with a cost strictly smaller than x∗, which is
impossible.

2We use the standard definition of lexicographic order on vectors of fixed size over a
totally order set.
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2. c(J∗, xβ) = c(J∗, xα): using the same argument as in the previous
case, one can easily show that z is an alternative optimal solution
with z ≺ x∗, also impossible.

It is important to notice that the above proof of correctness uses just
two properties of the lexicographic order, namely:

well order : required for the existence of a minimum optimal solution;

inheritance: if xα and xβ are two partial assignments such that xα ≺
xβ, then the lexicographic order is not changed if we apply the same
completion to both of them.

This observation will be used in section 4 to derive a more efficient tie-break
rule.

3 Nogoods and pruning moves

The computational overhead related to the LD test can be reduced consider-
ably if we exploit the notion of nogoods taken from Constraint Programming
(CP). A nogood is a partial assignment of the problem variables such that
every completion is either infeasible (for constraint satisfaction problems)
or nonoptimal (for constraint optimization problems). The key observation
here is that whenever we discover (through the solution of the auxiliary
problem) that the current node α is dominated, we have in fact found a no-
good configuration [Jα, xα] that we want to exclude from being re-analyzed
at a later time.

Actually, when the LD test succeeds we have not just a dominated partial
assignment (xα), but also a dominating one (xβ). Combining the two we get
a pruning move (∆ = [Jα, xβ−xα]), i.e., a list of variable changes that we can
apply to a (partial) assignment to find a dominating one, provided that the
new values assigned to the variables stay within the prescribed bounds. For
binary MILPs, the concept of pruning move is equivalent to that of nogood,
in the sense that a pruning move can be applied to a partial assignment if
and only if the same assignment can be ruled out by a corresponding (single)
nogood. For general integers MILPs, however, pruning moves can be much
more effective than nogoods. This is easily seen by the following example.
Suppose we have two integer variables x1, x2 ∈ [0, U ] and that the LD test
produces the pair

xα = (1, 0) xβ = (0, 1)

It is easy to see that, in this case, all the following (dominating, dominated)-
pairs are valid:

{((a, b), (a− 1, b+ 1)) : a ∈ [1, U ] , b ∈ [0, U − 1]}
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The standard LD procedure would need to derive each such pair by solving a
different auxiliary problem, while they can be derived all together by solving
a single MILP leading to the pruning move (−1, 1).

In our implementation, we maintain explicitly a pool of previously-found
pruning moves and solve the following problem (akin to separation for
cutting-plane methods) at each branching node α: Find, if any, a move
∆ = [J ′, δ] stored in the pool, such that J ′ ⊆ Jα and lj ≤ xαj + δj ≤ uj for
all j ∈ J ′. If the test is successful, we can of course fathom node α without
the need of constructing and solving the corresponding auxiliary problem
XPα.

It is worth noting that we are interested in minimal (with respect to set
inclusion) pruning moves, so as to improve effectiveness of the method. To
this end, before storing a pruning move in the pool we remove its components
j such that xαj = xβj (if any).

It is also worth noting that a move ∆1 = [J1, δ1] implies (absorbs) a
move ∆2 = [J2, δ2] in case

J1 ⊆ J2 and |δ1j | ≤ |δ2j | ∀j ∈ J1

This property can be exploited to keep the pool shorter without affecting
its fathoming power.

At first glance, the use of a move pool can resembles classical state-
based dominance tests, but this is really not the case since the amount of
information stored is much smaller—actually, it could even be limited to
be of polynomial size, by exploiting techniques such as relevance or length
bounded nogood recording (see [12]).

4 Improving the auxiliary problem

The effectiveness of the dominance test presented in the previous section
heavily depends on the auxiliary problem that is constructed at a given
node α. In particular, it is advisable that its solution set is as large as
possible, so as to increase the chances of finding a dominating partial so-
lution. Moreover, we aim at finding a partial solution different from (and
hopefully lexicographically better than) the one associated with the current
node—finding the same solution xα is of no use within the LD context. For
these reasons, we next propose a number of improvements over the original
auxiliary problem formulation.

Objective function

The choice of the lexicographic order as a mean to resolve ties, although
natural and simple, is not well suited in practice.
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In the most näıve implementation, there is a good chance of not finding a
lexicographic better solution even if this exists, because we do not convey in
any way to the solver the information that we are interested in lex-minimal
solution. This is unfortunate, since we risk to waste a great computational
effort.

Moreover, the lexicographic order cannot be expressed as a linear ob-
jective without resorting to huge coefficients: the only way to enforce the
discovery of lexicographically better solutions is through ad-hoc branching
and node selection strategies, that are quite intrusive and greatly degrade
the efficiency of the solution process.

The solution we propose is to use a randomly generated second-level
objective function, while using the lexicographic order only as a last resort,
in the unlikely case where both the original and random objective functions
yield the same value.

It is worth noting that:

• if we generate the random function at the beginning and keep it fixed
for the whole search, then this function satisfies the two properties
needed for the correctness of the algorithm;

• in order to guarantee that the optimal solution of the auxiliary problem
will be not worse than the original partial assignment, we add the
following optimality constraint:∑

j∈Jα
cjxj ≤

∑
j∈Jα

cjx
α
j

Local Search

As the depth of the nodes in the B&B increases, the auxiliary problem grows
in size and becomes heavier to solve. Moreover, we are interested in detecting
moves involving only a few variables, since these are more likely to help
pruning the tree and are more efficient to search. For these reasons one can
heuristically limit the search space of the auxiliary problem to alternative
assignments not too far from the current one. To this end, we use a local
branching [4] constraint defined as follows.

For a given node α, let Bα ⊆ Jα be the (possibly empty) set of fixed
binary variables, and define

U = {j ∈ Bα | xαj = 1} and L = {j ∈ Bα | xαj = 0}

Then we can guarantee a solution x of the auxiliary problem to be different
from xα in at most k binary variables through the following local branching
constraint ∑

j∈U
(1− xj) +

∑
j∈L

xj ≤ k

11



A similar reasoning could be extended to deal with general integer variables
as well, although in this case the constraint is not as simple as before and
requires the addition of certain auxiliary variables [4]. According to our
computational experience, a good compromise is to consider a local branch-
ing constraint involving only the (binary or general integer) variables fixed
to their lower or upper bound, namely∑

j∈U
(uj − xj) +

∑
j∈L

(xj − lj) ≤ k

where

U = {j ∈ Jα | xαj = uj} and L = {j ∈ Jα | xαj = lj}

Right-hand side improvement

One could observe that we have been somehow over-conservative in the
definition of the auxiliary problem XPα. In particular, as noticed already
in [6], in some cases condition ∑

j∈Jα
Ajxj ≤ bα

could be relaxed without affecting the correctness of the method.
To illustrate this possibility, consider a simple knapsack constraint 4x1 +

5x2 + 3x3 + 2x4 ≤ 10 and suppose we are given the partial assignment
[1, 0, 1, ∗]. The corresponding constraint in the auxiliary problem then reads
4x1 + 5x2 + 3x3 ≤ 7. However, since the maximum load achievable with the
free variables is 2, one can safely consider the relaxed requirement 4x1 +
5x2 + 3x3 ≤ 10− 2 = 8. Notice that the feasible partial solution [0, 1, 1, ∗] is
forbidden by the original constraint but allowed by the relaxed one, i.e., the
relaxation does improve the chances of finding a dominating node. Another
example arises for set covering problems, where the constraints are of the
form

∑
j∈Qi xj ≥ 1. Suppose we have a partial assignment x∗j (j ∈ J ′),

such that k :=
∑

j∈J ′ x
∗
j > 1. In this case, the corresponding constraint in

the auxiliary problem would be
∑

j∈J ′ xj ≥ k, although its relaxed version∑
j∈J ′ xj ≥ 1 is obviously valid as well.
The examples above show however that the improvement of the auxiliary

problem may require some knowledge of the particular structure of its con-
straints. Even more importantly, the right-hand side strengthening proce-
dure above can interfere and become incompatible with the post-processing
procedure that we apply to improve the moves. For this reason, in our
implementation we decided to avoid any right-hand side improvement.
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Local search on incumbents

A drawback of the proposed scheme is that node fathoming is very unlikely
at the very beginning of the search. Indeed, at the top of the tree only few
variables are fixed and the LD test often fails (this is also true if short moves
exist, since their detection depends on the branching strategy used), while
the move pool is empty.

To mitigate this problem, each time a new incumbent is found we invoke
the following local search phase aimed at feeding the move pool.

• Given the incumbent x∗, we search the neighborhood Nk(x∗) defined
through the following constraints:∑

j∈J
Ajxj =

∑
j∈J

Ajx
∗
j (5)

∑
j∈J :x∗j=uj

(uj − xj) +
∑

j∈J :x∗j=lj

(xj − lj) ≤ k (6)

∑
j∈J

cjxj ≤
∑
j∈J

cjx
∗
j (7)

lj ≤ xj ≤ uj , j ∈ J
xj integer, j ∈ J

In other words, we look for alternative values of the integer variables
xj (j ∈ J) using each constraint—variable bounds excluded—in the
same way as x∗ (constraint (5)), having a Hamming distance from x∗

not larger than k (constraint (6)), and with an objective value not
worse than x∗ (constraint (7)).

• We populate a solution list by finding multiple solutions to the MILP

min{
∑
j∈J

cjxj : x ∈ Nk(x∗)}

by exploiting the multiple-solution mode available in our MILP solver
[20].

• Given the solution list L = (x1, . . . , xp), we compare the solutions
pairwise and generate a pruning move accordingly, to be stored in the
move pool.

• If we find a better solution during the search, we use it to update the
incumbent.

It is worth noting that the use of equalities (5) allows us to generate a prun-
ing move for every pair of distinct solutions in the list, since for every pair
we have a dominating and a dominated solution whose difference produces
the pruning move.
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5 Implementation

The enhanced dominance procedure presented in the previous sections was
implemented in C++ on a Linux platform, and applied within a commercial
MILP solver. Here are some implementation details that deserve further
description.

An important drawbacks of LD tests is that their use can postpone the
finding of a better incumbent solution, thus increasing the number of nodes
needed to solve the problem. This behavior is quite undesirable, particularly
in the first phase of the search when we have no incumbent and no nodes
can be fathomed through bounding criteria. Our solution to this problem is
to skip the dominance test until the first feasible solution is found.

The definition and solution of the auxiliary problem at every node of
the search tree can become too expensive in practice. We face here a situ-
ation similar to that arising in B&C methods where new cuts are typically
not generated at every node—though the generated cuts are exploited at
each node. A specific LD consideration is that we better skip the auxil-
iary problem on nodes close to the top or the bottom of the search tree.
Indeed, in the first case only few variables have been fixed, hence there is
a little chance to find dominating partial assignments. In the latter case,
instead, it is likely that the node would be fathomed anyway by standard
bounding tests. Moreover, at the bottom of the tree the number of fixed
variables is quite large and the auxiliary problem may be quite heavy to
solve. In our implementation, we provide two thresholds on tree depth,
namely depthmin and depthmax, and solve the auxiliary problem for a node
α only if depthmin ≤ depth(α) ≤ depthmax. Moreover, we decided to solve
the auxiliary problem at a node only if its depth is a multiple of a given
parameter, say depth interval.

In addition, as it is undesirable to spend a large computing time on
the auxiliary problem for a node that would have been pruned anyway by
the standard B&B rules, we decided to apply our technique just before
branching—applying the LD test before the LP relaxation is solved turned
out to be less effective.

In order to avoid spending too much computing time on pathologically
hard auxiliary MILPs, we also set a node limit N1 (say) for the auxiliary
problem solution, and a node limit N2 (say) for the local search on incum-
bents.

Finally, since the discovery of new pruning moves decreases as we proceed
with the search, we set a upper bound M on the times the LD test is called:
after this limit is reached, the pruning effect is left to the move pool only.

It is important to stress that, although the auxiliary problem is solved
only at certain nodes, we check the current partial assignment against the
move pool at every node, since this check is relatively cheap.
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6 Computational Results

In our computational experiments we used the commercial solver ILOG
Cplex 11.0 [20] with default options. All runs were performed on a Intel
Q6600 2.4Ghz PC with 4GB of RAM, under Linux.

The definition of the test-bed for testing the potentiality of our approach
is of course a delicate issue. As a matter of fact, one cannot realistically
expect any dominance relationship to be effective on all types of MILPs.
We face here a situation similar to that arising when testing techniques
designed for highly-symmetric problems, such as the isomorphic pruning
proposed recently by Margot [15,16]—although remarkably effective on some
classes of problems, the approach is clearly of no use for problems that do
not exhibit any symmetry.

Therefore we looked for classes of practically relevant problems whose
structure can trigger the dominance relationship, and measured the speedup
that can be achieved by using our specific LD procedure. In particular, we
next give results on two combinatorial problems: knapsack problems [17]
and network loading problems [1, 24]. While the first class of problems is
quite natural for dominance tests (and could in principle be solved much
more effectively by using specialized codes), the second one is representative
of very important applications where the dominance property is hidden well
inside the solution structure.

6.1 Knapsack problem

We generated hard single knapsack instances according to the so-called span-
ner instance method in combination with the almost strongly correlated
profit generation technique; see Pisinger [19] for details.

The parameters of our LD procedure were set to:

depthmin: 5

depthmax: 0.8 times the number of integer variables

depthinterval: 6

k: 0.2 times the number of integer variables

N1: 10

N2: 5000

M : 1000

The results on hard single knapsack instances with 60 to 90 items are
given in Table 1, where labels “Dominance” and “Standard” refer to the
performance of the B&C scheme with and without the LD tests, and label

15



Standard Dominance Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

kp60 1 311,490 14.70 0.00 1,793 3.45 0.00 173.73 4.26

kp60 2 831,319 43.72 0.00 3,718 3.05 0.00 223.59 14.35

kp60 3 865,469 45.32 0.00 3,995 2.15 0.00 216.64 21.11

kp60 4 1,012,287 47.54 0.00 19,720 6.42 0.00 51.33 7.41

kp70 1 >12,659,538 >1,200.00 0.41 1,634,517 138.68 0.00 7.75 8.65

kp70 2 783,092 41.21 0.00 4,466 6.43 0.00 175.35 6.41

kp70 3 830,794 41.97 0.00 6,396 4.93 0.00 129.89 8.51

kp70 4 >13,226,464 >1,200.00 0.48 27,591 4.49 0.00 479.38 267.18

kp80 1 403,396 18.71 0.00 2,599 9.41 0.00 155.21 1.99

kp80 2 559,447 28.11 0.00 3,118 1.87 0.00 179.42 15.04

kp80 3 576,885 23.46 0.00 2,962 3.40 0.00 194.76 6.90

kp80 4 277,981 13.35 0.00 5,690 3.29 0.00 48.85 4.06

kp90 1 >16,013,282 >1,200.00 0.07 803,333 65.57 0.00 19.93 18.30

kp90 2 18,330,528 863.77 0.00 5,024 3.56 0.00 3,648.59 242.74

kp90 3 >15,273,264 >1,200.00 0.27 37,017 5.61 0.00 412.60 213.78

kp90 4 2,136,389 116.21 0.00 8,056 3.82 0.00 265.19 30.46

Average >5,255,727 >381.13 - 160,165 16.63 - 398.89 54.45

Geom. mean >1,761,164 >98.78 - 11,625 6.00 - 151.50 16.47

Table 1: Computational results for hard knapsack instances

“Ratio” refers to the ratios Standard/Dominance. For a fair comparison,
the same seed was used to initialize the random generator in all runs. The
performance figures used in the comparison are the number of nodes of the
resulting search tree and the computing time (in CPU seconds). For these
problems, the LD tests provided an overall speedup of 23 times and with
substantially fewer nodes (the ratio being approximatively 1:33). Note that,
in some cases, the ratios reported in the table are just lower bounds on the
real ones, as the standard algorithm was stopped before completion due to
time limit.

Additional statistics are reported in Table 2 where we provide, for each
instance, the final size of the move pool, the percentage of the whole solution
time spent either on pool management (Pool Time) or LD tests (LD time)
along with their success rates (Pool Success and LD Success, respectively).
The figures indicate that the number of pruning moves stored in the pool is
always manageable. In addition, both the pool checks and the LD tests are
rather successful as they allow for node fathoming approximatively 1/3 of the
times they are applied—the total effect being of fathoming approximately
2/3 of the nodes. Although the relative overhead introduced by the LD
procedure is significant (due to the fact that node relaxations are particularly
cheap for knapsack problems), the overall benefit is striking, with an average
speed-up of about 2-3 orders of magnitude.
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Problem Pool size Pool Time Pool Success LD Time LD Success

kp60 1 404 20.08% 38.95% 13.82% 35.00%

kp60 2 196 1.61% 34.97% 29.82% 47.06%

kp60 3 360 14.86% 37.66% 24.45% 16.67%

kp60 4 148 3.48% 38.18% 58.24% 16.80%

kp70 1 330 26.00% 29.62% 1.10% 50.50%

kp70 2 464 18.62% 39.97% 20.67% 40.59%

kp70 3 299 15.11% 40.58% 25.28% 30.43%

kp70 4 324 16.61% 29.31% 37.60% 59.90%

kp80 1 384 20.67% 42.89% 4.99% 37.05%

kp80 2 286 8.45% 37.87% 35.88% 25.45%

kp80 3 833 24.78% 43.96% 9.54% 35.50%

kp80 4 294 15.95% 43.02% 28.13% 25.13%

kp90 1 268 22.32% 37.55% 2.08% 28.70%

kp90 2 705 17.76% 38.56% 34.19% 58.15%

kp90 3 286 16.55% 34.20% 20.88% 41.20%

kp90 4 181 3.85% 33.97% 44.78% 42.20%

Average 360.13 15.42% 37.58% 24.47% 36.90%

Geom. mean 326.24 12.49% 37.33% 16.80% 34.59%

Table 2: Internal statistics for hard knapsack instances

6.2 Network loading problem

Network loading problems arise in telecommunications applications where
demand for capacity for multiple commodities has to be realized by allo-
cating capacity to the arcs of a given network. Along with a capacity plan
a routing of all commodities has to be determined and each commodity
must be routed from source to destination on a single path through the
network. The objective is to minimize the costs of the installed capacity in
the network, ensuring that all commodities can be routed from source to
destination simultaneously.

Given a directed graph G = (V,A), a set of commodities K (each com-
modity being described by a source node sk, a destination node tk, and a
demand size dk), a base capacity unit C and capacity installation costs cij ,
our network loading problem can be formulated as:

min
∑

(i,j)∈A

cijyij
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∑
j∈V

xkij −
∑
j∈V

xkji =


1 i = sk

−1 i = tk

0 otherwise

k ∈ K, i ∈ V (8)

∑
k

dkxkij ≤ Cyij , (i, j) ∈ A (9)

xkij ∈ {0, 1}, yij ∈ Z+
0 , k ∈ K, (i, j) ∈ A (10)

Random instances of the above network loading problem were generated
as follows:

• In order to obtain a grid-like structure, we generated grid networks of
dimensions 3x5 and 4x4 and randomly deleted arcs with probability
0.1. Each arc has base unit capacity of value 4 and cost 10.

• We generated a commodity of flow 10 for each pair of nodes with
probability 0.2.

Some parameters of the LD procedure were changed with respect to the
knapsack test-bed, due to the greatly increased size of the instances:

k: 0.01 times the number of integer variables

N1: 100

N2: 25000

The results of our experiments are given in Table 3. In this class of
problems, the dominance procedure is still quite effective, with an overall
speedup of 4 times and a node ratio of more than 5.

More statistics are reported in Table 4. The format of the table is the
same as for knapsack problems. As expected, both the computational over-
head of the tests and their rate of success are significantly smaller than in
the knapsack case, but still very satisfactory.

6.3 Pool effectiveness

Finally, we tested the effectiveness of the main improvements we proposed
to the original Fischetti-Toth scheme. Results are reported in Table 5 and
Table 6 for knapsack and network loading instances, respectively. We com-
pared our final code (Dominance) against two versions of the same code
obtained by disabling the use of the move pool (versions LD1 and LD2 )
and a version without the local search on incumbents (version LD3 ). We
provide the absolute performance figures for Dominance, while we give rel-
ative performance for the other versions—the numbers in the table give the
slowdown factors of the various versions with respect to our final code (the
larger the worse). According to the tables, disabling the move pool while
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Standard Dominance Ratio

Problem Nodes Time (s) Gap Nodes Time (s) Gap Nodes Time

g 15 17 43 1,954,292 797.01 0.00 242,693 163.80 0.00 8.05 4.87

g 15 17 45 >8,711,335 >3,600.00 0.34 1,544,646 845.00 0.00 5.64 4.26

g 15 17 51 >8,022,870 > 3,600.00 0.29 963,576 545.14 0.00 8.33 6.60

g 15 18 35 3,764,325 1,559.38 0.00 286,539 172.48 0.00 13.14 9.04

g 15 18 37 3,959,652 1,525.63 0.00 567,899 279.64 0.00 6.97 5.46

g 15 18 39 752,035 251.52 0.00 303,667 146.55 0.00 2.48 1.72

g 15 18 40 >10,156,564 >3,600.00 0.48 1,071,922 493.57 0.00 9.48 7.29

g 15 19 43 1,609,434 886.51 0.00 415,472 294.61 0.00 3.87 3.01

g 16 18 48 581,268 226.13 0.00 122,824 86.65 0.00 4.73 2.61

g 16 18 53 6,425,061 3,183.84 0.00 6,489 56.14 0.00 990.15 56.71

g 16 19 51 >7,222,780 >3,600.00 0.43 3,774,093 2,158.96 0.00 1.91 1.67

g 16 20 47 5,593,517 3,436.69 0.00 587,773 449.83 0.00 9.52 7.64

g 16 20 51 2,229,792 1,394.58 0.00 272,355 257.26 0.00 8.19 5.42

g 16 21 40 >6,187,221 >3,600.00 0.37 2,334,537 1,524.71 0.00 2.65 2.36

g 16 21 44 1,079,588 717.43 0.00 151,869 182.00 0.00 7.11 3.94

g 16 21 52 >4,565,496 >3,600.00 0.27 1,279,007 1,186.96 0.00 3.57 3.03

Average >4,550,951.88 >2,223.67 - 870,335.06 552.71 - 67.86 7.85

Geom. mean >3,354,264 >1,621.25 - 436,484 339.43 - 7.68 4.78

Table 3: Computational results for network loading problems

Problem Pool size Pool Time Ratio Pool Success LD Time Ratio LD Success

g 15 17 43 48 0.73% 13.39% 26.20% 1.50%

g 15 17 45 61 1.08% 17.80% 8.43% 0.80%

g 15 17 51 167 2.19% 17.14% 5.79% 1.30%

g 15 18 35 55 0.94% 16.64% 15.84% 1.10%

g 15 18 37 53 1.15% 4.04% 3.27% 0.50%

g 15 18 39 108 1.52% 12.22% 16.93% 1.20%

g 15 18 40 89 1.66% 18.90% 5.17% 2.60%

g 15 19 43 135 1.68% 18.51% 8.97% 3.30%

g 16 18 48 78 0.95% 9.81% 28.68% 0.90%

g 16 18 53 84 0.17% 3.19% 59.68% 0.60%

g 16 19 51 178 2.45% 22.92% 1.49% 1.70%

g 16 20 47 56 0.92% 8.63% 8.76% 0.80%

g 16 20 51 69 0.81% 15.32% 18.28% 2.60%

g 16 21 40 67 0.92% 11.46% 2.77% 1.90%

g 16 21 44 108 0.78% 7.25% 25.27% 1.00%

g 16 21 52 71 0.77% 13.24% 5.58% 2.30%

Average 89.19 1.17% 13.15% 15.07% 1.51%

Geom. mean 82.13 1.01% 11.70% 9.89% 1.31%

Table 4: Internal statistics for network loading instances
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retaining the limit M on the number of times the LD test is actually called
(version LD1 ) is disastrous: not only we loose the fathoming effect on a
large part of the tree, but we waste a large computing time in solving aux-
iliary problems discovering a same pruning move (or even a dominated one)
over and over. Better results can be obtained if we remove limit M (version
LD2 ): in this way we retain much of the fathoming effect, but at a much
greater computational effort (LD2 is about 5 times slower than the default
version on knapsack problems, and reaches the 1-hour time limit in 11 out
of 16 instances on network problems). The contribution of the local search
on incumbents (version LD3 ) is more difficult to evaluate: while the number
of nodes is always reduced by its use, the overall computing time is reduced
only for network problems. A closer look to the single table entries shows
however that local search is not effective only for easy problems, where its
overhead is not balanced by the increased fathoming power, but it turns out
to be very useful on harder instances (e.g., kp70 1 or kp90 1 ).
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7 Conclusions

In this paper we have presented a dominance procedure for general MILPs.
The technique is an elaboration of an earlier proposal of Fischetti and
Toth [6], with important improvements aimed at making the approach com-
putationally more attractive in the general MILP context. In particular, the
use of nogoods and of pruning moves that we propose in this paper turned
out to be crucial for an effective use of dominance test within a general-
purpose MILP code.

Computational results on knapsack and network loading problems have
been presented, showing that the method can lead to speedups of up to 2
orders of magnitude on hard MILPs whose structure is amenable to domi-
nance.

In our view, a main contribution of our work is the innovative use of
improving moves. In the classical (yet computationally impractical) test set
approach, these moves are used within a primal heuristic scheme leading
eventually to an optimal solution. In our approach, instead, we heuristically
generate improving moves on small subsets of variables by solving, on the fly,
small MILPs. These moves are not used to improve the incumbent, as in the
classical test set environment, but rather to fathom nodes in the enumeration
tree—hence the name “pruning moves”. If implemented in a proper way, this
approach introduces an acceptable overhead even if embedded in a highly-
efficient commercial MILP solver such as ILOG Cplex 11, and may produce
a drastic reduction in the number of nodes to be enumerated when solving
hard MILPs whose structure is amenable to dominance.

Further developments, mainly in the directions of adaptive parameter
tuning and a tighter CP integration, are likely to make pruning moves
even more appealing and practically useful in general purpose MILP or CP
solvers.
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In M. Jünger and V. Kaibel, editors, Integer Programming and Com-
binatorial Optimization, 11th International IPCO Conference, Berlin,
Germany, June 8-10, 2005, Proceedings, volume 3509 of Lecture Notes
in Computer Science, pages 12–22. Springer, 2005.

[6] M. Fischetti and P. Toth. A New Dominance Procedure for Combina-
torial Optimization Problems. Operations Research Letters, 7:181–187,
1988.

[7] R. Garfinkel and G. Nemhauser. Integer Programming. John Wiley &
Sons, New York, 1972. Series in Decision and Control.

[8] J. E. Graver. On the foundations of linear and integer linear program-
ming i. Mathematical Programming, 9(1):207–226, 1975.

[9] J. N. Hooker and H. Yan. Logic circuit verification by Benders’ decom-
position. In V. Saraswat and P. Van Hentenryck (eds.), Principles and
Practice of Constraint Programming, pages 267–288, Cambridge, MA,
USA, 1995. The Newport Papers, MIT Press.

[10] J. N. Hooker, H. Yan, I. E. Grossmann, and R. Raman. Logic cuts for
processing networks with fixed charges. Computers & OR, 21(3), 1994.

[11] T. Ibaraki. The Power of Dominance Relations in Branch-and-Bound
Algorithms. J. ACM, 24(2):264–279, 1977.

[12] R. J. B. Jr. and D. P. Miranker. A complexity analysis of space-
bounded learning algorithms for the constraint satisfaction problem.
In AAAI/IAAI, Vol. 1, pages 298–304, 1996.

[13] H. J. Kim and J. N. Hooker. Solving fixed-charge network flow prob-
lems with a hybrid optimization and constraint programming approach.
Annals of Operations Research, 115:95–124, 2002.

[14] W. H. Kohler and K. Steiglitz. Characterization and theoretical com-
parison of branch-and-bound algorithms for permutation problems. J.
ACM, 21(1):140–156, 1974.

24



[15] F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical
Programming, 94(1):71–90, 2002.

[16] F. Margot. Exploiting orbits in symmetric ILP. Mathematical Pro-
gramming, 98(1–3):3–21, 2003.

[17] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. Wiley, New York, 1990.

[18] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Dover, 1982.

[19] D. Pisinger. Where are the hard knapsack problems? Comput. Oper.
Res., 32(9):2271–2284, 2005.

[20] I. S.A. CPLEX: ILOG CPLEX 11.0 User’s Manual and Reference
Manual, 2007. http://www.ilog.com.

[21] H. E. Scarf. Neighborhood systems for production sets with indivisibil-
ities. Econometrica, 54(3):507–532, 1986.

[22] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
& Sons, New York, 1998.

[23] R. Thomas and R. Weismantel. Test sets and inequalities for inte-
ger programs. Integer Programming and Combinatorial Optimization,
pages 16–30, 1996.

[24] S. P. van Hoesel, A. M. Koster, R. L. van de Leensel, and M. W. Savels-
bergh. Polyhedral results for the edge capacity polytope. Mathematical
Programming, 92:335–358, 2002.

25


