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Abstract

Crew management is concerned with building the work schedules of crews needed
to cover a planned timetable. This is a well-known problem in Operations Research
and has been historically associated with airlines and mass-transit companies. More
recently, railway applications have also come on the scene, especially in Europe. In
practice, the overall crew management problem is decomposed into two subprob-
lems, called crew scheduling and crew rostering. In this paper, we give an outline
of different ways of modeling the two subproblems and possible solution methods.
Two main solution approaches are illustrated for real-world applications. In par-
ticular we discuss in some detail the solution techniques currently adopted at the
Italian railway company, Ferrovie dello Stato SpA, for solving crew scheduling and
rostering problems.

1 Introduction

Crew management is concerned with building the work schedules of crews
needed to cover a planned timetable. This is part of more general activi-
ties within transit companies, broadly called tactical planning, which concern
the medium-term use of the available resources. Crew management is a well-
known problem in Operations Research and has been historically associated
with airlines and mass-transit companies. More recently, railway applications
have also come on the scene, especially in Europe where deregulation and
privatization issues are increasingly pervading the rail industry and better
productivity and efficiency are strongly required by the market and public
ownership. This leads to railway companies being increasingly interested in
using effective optimization techniques.
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Fig. 1. (a) Trips to be covered every day. (b) Duties covering all the trips; each duty
overlaps at most L = 2 consecutive days.

Several papers on crew (and vehicle) management appeared in the litera-
ture. We refer the interested reader to Wren [33], Bodin, Golden, Assad and
Ball [10], Carraresi and Gallo [13], Daduna and Wren [16], Rousseau [28§],
Desrochers and Rousseau [17], Barnhart, Johnson, Nemhauser, Savelsbergh
and Vance [4], Desrosiers, Dumas, Solomon and Soumis [18], and Wise [32].

In this paper we focus on crew management problems arising in railway ap-
plications, which can be outlined as follows. We are given a planned timetable
for the train services (i.e., both the actual journeys with passengers or freight,
and the transfers of empty trains or equipment between different stations) to
be performed every day of a certain time period. Each train service has first
been split into a sequence of trips, defined as segments of train journeys which
must be serviced by the same crew without rest. Each trip is characterized
by a departure time, a departure station, an arrival time, an arrival station,
and possibly by additional attributes. Each daily occurrence of a trip has to
be performed by one crew. In fact, each crew performs a roster, defined as a
sequence of trips whose operational cost and feasibility depend on several rules
laid down by union contracts and company regulations. The problem consists
of finding a set of rosters covering every trip of the given time period, so as to
satisfy all the operational constraints with minimum cost.

Figures 1(a) and 2 give a simple example of the problem. The trips to be
covered every day are shown in Figure 1(a). An example of a roster covering
these trips is illustrated in Figure 2. The roster consists of the cyclic trip
sequence T3, Ty, ..., T, T5, ..., and spans 12 days. Each 6th day is left idle for
crew rest. According to the roster, 12 crews are needed to perform each daily
occurrence of the given trips. In fact, the first crew covers: on calendar day d,
say, trips 13 and Ty, on calendar day d + 1 no trip, on calendar day d + 2 trips
Ty and Ts, ..., on calendar day d + 11 no trip, on calendar day d + 12 again



Day #1 Day #2 Day #3 Day #4 Day #5 Day #6

Ty Ty T Ts T7 Tio

T1 T4 T8 T11 T6

Fig. 2. A roster covering all the trips and requiring 12 crews. Boxes correspond to
short-term subsequences (duties).

trips T3 and Ty, and so on. On calendar day d + 1, trips T5 and Ty are instead
covered by the second crew, which performs no trips on day d + 2, trips 7%
and T5 on day d 4 3, and so on. Analogously, trips T5 and Ty on calendar day
d + 2 are covered by crew number 3, on calendar day d + 3 by crew number 4,

.., on calendar day d 4+ 11 by crew number 12, and on calendar day d + 12
by crew number 1 again.

Railway crew management represents a very complex and challenging problem
due to both the size of the instances to be solved and the type and number of
operational constraints. Typical figures at Ferrovie dello Stato SpA, the Italian
railway company, are about 8,000 trains per day and a workforce of 25,000
drivers spread among several depots. The largest planning problems concern
the inter-city and long-range passenger trains, and involve about 2,000 trains
split into 5,000 trips per day.

In practice, the overall crew management problem is approached in two phases,
according to the following scheme:

1. Crew scheduling: the short-term schedule of the crews is considered, and
a convenient set of duties covering all the trips is constructed. Each duty
represents a sequence of trips to be covered by a single crew within a given
time period overlapping at most L consecutive days (e.g., L = 2). In the
example in Figure 1(a), the trips are covered by means of the 5 duties
reported in Figure 1(b).

2. Crew rostering: the duties selected in phase 1 are sequenced to obtain the
final rosters. In this step, trips are no longer taken into account explicitly,
but determine the attributes of the duties which are relevant for the roster
feasibility and cost. In the example, the 5 duties in Figure 1(b) are sequenced
to obtain the 12-day roster in Figure 2.

Decomposition is motivated by several reasons. First of all, each crew is located
in a given depot, which represents the starting and ending point of its work
segments. A natural constraint imposes that each crew must return to its
home depot within L days, which leads to the concept of duty as a short-term



work segment starting and ending at the home depot and overlapping very few
consecutive days. Secondly, constraints affecting the short-term work segments
are different in nature from those related to the overall crew rosters. For
example, in the Italian railway company the minimum time interval between
two consecutive trips in a duty is a few minutes for changing trains, whereas
the time interval between two consecutive duties is 18-22 hours for home rest.
Finally, a global approach to the overall crew management problem is unlikely
to be implemented, because of both its intrinsic difficulty and the planners’
unwillingness to change their actual practice.

It is worth noting that crew rostering typically considers each depot separately,
in that a roster cannot include duties associated with different crew home
locations.

A main objective of crew management is the minimization of the global num-
ber of crews needed to perform all the daily occurrences of the trips in the
given period. In some applications, the crew rostering phase plays a minor
role, since the corresponding constraints are rather weak and the number of
crews is easily determined from the solution of the crew scheduling phase.
This happens, e.g., in urban mass transit applications, where crew rostering
is aimed at balancing the workload among the crews as evenly as possible. As
a result, the objective used in the crew scheduling phase mainly calls for the
minimization of the number of working days corresponding to the duties.

In railway applications, instead, considerable savings can be obtained through
a clever sequencing of the duties obtained in the first phase. Therefore, the
objective of the crew scheduling phase has to take into account the character-
istics of the duties selected and their implication in the subsequent rostering
phase. This suggests the opportunity of feedback between the two phases,
which allows for dynamically updating the crew scheduling costs.

This paper is organized as follows. Section 2 outlines different ways of model-
ing the problem and possible solution methods. Two main solution approaches
are illustrated for real-world applications. To this aim, Sections 3 and 4 dis-
cuss in some detail the solution techniques currently adopted at the Italian
railway company for solving crew scheduling and crew rostering subproblems,
respectively.

2 Modeling and solution approaches

Both crew scheduling and crew rostering problems require finding min-cost
sequences through a given set of items. Items correspond to trips for crew
scheduling, and to duties for crew rostering. Sequences correspond to duties



for crew scheduling, and to rosters for crew rostering.

A natural formulation of both problems in terms of graphs associates a node
with each item, and a directed arc with each possible item transition. More
specifically, one can define a directed graph G = (V, A) having one node j € V
for each item, and an arc (¢,7) € A if and only if item j can appear right after
item ¢ in a feasible sequence. With this representation, both problems can be
formulated as finding a min-cost collection of circuits (or paths) of G covering
each node once, as discussed in the sequel.

Consider first crew scheduling in the context of urban mass transit companies,
where duty duration (spread time) is less than 24 hours. Here, a minimum duty
start time b (e.g., 2 a.m.) is given. Accordingly, all departure/arrival times
between 0 (midnight) and b are increased by 24 hours, and an arc (¢,5) € A
exists only if the arrival time of trip ¢ is not greater than the departure time
of trip j. This implies that G is acyclic. In contrast, in crew scheduling arising
in railway applications graph G is not acyclic, and the departure and arrival
times of the trips are intended modulo 24 hours. This allows an arc to connect
a trip ¢ to a trip j even if the arrival time of ¢ is greater than the departure
time of j, meaning that a crew performs trips « and j on different days. In
both cases, crew scheduling calls for a min-cost collection of paths covering
all the nodes once, each path satisfying a set of constraints related to the
feasibility of the corresponding duty (maximum driving time, meal breaks,
etc.). As already mentioned, a basic constraint for crew scheduling is that
every duty must start and end at the crew home location (depot). It is then
natural to introduce in ¢ a dummy node d for each depot, along with the
associated arcs (d,j) (respectively, (j,d)) for each node j associated with a
trip which can be the first (resp., the last) trip in a duty assigned to depot
d. This allows one to convert each path representing a duty into a circuit by
connecting the terminal nodes of the path to the depot node representing the
home location of the crew.

In crew rostering, the start and end times of the duties are intended modulo
24 hours, and the associated graph is not acyclic. No dummy depot nodes are
needed, as all duties refer to the same depot. With an appropriate definition
of the arc costs, the problem calls for a min-cost collection of circuits covering
all the nodes once, each circuit satisfying a set of constraints related to the
feasibility of the associated roster. This will be discussed in greater detail in
Section 4.

There are two basic ways of modeling as an integer linear program the problem
of covering the nodes of a directed graph through a suitable set of circuits.
Let 6% (v) and 6 (v) represent the set of the arcs of GG leaving and entering
node v € V., respectively.



The first model associates a binary variable x;; with each arc (¢,j) € A, where
x;; = 1 if arc (7, ) is used in the optimal solution and x;; = 0 otherwise. Let
¢;j be the cost of each arc (¢,7) € A, and let D C V denote the set of depot
nodes (in crew rostering, D = ). The model reads:

min Z Cij X5 (1)

(7,7)€A
subject to
Z Tij = Z l’”:l, UEV\D (2)
(4,4)€6F (v) (4,4)€6~(v)
Z Ti; = Z Tij, veD (3)
(4,4)€6F (v) (4,4)€6~(v)
> ow;<|Pl-1, PeP (4)
(¢,7)€P
Tij € {07 1}7 (Zvj) cA (5)

where family P contains the inclusion-minimal arc subsets P which cannot be
part of any feasible solution (|P| may grow exponentially with [V]).

Constraints (2)—(3) impose that the same number of arcs enter and leave each
node, and that each node not associated with a depot is covered exactly once.
Constraints (4) forbid the choice of all the arcs in any infeasible arc subset
P. Notice that P contains all the arc sequences which cannot be covered by
a single crew because of operational constraints. In addition, P may contain
subsets of arcs which cannot all be selected because of constraints related
to the infeasibility of a group of circuits; these are typically called crew base
constraints.

Model (1)—=(5) has a number of drawbacks. First, it can only be applied when
the cost of the solution can be expressed as the sum of the costs associated with
the arcs. Hence it cannot be used when the cost of a circuit depends on the
overall node sequence, or on the “type” of the crew, e.g., on the home location.
Second, the linear programming relaxation of the model can be very weak when
the operational constraints modeled by (4) are tight. This drawback can be
partially overcome by introducing additional constraints taking into account
explicitly some specific kinds of infeasibility. On the other hand, model (1)-
(5) is particularly suitable for cases in which the most relevant constraints
concern the direct transition of the nodes within the sequence, hence they can
be effectively modeled through an appropriate definition of the arc set A and
the arc costs ¢;;.



A variant of the first model has a binary variable :L'fj associated with each
arc (1,7) € A and with each crew type k (typically k refers to depots), where
:L'fj = 1 means that a crew of type k covers nodes ¢ and j in sequence. Let cfj
be the cost of (i,7) € A when performed by a crew of type k, where cfj =+
if (4, j) cannot be used by a crew of type k, and let K be the set of crew types.
As before, D represents the (possibly empty) set of depot nodes. The model
is:

minz Z cfjxfj (6)

k€K (i,5)€A

subject to
Z :L'fj = Z :L'fj, veV, ke K (7)
(1,7) €6+ (v) (1,7) €6~ (v)
Soob<|Pl-1, PePtkekK (8)
(¢,7)€P

Yoo =1, veVAD (9)

kEK (i,5)€s+ (v)

o€ {0,1},  (Lj)eA ke K (10)

where P* is the family of all inclusion-minimal arc subsets P which cannot
be part of any feasible solution for the crews of type k. With respect to the
previous one, model (6)—(10) allows for arc costs depending on the crew type.
Moreover, infeasibility constraints of type (8) can exploit the fact that the type
of crew is given, which may lead to tighter linear programming relaxations.
An obvious drawback is the increased size of the model, in terms of both the
number of variables and constraints.

The second model has a possibly exponential number of binary variables, each
associated with a feasible circuit of G. More specifically, let C = {Cy,...,C,}
denote the collection of all the simple circuits of G corresponding to a feasible
duty/roster for a crew, with n = |C|. Each circuit C; has an associated cost
¢;, and covers the node set [;. The binary variable y; takes value 1 if C; is
part of the optimal solution, and 0 otherwise. We then have the following set
partitioning problem with side constraints:

min Yy _ ¢;y; (11)
7=1



subject to

doyi=1l,  wveV\D (12)

el

Sy <IS|-1,  Ses (13)

jes

ij{O,l}, jzlv"'vn (14)
where S denotes the family of all inclusion-minimal sets S C {1,...,n} with

the property that no feasible solution contains all circuits C; for j € 5. Con-
straints (12) impose that each node not associated with a depot is covered by
exactly one circuit, whereas inequalities (13) model the crew base constraints.

A main advantage of the set partitioning model is that it allows for circuit
costs depending on the whole sequence of arcs, and possibly on the crew
type. Moreover, the feasibility constraints (13) need not take into account
restrictions concerning the feasibility of a single circuit. As a result, they
can often be replaced by a compact set of inequalities of the form By < w,
modeling crew base constraints only. This produces a formulation whose linear
programming relaxation is typically much tighter than in the previous models.
Note however that the model often requires dealing with a very large number
of variables. In some cases, the explicit generation of all feasible circuits is
impractical, and one has to resort to a column generation approach, provided
that an effective pricing procedure is available to find feasible circuits whose
corresponding variable has a negative linear programming reduced cost.

In practice, the choice of the appropriate model and solution algorithm strongly
depends on the particular structure of the problem in hand. According to our
experience, the second model is particularly suitable for the cases in which fea-
sible circuits cover a small number of nodes, and the constraints on the circuit
feasibility are cumbersome and depend on the overall node sequence. This is
the situation arising in railway crew scheduling, as described in Section 3. On
the contrary, as already mentioned, the first model appears attractive for those
cases where the main feasibility constraints concern the direct sequencing of
two nodes, since they can be dealt with implicitly by an appropriate defini-
tion of the arc costs. This is the case of railway crew rostering, as described
in Section 4.

3 Crew scheduling at the Italian railways

Due to the nature of the services to be carried out, in Italian railway appli-
cations a typical crew duty lasts no more than 24 hours and covers only a



few trips. Moreover, heavy operational constraints affect duty feasibility. This
makes it practical to effect the explicit generation of all feasible duties, which
are computed and stored in a preprocessing phase called pairing generation.
In addition, operational rules allow a crew to be transported with no extra
cost as a passenger on a trip, hence the overall solution can cover a trip more
than once. In this situation, the set partitioning formulation (11)—(14) can
profitably be replaced by its set covering problem relaxation obtained by re-
placing = with > in (12). As a result, only inclusion-maximal feasible duties,
among those with the same cost, need be considered in the pairing generation.
This considerably reduces the number of variables.

Even without side constraints (13), set covering problems arising in railway
applications appear rather difficult, mainly because of their size. Indeed, the
largest instances at the Italian railways involve up to 5,000 trips and 1, 000, 000
duties, i.e., they are 1-2 orders of magnitude larger than those arising in typical
airline applications.

In 1994, the Italian railway company promoted the development of new tech-
niques for an effective solution of very-large scale pure set covering instances.
This resulted in a joint research project with the authors, which led to the
heuristic approach described in the remaining part of this section. We refer
the reader to Caprara, Fischetti and Toth [11] for more details.

The pure Set Covering Problem (SCP) can formally be defined as follows.
Let Ih,...,1, be the given collection of duties associated with the trip set
M ={1,...,m}. Each duty I; has an associated cost ¢; > 0. For notational
convenience, we define N = {1,...,n} and J; = {j € N :¢ € I;} for each trip
1 € M. SCP calls for

v(SCP) = min ) _ ¢;y; (15)
JjEN
subject to
Sy =1, ieM (16)
Jjed;
y; €{0,1},  JEN (17)

where y; = 1 if duty j is selected in the optimal solution, y; = 0 otherwise.

The exact SCP algorithms proposed in the literature can solve instances with
up to few hundred trips and few thousand duties, see Beasley [5], Beasley and
Jornsten [8], and Balas and Carrera [2]. When larger instances are tackled, one
has to resort to heuristic algorithms. Classical greedy algorithms are very fast



in practice, but typically do not provide high quality solutions, as reported
in Balas and Ho [3] and Balas and Carrera [2]. The most effective heuristic
approaches to SCP are those based on Lagrangian relazation following the
seminal work by Balas and Ho [3], and then the improvements by Beasley [6],
Fisher and Kedia [20], Balas and Carrera [2], Ceria, Nobili and Sassano [15],
and Wedelin [31]. Lorena and Lopes [27] propose an analogous approach based
on surrogate relaxation. Recently, Beasley and Chu [7] and Jacobs and Brusco
[25] proposed a genetic and a local search algorithm, respectively.

We next outline a heuristic method recently proposed by Caprara, Fischetti
and Toth [11], which has been designed to attack very-large scale instances.
The technique outperforms previously published methods: in 92 out of the 94
instances in the literature the method found, within short computing time,
the optimal (or the best known) solution. Moreover, among the 22 instances
for which the optimum is not known, in 6 cases the solution is better than
any other solution found by previous techniques. The method is based on dual
information associated with a Lagrangian relaxation of model (15)-(17). We
refer to Fisher [19] for an introduction to Lagrangian optimization. For every
vector u € R of Lagrangian multipliers associated with constraints (16), the
Lagrangian subproblem reads:

L(u) = min{z ci(u)y; + Z u; s oy; €{0,1},5 € N} (18)

JEN ieM

where ¢;(u) = ¢; — >_ier, Ui is the Lagrangian cost associated with duty j € N.
Clearly, an optimal solution to (18) is given by y;(u) = 1if ¢;(u) < 0, y;(u) =0
if ¢;(u) > 0, and y;(u) € {0,1} when ¢;(u) = 0. The Lagrangian dual problem
associated with (18) consists of finding a Lagrangian multiplier vector u* € RY'
which maximizes the lower bound L(u). To solve this problem, a common
approach uses the subgradient vector s(u) € R™ associated with a given u,
defined by si(u) = 1 — Y ;c; y;(u) for ¢ € M. The approach generates a
sequence u°, ul, ... of nonnegative Lagrangian multiplier vectors, where u° is

defined arbitrarily.

For near optimal Lagrangian multipliers u;, the Lagrangian cost ¢;(u) gives
reliable information on the overall utility of selecting duty j. Based on this
property, we use Lagrangian (rather than original) costs to compute, for each
J € N, a score o ranking the duties according to their likelihood to be selected
in an optimal solution. These scores are given on input to a simple heuristic
procedure, that finds a hopefully good SCP solution in a greedy way. Com-
putational experience shows that almost equivalent near-optimal Lagrangian
multipliers can produce SCP solutions of substantially different quality. In
addition, no strict correlation exists between the lower bound value L(u) and
the quality of the SCP solution found. Therefore it is worthwhile applying the

10



heuristic procedure for several near-optimal Lagrangian multiplier vectors.

The approach consists of three main phases. The first one is referred to as the
subgradient phase. 1t is aimed at quickly finding a near-optimal Lagrangian
multiplier vector. To this end, an aggressive policy is used for the updating
of the step-size and the reduction of the subgradient norm. The second one
is the heuristic phase, in which a sequence of near-optimal Lagrangian vec-
tors is determined. For each vector, the associated scores are given on input
to a greedy heuristic procedure to possibly update the incumbent best SCP
solution. In the third phase, called fizing, one selects a subset of duties having
an estimated high probability of being in an optimal solution, and fixes to 1
the corresponding variables. In this way one obtains an SCP instance with
a reduced number of duties (and trips), on which the three-phase procedure
is iterated. After each application of the three-phase procedure, an effective
refining procedure is used to produce improved solutions.

When very large instances are tackled, the computing time spent on the first
two phases becomes very large. To overcome this difficulty, one can define a
core problem containing a suitable set of duties, chosen among those having
the lowest Lagrangian costs. The definition of the core problem is often very
critical, since an optimal solution typically contains some duties that, although
individually worse than others, must be selected in order to produce an overall
good solution. Hence it is better not to “freeze” the core problem, and use a
variable pricing scheme to update the core problem iteratively in a vein similar
to that used for solving large scale linear programs. The use of pricing within
Lagrangian optimization drastically reduces computing time, and is one of the
main ingredients for the success of the overall scheme.

The Caprara-Fischetti-Toth algorithm, hereafter called CFT, was tested on
the real-world instances provided by the Italian railway company within the
competition FASTER, aimed at developing effective heuristics for very-large
scale SCP instances. Table 1 reports the corresponding results. For each in-
stance the table gives the instance name, the number of trips (m) and duties
(n), the density 3~ ;cn |1;]/(m - n), the value of the lower bound LB computed
by the subgradient procedure, the value of the heuristic solution found by code
CFT, and the best solution obtained by other methods. The reported solu-
tions were obtained within time limits of 3,000 CPU seconds on a PC 486/33
for the first three instances, and 10,000 CPU seconds on a HP 9000 735/125

for the remaining instances.

The table shows that algorithm CFT is capable of providing near-optimal
solutions within limited computing time even for very-large size instances. The
average percentage gap between the lower bound and the heuristic solution

value is 0.9%.
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Table 1
Results on crew scheduling instances from Ferrovie dello Stato SpA.

Name mXn Density LB  CFT Sol. Others’ Sol.
FASTERA/07 507 x 63,009 1.2% 173 174 174
FASTERA516 516 x 47,311 1.3% 182 182 182
FASTER5H82 582 x 55,515 1.2% 210 211 211
FASTER2536 2,536 x 1,081,841  0.4% 685 691 692
FASTER2586 2,586 x 920,683 0.4% 937 947 951
FASTER4284 4,284 x 1,092,610 0.2% 1051 1065 1070
FASTER4872 4,872 x 968,672 0.2% 1509 1534 1534

4 Crew rostering at the Italian railways

Most of the published works on the crew rostering problem refer to urban mass-
transit systems, where the minimum number of crews required to perform the
duties can easily be determined, and the objective is to evenly distribute the
workload among the crews: see Jachnik [24], Bodin, Gloden, Assad and Ball
[10], Carraresi and Gallo [14], Hagberg [23], and Bianco, Bielli, Mingozzi, Ric-
ciardelli and Spadoni [9]. Set partitioning approaches for airline crew rostering
are described in Ryan [29], Gamache and Soumis [21], Gamache, Soumis, Mar-
quis and Desrosiers [22], and Jarrah and Diamond [26]. Finally, related cyclic
scheduling problems are dealt with in Tien and Kamiyama [30], and Balakr-
ishnan and Wong [1].

We next give a description of the real-world crew rostering problem arising
at the Italian railways. We are given a set of n duties to be covered by a set
of crew rosters. Fach duty ¢ has a start time, s;, and an end time, f; (with
0 <s; <1440 and 0 < f; < 1440, where 0 corresponds to midnight). Let p;
denote the spread time of duty ¢, i.e., the total time between the start and
the end of the duty. Moreover, each duty ¢ has an associated working time,
w;, which is the time actually spent working during the duty, and a paid time,
a;, which is the sum of the working time and all the possible additional paid
time intervals of the duty (e.g., short rests and transfers). Each duty can have
additional characteristics, which are explicitly given on input:

— duty with external rest, if it includes a long rest out of the depot for the
crew;

— long duty, if it does not include an external rest and its working time w; is
longer than 8 hours and 5 minutes;

— overnight duty, if it requires some working between midnight and 5 am;

— heavy overnight duty, it it is an overnight duty without external rest, and

12



requires more than 1 hour and 30 minutes’ work between midnight and 5
am.

A roster contains a subset of duties and spans a cyclic sequence of groups of 6
consecutive days, conventionally called weeks. Hence the number of days in a
roster is an integer multiple of 6. The length of a roster is typically 30 days (5
weeks) and does not exceed 60 days (10 weeks), although these requirements
are not explicitly imposed as constraints.

The crew rostering problem consists of finding a feasible set of rosters covering
all the duties and spanning a minimum number of weeks. As already discussed
in the introduction, the global number of crews required every day to cover
all the duties is equal to 6 times the total number of weeks in the solution.
Thus, the minimization of the number of weeks implies the minimization of
the global number of crews required.

4.1 Operational constraints

For short, we call complete day a time interval of 24 hours (i.e., 1440 minutes)
starting at midnight. Moreover, a complete day is called free if no duty or part
of a duty is performed during that day.

Each week can include at most the following number of duties having par-
ticular characteristics: (i) 2 duties with external rest; (ii) 1 long duty; (iii) 2
overnight duties. Furthermore, each week must be separated from the next
one in the roster by a continuous (weekly) rest, which always spans the com-
plete sixth day of the week. There are two types of rests, conventionally called
simple and double rests. Simple rests must be at least 48 hours long, whereas
double rests must span at least two complete days, i.e., either the fifth and
sixth day of a week or the sixth day of a week and the first day of the following
one.

For each roster, the number of double rests must be at least 40% of the total
number of rests, and the average rest time must be at least 58 hours. Moreover,
for each (cyclic) group of 30 consecutive days within a roster, no more than
7 duties with external rest can be included, and the total paid time of the
included duties cannot exceed 170 hours.

Finally, for each (cyclic) group of 7 consecutive days within a roster the total
working time of the included duties cannot exceed 36 hours.

13



4.2 Sequencing rules

Two consecutive duties of a roster, say 7 and j, can be sequenced either directly
in the same week, or with a simple or double rest between them.

The break between the end of a duty and the start of the subsequent duty
within a week lasts at least 18 hours. If both duties are overnight and at
most one of them is a heavy overnight duty, the minimum break lasts 22
hours, while if both are heavy overnight duties the break must span at least
one complete day. Moreover, after two consecutive overnight duties in a week
whose intermediate break does not span a complete day, the break before the
start of any other duty in the same week must last at least 22 hours.

When a simple rest is preceded by an overnight duty, then either the first duty
in the next week starts after 6:30 am, or the rest must span two complete days.
Finally, if the first duty in a week following a double rest starts before 6 am,
then the rest must span at least three complete days.

4.3 Lower bounds

Simple lower bounds can easily be obtained by considering each of the opera-
tional constraints imposing a limit either on the total number of duties with
a given characteristic, or on the total working and paid time in a week and in
a (cyclic) group of 30 consecutive days in a roster, respectively.

A more sophisticated relaxation is proposed by Caprara, Fischetti, Toth and
Vigo [12] in order to take into account all the rules for sequencing two consec-
utive duties within a roster. The relaxation also imposes that the total number
of rests is equal to the total number of weeks making up the rosters, and that
the total number of double rests is at least 40% of the total number of rests.
We next give a graph theory description of the resulting relaxation, hereafter

called RP.

We are given a complete directed multigraph GG = (V, A), where each node in
V ={1,...,n} is associated with a duty. The arcs represent the consecutive
sequencing of duty pairs within a roster. As previously described, two duties
can be sequenced in three different ways, namely directly, or with a simple
or double rest between them. Accordingly, arc set A contains arcs of three
different types and can be partitioned into three subsets, Ay, A; and As. For
each pair of nodes ¢,7 € V we have an arc (¢,5) € A, whose cost c}j is
the minimum time (in minutes) between the start of duty ¢ and the start of
duty j when they are sequenced directly, i.e., in the same week. Similarly,

we have an arc (7,7) € Ay (vesp., (i,5) € As) whose cost ¢f; (resp., ¢;) is
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the minimum time between the start of duty ¢ and the start of duty j when a
simple (resp., double) rest is imposed between them. G has no loops, therefore
we let ¢}, = ¢Z = ¢ = +oo for each ¢ € V. In the sequel, arcs belonging to
Aj are also called dzrect ares, while arcs belonging to Ay (resp., As) are called
simple-rest arcs (resp., double-rest arcs). Matrices ¢!, ¢* and ¢* can easily be
computed from the input data, according to the sequencing rules. Notice that,
by definition of the arc costs, for a given pair 7,5 € V the values ¢!, %, .

179 %igr Sy
differ by integer multiples of 1440.

Each circuit of G corresponds to a (possibly infeasible) roster, the cost of the
circuit being the time required to perform the corresponding duties. Problem
RP then calls for the determination of a minimum-cost set of disjoint circuits
of (& satistying the following constraints:

— each node of (¢ is covered by exactly one circuit;

— the total number of simple- or double-rest arcs in the circuits has to be at
least the total cost of the circuits, expressed in weeks;

— the total number of double-rest arcs in the circuits has to be at least 0.4
times the total number of simple- or double-rest arcs.

Problem RP can be formulated as the following integer linear program. For
each arc (¢,7) € A, [ = 1,2, 3, one introduces a binary variable :1;”, equal to

L if arc (¢,7) € Ay is in the optlmal solution, and 0 otherwise. Moreover, an
integer variable r represents the minimum number of simple- or double-rest
arcs in the solution, and an integer variable z represents the minimum number
of double-rest arcs in the solution. Let o = 6 - 1440 be the number of minutes
in a week. The model reads:

v(RP) = mmzz c”:]c” + c”:]c” + cf’]xf’]) (19)
=1 7=1
subject to
Z(:z;}j—l—x?j—l—x?j): 1, j=1,....n (20)
=1
Z(:p}j—l—x?j—l—x?j) =1, i=1,....n (21)
=1
r> E Z Z cuxm + Cwl’” + cmxu) (22)
=1 j5=1

Zn:i(x?] +aj) = (23)
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z>04r (24)

DB BE = (25)
=1 j5=1

vy, v,y € {0,1}, ij=1,...,n (26)
r,z > 0 integer. (27)

Constraints (20) and (21) impose that each node has exactly one entering and
one leaving arc, respectively. Constraints (22) and (23) ensure that the total
number of simple- or double-rest arcs is at least the total cost of the solution,
expressed in weeks. Similarly, constraints (24) and (25) ensure that the total
number of double-rest arcs is at least 0.4 times the total number of simple-
and double-rest arcs.

Note that v(RP) is expressed in minutes, but due to the structure of the arc
costs, it always corresponds to an integer number of days, which represents
a lower bound on the total number of days required to cover all the duties.
Hence r is a lower bound on the number of weeks in an optimal solution.

A Lagrangian lower bound on v(RP) can be obtained as follows. One first
relaxes in a Lagrangian way constraints (23) and (25), with nonnegative La-
grangian multipliers A; and Ay, respectively, obtaining the objective function

n n

mm )\1T ‘|‘ )\22 —I' Z Z CZ]J/'” —I_ cl]xlj —I_ c?]x?]) (28)

=1 j5=1

1o 22 _ 3 ~
where ¢}, = cf;, ¢; = ¢}, — M, and €, = ¢}; — M — Ay are the Lagrangian

costs for the x-variables. Furthermore one replaces constraint (22) with its
relaxation:

QI*—‘

()\1T+)\QZ+ZZ c”:]c” —I—C”J}” —I—Cf’]xf’])) ) (29)

=1 j5=1

Let LRP(A1, A2) denote problem (28), (20), (21), (29), (24), (26) and (27), and
let v(LRP(A1, A2)) be its optimal solution value. Given multipliers Ay, Ay > 0,
v(LRP(Aq, A2)) is a valid lower bound on v(RP) which can be computed by
decomposing the problem into three subproblems associated with variables x.,
r, and z, respectively. This requires:

i) solving the Assignment Problem (AP) on the cost matrix defined by d,; =
min{c! ¢} fori,j =1,...,n, thus obtaining the solution value v(AP);

(YRl 2]7 2]
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ii) determining the minimum r such that ar > Ayr + A2[0.4r] + v(AP), r >0
integer;

iii) defining z = [0.4r].

Thus, the overall time complexity for solving LRP(A;, Az) is O(r?). Compu-
tational experience has shown that a tight lower bound can be computed as

v* = max{v(LRP (1440, 1440)), v(LRP(1440,0))}, by solving only two APs.

4.4 The heuristic algorithm

In this subsection we outline the constructive heuristic of [12], which exten-
sively uses the information obtained from the solution of the relaxed problem
defined in the previous subsection. The heuristic constructs one feasible ros-
ter at a time, choosing in turn the duties to be sequenced consecutively in
the roster. Once a roster has been completed, all the duties it contains are
removed from the problem. The process is iterated on the remaining duties
until all duties have been sequenced.

We next describe the procedure we use to build each single roster, as it applies
to the construction of the first roster.

One first computes the lower bound v* described in the previous subsection,
and then starts building the roster by selecting its “initial duty” ¢ which will
be performed at the beginning of a week, i.e., preceded by a rest. (The term
“initial” is conventional as rosters are cyclic.) Once the initial duty has been
selected, a sequence of iterations is performed where:

a) the best duty j to be sequenced after the current duty ¢ is chosen, according
to an appropriate score taking into account the lower bound increase due
to the choice of arc (4, )" and the characteristics of duty j;

b) the Lagrangian lower bound is parametrically updated, in O(n?) time;

c¢) the possibility of “closing” the roster is considered, possibly updating the
best roster found.

The procedure is iterated until no better roster can be constructed, stopping
anyway if the current roster spans more than 10 weeks.

When a complete solution to the problem is found, one can try to improve it
by applying a refining procedure, which removes the last rosters constructed
(which are typically worse than the others) from the solution, and re-applies
the heuristic algorithm to the corresponding duties. To this end, some param-
eters of the roster construction procedure are either changed with a random
perturbation or tuned so as to take into account the constraints that made
the construction of the last rosters difficult.
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Table 2
Results on crew rostering instances from Ferrovie dello Stato SpA.

Lower Bounds Heuristic Solution

Name n  Swmple Lagrangian weeks time
FARO021 21 6 7 7 8
FAROO033 33 9 11 11 17
FAROO069 69 18 19 19 650
FARO134 134 34 39 39 365
FARO164 164 43 48 48 106
FARO360 360 108 108 111 342
FARO386 386 110 118 118 443
FAROb’25 525 154 164 164 1185

4.5  Computational results

The previously described lower and upper bounding procedures were tested
on real-world instances provided by the Italian railway company within the
competition FARO, aimed at developing effective heuristics for crew rostering.
The results obtained are illustrated in Table 2. For each instance we report
the instance name, the number of duties, the best simple lower bound (as
introduced at the beginning of subsection 4.3), the Lagrangian lower bound,
the heuristic solution value, and the corresponding computing time, expressed

in PC Pentium 90 CPU seconds.

The table clearly shows the effectiveness of the approach, since 6 out of 7
instances have been solved to proven optimality within no more than 20 min-

utes.
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