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Abstract

Finding a feasible solution to a generic Mixed-Integer Program (MIP) is often a very difficult task.
Recently, two heuristic approaches called Feasibility Pump and Local Branching have been proposed
to address the problem of finding a feasible solution and improving it, respectively. In this paper we
introduce and analyze computationally a hybrid algorithm that uses the feasibility pump method to
provide, at very low computational cost, an initial (possibly infeasible) solution to the local branching
procedure which can indeed work also with infeasible solutions. The overall procedure is reminiscent
of Phase I of the two phase simplex algorithm, in which the original LP is augmented with artificial
variables that make a known infeasible starting solution feasible and then the augmented model is solved
to iteratively reduce that infeasibility by driving the values of the artificial variables to zero. As such, our
approach can also to used to find (heuristically) a minimum-cardinality set of constraints whose removal
converts an infeasible MIP into a feasible one–a very important piece of information in the analysis of
infeasible MIP models.

1 Introduction

In this paper, we consider the problem of finding a feasible solution to a generic Mixed-Integer Program
(MIP) with 0-1 variables of the form:

(P ) min cT x (1)
s.t. (2)
Ax ≥ b, (3)
xj ∈ {0, 1}, ∀j ∈ B 6= ∅, (4)
xj ≥ 0, integer, ∀j ∈ G, (5)
xj ≥ 0, ∀j ∈ C, (6)

where A is a m × n input matrix, and b and c are input vectors of dimension m and n, respectively. Here,
the variable index set N := {1, . . . , n} is partitioned into (B,G, C), where B 6= ∅ is the index set of the 0-1
variables, while the possibly empty sets G and C index the general integer and the continuous variables,
respectively. Note that we assume the existence of 0-1 variables, as one of the components of the method we
actually implemented (namely, the local branching heuristic) is based on this assumption; our approach can
however be extended to get rid off this limitation, as outlined in the concluding remarks of [9]. Also note
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that constraints (3), though stated as inequalities, can involve equalities as well. Let I := B ∪ G denote the
index set of all integer-constrained variables.

Heuristics for general-purpose MIPs include [3], [4], [5], [7], [11], [13], [14], [15],[16], [17], [19], [20], [21],
and [24], among others. Recently, we proposed in [9] a heuristic approach, called Local Branching (LB), to
improve the quality of a given feasible solution. This method, as well as other refining heuristics (including
the recently-proposed RINS approach [7]), requires the availability of a starting feasible solution, which is an
issue for some difficult MIPs. This topic was investigated by Fischetti, Glover and Lodi [10], who introduced
the so-called Feasibility Pump (FP) scheme for finding a feasible (or, at least, an “almost feasible”) solution
to general MIPs through a clever sequence of roundings.

In the present paper, we analyze computationally a simple variant of the original LB method that allows
one to deal with infeasible reference solutions, such as those returned by the FP method. Our approach is
to start with an “almost feasible” reference solution x̄, as available at small computational cost through
the FP method. We then relax the MIP model by introducing for each violated constraint: (i) an artificial
continuous variable in the constraint itself, (ii) a binary (also artificial) variable, and (iii) a constraint stating
that, if the artificial variable has to be used to make the constraint satisfied, then the binary variable must
be set to 1. Finally, the objective function is replaced, in the spirit of the first phase of the primal simplex
algorithm, by the sum of the artificial binary variables. The initial solution turns out now to be feasible for
the relaxed model and its value coincides with the number of initial violated constraints. We then apply the
standard LB framework to reduce the value of the objective function, i.e., the number of infeasibilities and a
solution of value 0 turns out to be feasible for the initial problem. Note that, although a continuous artificial
variable for each violated constraint could be enough, binary variables are better exploited by LB as it will
be clear from Section 2 and discussed in detail in Section 3.

Our approach also produces, as a byproduct, a small-cardinality set of constraints whose relaxation
(removal) converts a given MIP into a feasible one–a very important piece of information in the analysis of
infeasible MIPs. In other words, our method can be viewed as a tool for repairing infeasible MIP models,
and not just as a heuristic for repairing infeasible MIP solutions. This is in the spirit of the widely-studied
approaches to find maximum feasible (or minimum infeasible) subsystems of LP models, as addressed e.g.
in [2, 6, 12], but applies to MIP models—hence it may be quite useful in practice.

The paper is organized as follows. In Section 2 we review the LB and FP methods. In Section 3 we describe
the LB extension we propose to deal with infeasible reference solutions. Computational results are presented
in Section 4, where we compare the LB performance with that of the commercial software ILOG-Cplex on
two sets of hard 0-1 MIPs, specifically 44 problems taken from MIPLIB 2003 library [1] and 39 additional
instances already considered in [10].

2 Local Branching and Feasibility Pump

We next review the LB and FP methods; the reader is referred to [9] and [10] for more details.

Local Branching

The Local Branching approach works as follows. Suppose a feasible reference solution x̄ of (P ) is given,
and one aims at finding an improved solution that is “not too far” from x̄. Let S := {j ∈ B : x̄j = 1} denote
the binary support of x̄. For a given positive integer parameter k, we define the k-OPT neighborhood N (x̄, k)
of x̄ as the set of the feasible solutions of (P ) satisfying the additional local branching constraint:

∆(x, x̄) :=
∑
j∈S

(1− xj) +
∑

j∈B\S

xj ≤ k, (7)

where the two terms in the left-hand side count the number of binary variables flipping their value (with
respect to x̄) either from 1 to 0 or from 0 to 1, respectively. As its name suggests, the local branching
constraint (7) can be used as a branching criterion within an enumerative scheme for (P ). Indeed, given the
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incumbent solution x̄, the solution space associated with the current branching node can be partitioned by
means of the disjunction

∆(x, x̄) ≤ k (left branch) or ∆(x, x̄) ≥ k + 1 (right branch), (8)

where the neighborhood-size parameter k is chosen so as make neighborhood N (x̄, k) “sufficiently small” to
be optimized within short computing time, but still “large enough” to likely contain better solutions than x̄
(typically, k = 10 or k = 20).

In [9], we investigated the use of a general-purpose MIP solver as a black-box “tactical” tool to explore
effectively suitable solution subspaces defined and controlled at a “strategic” level by a simple external
branching framework. The procedure is in the spirit of well-known local search metaheuristics, but the
neighborhoods are obtained through the introduction in the MIP model of the local branching constraints
(7). This allows one to work within a perfectly general MIP framework, and to take advantage of the
impressive research and implementation effort that nowadays are devoted to the design of MIP solvers.
The new solution strategy is exact in nature, though it is designed to improve the heuristic behavior of
the MIP solver at hand. It alternates high-level strategic branchings to define solution neighborhoods, and
low-level tactical branchings (performed within the MIP solver) to explore them. The result can then be
viewed as a two-level branching strategy aimed at favoring early updatings of the incumbent solution, hence
producing improved solutions at early stages of the computation. The computational results reported in [9]
show the effectiveness of the LB approach. These have also been confirmed by the recent works of Hansen,
Mladenov́ıc and Urosev́ıc [16] (where LB is used within a Variable Neighborhood Search metaheuristic [23])
and of Fischetti, Polo and Scantamburlo (where MIPs with a special structure are investigated).

Feasibility Pump

Let PL := {x ∈ <n : Ax ≥ b} denote the polyhedron associated with the LP relaxation of the given MIP,
and assume without loss of generality that system Ax ≥ b includes the variable bounds

lj ≤ xj ≤ uj , ∀j ∈ I,

where lj = 0 and uj = 1 for all j ∈ B. With a little abuse of notation, we say that a point x is integer if
xj ∈ Zn for all j ∈ I (no matter the value of the other components). Analogously, the rounding x̃ of a given
x is obtained by setting x̃j := [xj ] if j ∈ I and x̃j := xj otherwise, where [·] represents scalar rounding to
the nearest integer. The (L1-norm) distance between a generic point x ∈ PL and a given integer vector x̃ is
defined as

Φ(x, x̃) =
∑
j∈I

|xj − x̃j |,

(notice that the continuous variables xj , j 6∈ I, if any, are immaterial) and can be modeled as

Φ(x, x̃) :=
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

(x+
j + x−j ),

where the additional variables x+
j and x−j require the introduction into the MIP model of the additional

constraints:
xj = x̃j + x+

j − x−j , x+
j ≥ 0, x−j ≥ 0, ∀j ∈ I : lj < x̃j < uj . (9)

It then follows that the closest point x∗ ∈ PL to x̃ can easily be determined by solving the LP

min{Φ(x, x̃) : Ax ≥ b}. (10)

If Φ(x∗, x̃) = 0, then x∗j (= x̃j) is integer for all j ∈ I, so x∗ is a feasible MIP solution. Conversely, given a
point x∗ ∈ PL, the integer point x̃ closest to x∗ is easily determined by just rounding x∗.
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The FP heuristic works with a pair of points (x∗, x̃) with x∗ ∈ PL and x̃ integer, that are iteratively
updated with the aim of reducing as much as possible their distance Φ(x∗, x̃). To be more specific, one
starts with any x∗ ∈ PL, and initializes a (typically infeasible) integer x̃ as the rounding of x∗. At each FP
iteration, called a pumping cycle, x̃ is fixed and one finds through linear programming the point x∗ ∈ PL

which is as close as possible to x̃. If Φ(x∗, x̃) = 0, then x∗ is a MIP feasible solution, and the heuristic stops.
Otherwise, x̃ is replaced by the rounding of x∗ so as to further reduce Φ(x∗, x̃), and the process is iterated.

The basic FP scheme above tends to stop prematurely due to stalling issues. This happens whenever
Φ(x∗, x̃) > 0 is not reduced when replacing x̃ by the rounding of x∗, meaning that all the integer-constrained
components of x̃ would stay unchanged in this iteration. In the original FP approach [10], this situation is
dealt with by heuristically choosing a few components x̃j to be modified, even if this operation increases the
current value of Φ(x∗, x̃). A different approach, to be elaborated in the next section, is to switch to a method
based on enumeration, in the attempt to explore a small neighborhood of the current “almost feasible” x̃
(that typically has a very small distance Φ(x∗, x̃) from PL).

3 LB with Infeasible Reference Solutions

The basic idea of the method presented in this section is that the LB algorithm does not necessarily need to
start with a feasible solution—a partially feasible one can be a valid warm start for the method. Indeed, by
relaxing the model in a suitable way, it is always possible to consider any infeasible solution, say x̂, to be
“feasible”, and penalize its cost so the LB heuristic can drive it to feasibility.

The most natural way to implement this idea is to add a continuous artificial variable for each constraint
violated by x̂, and then penalize the use of such variables in the objective function by means of a very large
cost M . We tested this approach and found it performs reasonably well on most of the problems. However,
it has the drawback that finding a proper value for M may not be easy in practice. Indeed, for a relevant
set of problems in the MIPLIB 2003 [1] collection, the value of the objective function is so large that it is
difficult to define a value for M that makes any infeasible solution worse than any feasible one. Moreover,
the way the LB method works suggests the use of a more combinatorial framework.

Let T be the set of the indices of the constraints aT
i x ≥ bi that are violated by x̂. For each i ∈ T , we

relax the original constraint aT
i x ≥ bi into aT

i x + δiyi ≥ bi, where δi := bi − aT
i x̂ is the positive amount

of violation computed with respect to x̂, and yi is a binary artificial variable attaining value 1 for each
constraint violated by x̂. Finally, we replace the original objective function cT x by

∑
i∈T yi, so as to count

the number of violated constraints. It has to be noted that the set of binary variables in the relaxed model
is B ∪ Y, where Y := {yi : i ∈ T}, hence the structure of the relaxation turns out to be particularly suited
for the LB approach, where the local branching constraint affects precisely the binary variables (including
the artificial ones).

An obvious drawback of the method above is that the original objective function is completely disregarded,
thus the feasible solution obtained can be arbitrarily bad. A way of avoiding this situation could be to put
a term in the artificial objective function that takes the original costs into account. However, a proper
balancing of the two contributions (original cost and infeasibility penalty) may not be easy to achieve. As
a matter of fact, the outcome of a preliminary computational study is that a better overall performance is
obtained by using the artificial objective function (alone) until feasibility is reached, and then improving the
quality of this solution by using a standard LB or RINS approach.

4 Computational Results

In this section, we report on computational results comparing the proposed method with both the FP heuristic
and the commercial software ILOG-Cplex 9.0.3. In our experiments, we used the “asymmetric” version of
the local branching constraint (7), namely

∆(x, x̄) :=
∑
j∈S

(1− xj). (11)
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Indeed, as discussed in [9], this version of the constraint seems to be particularly suited for set covering
problems where LB aims at finding solutions with a small binary support—which is precisely the case of
interest in our context.

Our testbed is made up of 44 0-1 MIP instances from MIPLIB 2003 [1] and described in Table 1, plus an
additional set of 39 hard 0-1 MIPs described in Table 2 and available, on request, from the second author.
(The 0-1 MIPLIB instance stp3d was not considered since the computing time required for the first LP
relaxation is larger than 1 hour, while 11 instances, namely fixnet6, markshare1, markshare2, mas74,
mas76, modglob, pk1, pp08a, pp08aCUTS, set1ch and vpm2 have been removed because all tested algorithms
found a feasible solution within 0.0 CPU seconds.) The two tables report the name, total number of variables
(n), number of 0-1 variables (|B|), and number of constraints (m) for each instance.

Name n |B| m Name n |B| m
10teams 2025 1800 230 mod011 10958 96 4480
A1C1S1 3648 192 3312 modglob 422 98 291
aflow30a 842 421 479 momentum1 5174 2349 42680
aflow40b 2728 1364 1442 net12 14115 1603 14021
air04 8904 8904 823 nsrand ipx 6621 6620 735
air05 7195 7195 426 nw04 87482 87482 36
cap6000 6000 6000 2176 opt1217 769 768 64
dano3mip 13873 552 3202 p2756 2756 2756 755
danoint 521 56 664 pk1 86 55 45
ds 67732 67732 656 pp08a 240 64 136
fast0507 63009 63009 507 pp08aCUTS 240 64 246
fiber 1298 1254 363 protfold 1835 1835 2112
fixnet6 878 378 478 qiu 840 48 1192
glass4 322 302 396 rd-rplusc-21 622 457 125899
harp2 2993 2993 112 set1ch 712 240 492
liu 1156 1089 2178 seymour 1372 1372 4944
markshare1 62 50 6 sp97ar 14101 14101 1761
markshare2 74 60 7 swath 6805 6724 884
mas74 151 150 13 t1717 73885 73885 551
mas76 151 150 12 tr12-30 1080 360 750
misc07 260 259 212 van 12481 192 27331
mkc 5325 5323 3411 vpm2 378 168 234

Table 1: The 44 0-1 MIP instances collected in MIPLIB 2003 [1]

The framework described in the previous section has been tested by using different starting solutions x̂
provided by FP. In particular, we wanted to test the sensitivity of our modified LB algorithm with respect
to the degree of infeasibility of the starting solution, as well as its capability for improving it. Thus, we
executed the FP code for 0, 10 and 100 iterations and passed to LB the integer (infeasible) solution x̂ with
minimum distance Φ(x∗, x̂) from PL. (The case with 0 iterations actually corresponds to starting from the
solution of the continuous relaxation, rounded to the nearest integer.) The resulting three versions of the
modified LB are called LB0, LB10, and LB100, respectively.

In our experiments, we avoided any parameter tuning–FP was implemented exactly as in [10], and for
the modified LB code we used a time limit of 30 CPU seconds for the exploration of each local-branching
neighborhood. As to the value of the neighborhood-size parameter k in LB, we implemented an adaptive
procedure: at each neighborhood exploration, we try to reduce the number of violated constraints in the
current solution by half, i.e., we set k = b|T ′|/2c, where |T ′| is the value of the current solution. (Since the
support of the solution also takes into account non-artificial binary variables, when the number of violated
constraints becomes less than 20 we fix k = 10, i.e., we use the value suggested in [9] for the asymmetric
version of the local branching constraint.). The motivation for this choice is that the number of violated
constraints in an initial solution can be extremely large, in which case the use of a small value of k would
result in a very slow convergence.
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Name n |B| m source Name n |B| m source
biella1 7328 6110 1203 [9] blp-ar98 16021 15806 1128 [20]
NSR8K 38356 32040 6284 [9] blp-ic97 9845 9753 923 [20]
dc1c 10039 8380 1649 [8] blp-ic98 13640 13550 717 [20]
dc1l 37297 35638 1653 [8] blp-ir98 6097 6031 486 [20]
dolom1 11612 9720 1803 [8] CMS750 4 11697 7196 16381 [18]
siena1 13741 11775 2220 [8] berlin 5 8 0 1083 794 1532 [18]
trento1 7687 6415 1265 [8] railway 8 1 0 1796 1177 2527 [18]
rail507 63019 63009 509 [9] usAbbrv.8.25 70 2312 1681 3291 [18]
rail2536c 15293 15284 2539 [9] manpower1 10565 10564 25199 [25]
rail2586c 13226 13215 2589 [9] manpower2 10009 10008 23881 [25]
rail4284c 21714 21705 4284 [9] manpower3 10009 10008 23915 [25]
rail4872c 24656 24645 4875 [9] manpower3a 10009 10008 23865 [25]
A2C1S1 3648 192 3312 [9] manpower4 10009 10008 23914 [25]
B1C1S1 3872 288 3904 [9] manpower4a 10009 10008 23866 [25]
B2C1S1 3872 288 3904 [9] ljb2 771 681 1482 [7]
sp97ic 12497 12497 1033 [9] ljb7 4163 3920 8133 [7]
sp98ar 15085 15085 1435 [9] ljb9 4721 4460 9231 [7]
sp98ic 10894 10894 825 [9] ljb10 5496 5196 10742 [7]
bg512142 792 240 1307 [22] ljb12 4913 4633 9596 [7]
dg012142 2080 640 6310 [22]

Table 2: The additional set of 39 0-1 MIP instances

All codes are written in ANSI C and use the ILOG-Cplex callable libraries. They are available, on
request, from the second author. The three modified LB codes (LB0, LB10, and LB100) are compared with
FP and ILOG-Cplex 9.0.3 in Table 3 for the MIPLIB-2003 instances, and in Table 4 for the additional set
of instances. Computing times are expressed in CPU seconds, and refer to a Pentium M 1.6 GHz notebook
with 512 MByte of main memory. A time limit of 1,800 CPU seconds was provided for each instance with
each algorithm and the computation was halted as soon as a first feasible solution was found.

For each instance, we report in both tables: for ILOG-Cplex, the number of nodes (nodes) needed to
find an initial solution and the corresponding computing time (time); for FP, the number of iterations (FPit)
and its computing time (time); for each of the three variants of LB, the computing time spent in the FP
preprocessing phase (FP time), the initial number of violated constraints (|T |), the number of LB iterations
(LBit), and the overall computing time (time). Note that, we define an LB iteration as the exploration,
generally within a time limit, of the neighborhood of the current solution. Moreover, the time reported is
the sum of the time of the FP initialization plus the LB time, thus it can be larger than 1,800 CPU seconds.
When one of the algorithms was not able to find a feasible solution in the given time limit, we wrote (*) in
column “nodes” (for ILOG-Cplex) or “FPit” (for FP), or wrote (µ) in column “|T |” near the number of initial
infeasible constraints (for LB), where µ is the number of violated constraints in the final solution.

As expected, the degree of infeasibility of the starting solution plays an important role in the LB methods—
the better the initial solution, the faster the method. In this view, the FP approach seems to fit particularly
well in our context, in that it is able to provide very good solutions (as far as the degree of infeasibility is
concerned) in very short computing times. Among the three LB implementations, LB0 was at least as fast
as the other two in 40 cases, LB10 in 47 cases, and LB100 in 58 cases. Overall, LB100 qualifies as the most
effective (and stable) of the three methods. (The figures above include the instances removed from Tables 3
and 4 because all algorithms required 0.0 CPU seconds).

A comparison of ILOG-Cplex and LB100 shows that the latter is strictly faster in 44 cases, while the
opposite holds in 21 cases. Moreover, ILOG-Cplex was not able to find any feasible solution (within the
1,800-second time limit) in 4 cases, whereas LB100 was unsuccessful 3 times. As expected, the quality of
the initial ILOG-Cplex solution (not reported in the tables) is typically better than that provided by the LB
methods.
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