

TO FEASIBILITY ... AND BEYOND !!

Matteo Fischetti, DEI, University of Padova, fisch@dei.unipd.it

Andrea Lodi, DEIS, University of Bologna, alodi@deis.unibo.it

full paper available at www.dei.unipd.it/~fisch/locbra.ps

0-1 Mixed-Integer Programs

We consider generic **Mixed-Integer Linear Programming** problems (MIP's) with 0-1 variables

min
$$c^T \times$$
 $A \times 7b$
 $x_j \in \{0,1\}$, $\forall j \in \beta \neq \emptyset$
 $x_j \text{ integer}$, $\forall j \in \mathcal{G}$ ($\geq \emptyset$)

Relevant cases:

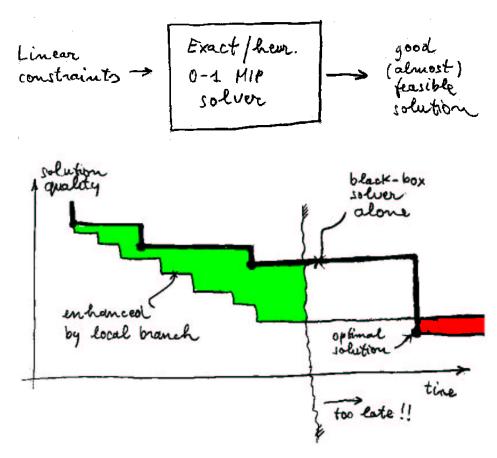
- 0-1 ILP's (generic or with a special structure)
- MIP's with no "general integer" variables
- MIP's with both general integer and binary variables, the latter being often used to activate/deactivate costs/constraints (possibly using BIG-M tricks...)

Assumption: once the binary variables have been fixed, the problem becomes (relatively) easy to solve

Hard-to-solve 0-1 MIP's (in practice)

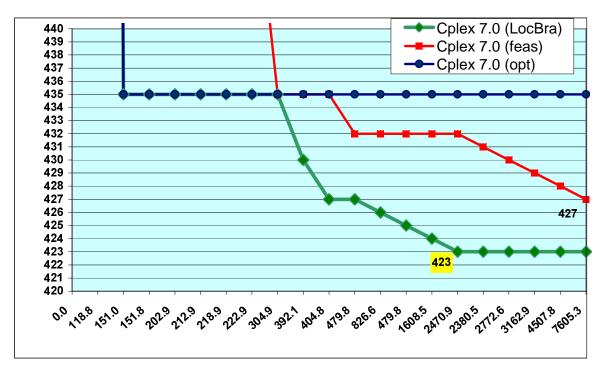
- In many practical cases, generic 0-1 MIP's can be solved in a satisfactory way by general-purpose commercial software which delivers:
 - Provably optimal solution
 - Heuristic solutions with a practically-acceptable error

Most MIPlib instances are of this type!


- Unfortunately, in other cases general-purpose software is not adequate and one has to:
 - Play with the MIP solver parameters ("emphasize integrality" etc.) so as to convince the \$#\$#?@# solver to deliver, at least, a good solution
 - Design and use ad-hoc heuristics—thus loosing the advantage of working in a generic MIP framework

Many real-world instances are of this type!

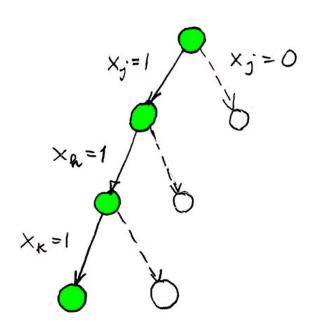
Better heuristics for general 0-1 MIP's strongly required!


A general heuristic framework

• We aim at embedding a **black-box** (general-purpose or specific) 0-1 MIP solver within an overall **heuristic framework** that "helps" the solver to deliver improved heuristic solutions

The desired "Italian flag"

An example: the hard MIPLIP problem seymour.lp



The Local Branch heuristic on a hard MIPLIP problem (seymour.lp)

Variable-fixing strategy (hard version)

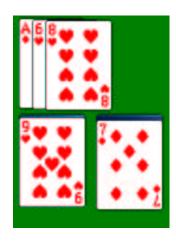
A commonly-used (often quite effective) diving heuristic framework:

- Let x^H be an (almost) feasible "target solution"
- Heuristic depth-first search of the branching tree:

- iteratively <u>fix to 1</u> certain "highly efficient" variables $x_{j \text{ such as }} x_{j}^{H} = 1_{\text{ (green nodes)}}$
- apply the black-box module to some green nodes only
- only limited backtracking allowed

Advantages:

- Problem size quickly reduced: the black-box solver can concentrate on smaller and smaller "core problems"
- The black-box solver is applied over and over on different subproblems (diversification)


Disadvantages:

- How to choose the "highly efficient" variables to be fixed?
- Wrong choices at early levels are typically very difficult to detect, even when **lower bounds** are computed along the way...

How to reach a sufficiently-deep branching level with a good lower bound?

Example of a hard branching choice:

- select the "right cards" to hold in a poker game: for each card j=1,...,5 in the "target solution", decide whether for fix $x_j = 1$ (hold the j-th card) or not
- a "creative strategy": keep all the 5 cards, declare that you'll change 3 cards, receive 3 new cards, and choose the 5 to keep only afterwards...

Variable-fixing strategy (soft version): local branching

General idea: don't decide the actual variables in S^H to be fixed (a difficult task!), but just their number $|S^H| - k$

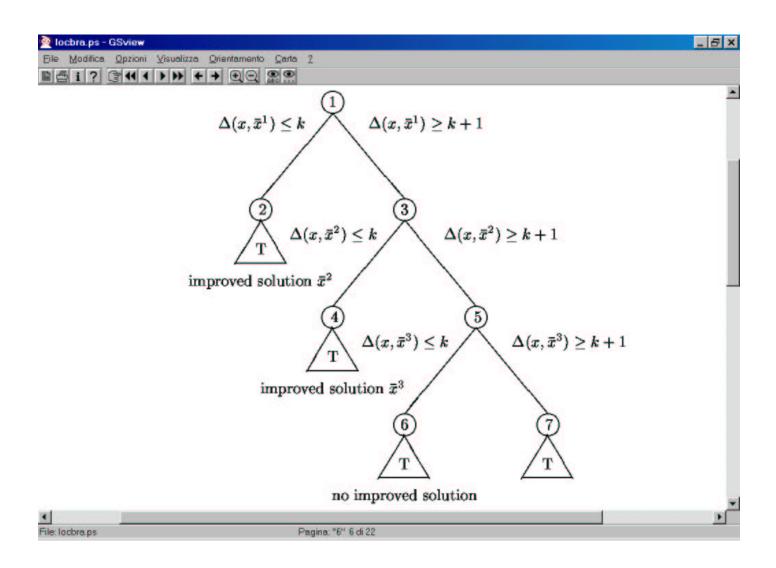
Introduce the **local branching** constraint

$$\Delta(x, x^H) := \sum_{j \in B: x_j^H = 1} (1 - x_j) \le k$$

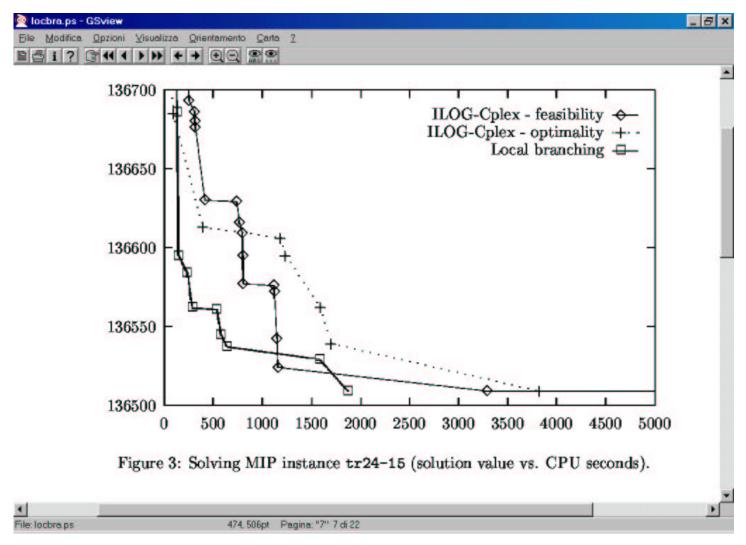
or, more generally,

$$\Delta(x, x^{H}) := \sum_{j \in B: x_{j}^{H} = 0} x_{j} + \sum_{j \in B: x_{j}^{H} = 1} (1 - x_{j}) \le k$$

so as to define a convenient **k-OPT neighbourhood** $N(x^H, k)$ of the target solution x^H


"Akin to k-OPT for TSP"

Local branching in an exact solution framework


Alternate between **strategic** and **tactical** branching decisions:

- **STRATEGIC** (high level) branching phase:
 - \triangleright concentrate on a convenient target solution and/or a certain neighbourhood size k
- TACTICAL (fine grain) branching phase:
 - > search $N(x^H, k)$ by means of the black-box module (e.g. a general-purpose MIP code using branching on variables...)

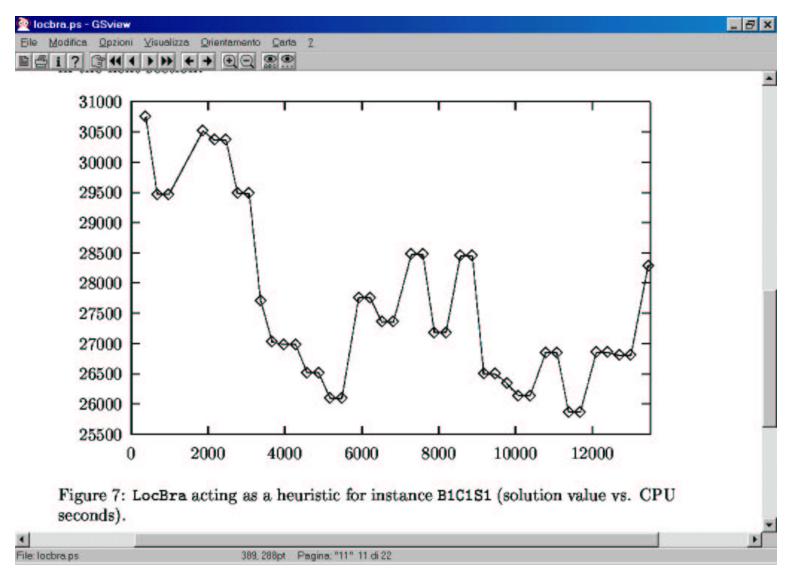
<u>Conjecture:</u> a small value of k drives the black-box solver towards integrality as effectively as fixing a large number of variables, but with a **much larger** <u>degree of freedom</u> \rightarrow better solutions can be found at early branching levels...

T = tactical branching (within the black-box solver)

full paper available at www.dei.unipd.it/~fisch/locbra.ps

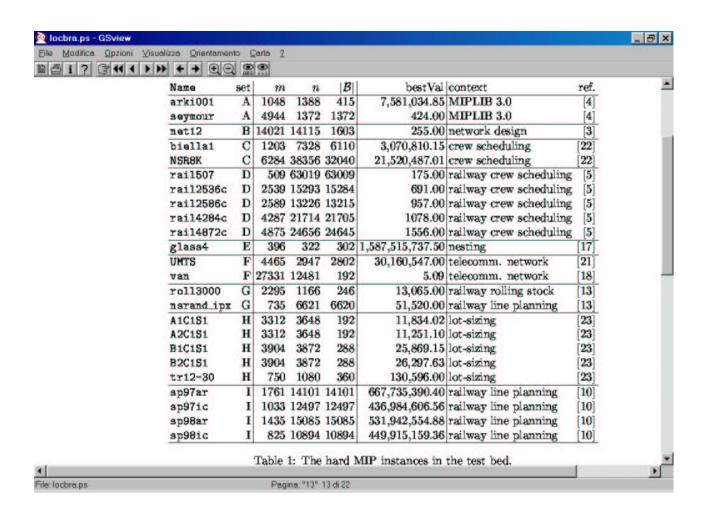
Local branching in a heuristic solution framework

- Easy adaptation of the previous framework: in case of stalling, use a <u>diversification</u> mechanism to find a (worse) solution x^{h+1} to replace the current-best solution x^h , and continue.
- Diversification by Variable Neighbourhood Search (Hansen & Mladenovic, 1998):


Find a solution x^{h+1} close enough to x^h , but outside the current k-OPT neighbourhood, e.g.

$$x^{h+1} \in N(x^h, k+k/2) \setminus N(x^h, k)$$

• Implementation: run the black-box solver (initial upper bound = $+\infty$) to find the first feasible solution x^{h+1} of the current problem amended by the diversification constraint


$$k+1 \le \Delta(x, x^h) \le k+k/2$$

"Akin to a random 3-OPT move after several 2-OPT moves for TSP"

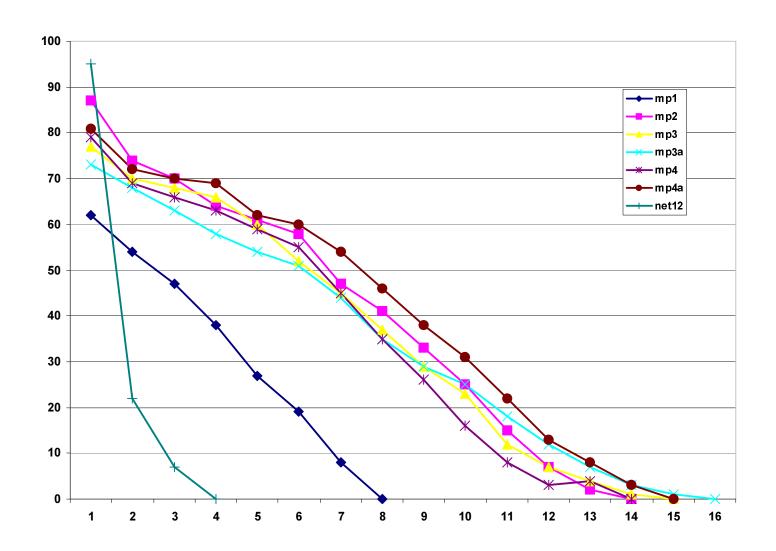
full paper available at www.dei.unipd.it/~fisch/locbra.ps

Computational results (towards optimality)

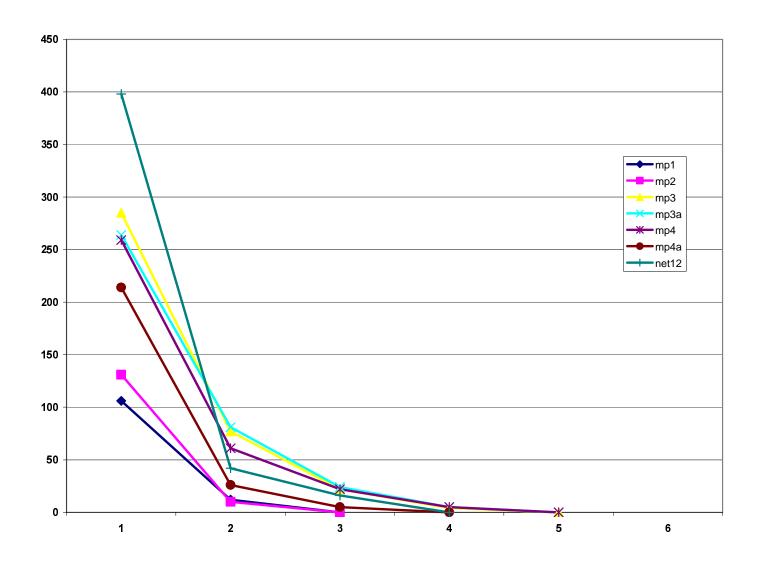
• Improved results w.r.t. ILOG Cplex 7.0 in 20 out of the 24 cases in the test-bed

Computational results (towards feasibility)

- Instances for which even finding a first **feasible** solution is extremely hard in practice, hence the local branching framework (as stated) cannot be initialized in a proper way...
 - [Relaxed model]: relax the MIP model by introducing artificial variables (with big-M coefficients in the objective function) so as to make the trivial solution (0,0,...0) feasible.
- The "to feasibility and beyond" solution approach:
 - 1. choose an **infeasible** solution x^H , e.g., for each integer x_j
 - [Trivial target]: set $x_j^H = 0$
 - [Rounded LP target]: set $x_j^H = round(x_j^*)$, where x^* is an optimal LP solution
 - [CPX callback target]: take the less-infeasible sol. found at the root node by the black-box MIP heuristics, if available
 - 2. **relax** the MIP model by introducing an **artificial variable** (with big-M coefficient in the objective function) for each constraint violated by x^H
 - 3. apply the standard **local branching** framework starting from x^H


name	n	m	Cplex 8.1	LOCAL BRANCHING Relaxed Model Trivial target Rounded LP target CPX callback							
			time	inf	time	inf	time	inf	time	inf	time
mp1	10565	21199	11686.3	-	397.5	2444	1063.6	106	51.4	62	259.1
mp2	10009	23881	N/A	4	7727.6	2489	3193.1	131	254.2	87	1299.2
mp3	10009	23915	N/A	9	9943.6	2348	5352.4	285	346.0	77	2950.3
mp3a	10009	23865	N/A	6	14217.7	2516	4898.8	264	178.0	73	3218.7
mp4	10009	23914	N/A	4	5837.5	2411	7374.5	259	176.4	79	3278.0
mp4a	10009	23866	N/A	N/A	N/A	2515	3390.8	214	135.8	81	1947.9
net12	14115	14021	N/A	30	6472.5	92	1750.8	398	1259.1	95	832.9

mp* =hard shift scheduling (manpower) instances provided by ILOG Cplex.


time = computing time in Digital Alpha 533 MHz seconds; 5-hour time limit (18,000 sec.s)

inf = n. of violated constraints in the initial target solution

Infeasibility reduction starting from the CPX callback target

Infeasibility reduction starting from the rounded LP target

