0-1/2 CUTS: A COMPUTATIONAL STUDY

G. Andreello, DEI, University of Padova

A.Caprara, DEIS, University of Bologna

M. Fischetti, DEI, University of Padova

Thank God! Maybe this time ... it works ...

Hey ... those are MY Aussois pictures ...

Hmmm, this BLOSSOM stuff is so boring ... but let me postpone my nap ... maybe new pictures will pop up!!

0-1/2 CUTS

Usual stuff...

• A polyhedron

$$P := \{x \in \mathbb{R}^n : Ax \le b\}, \quad where \quad A \in \mathbb{Z}^{mxn}, b \in \mathbb{Z}^m$$

• and the convex hull of its integer points

$$P_I := conv\{x \in Z^n : Ax \le b\}$$

• Chvatàl-Gomory cuts for P_I :

$$\lambda^{T} A x \leq \left\lfloor \lambda^{T} b \right\rfloor$$
valid for each $\lambda \geq 0 : \lambda^{T} A \in Z^{n}$
w.l.o.g. $\lambda \in [0,1)^{m} : \lambda^{T} b - \left\lfloor \lambda^{T} b \right\rfloor > 0$

- 0-1/2 cuts: as before, but $\lambda \in \{0, 1/2\}^m$
- 0-1/2 CUT separation: given $x^* \in P$, find

$$\lambda \in \{0, 1/2\}^m : \lambda^T A \in Z^n, \lambda^T A x^* > \lfloor \lambda^T b \rfloor$$

• Can be **rephrased** as: find $\lambda \in \{0, 1/2\}^m$ such that

$$\lambda^T A \in Z^n, \lambda^T b - \lfloor \lambda^T b \rfloor = 1/2$$

• **slack**
$$s^* := b - Ax^* : \lambda^T s^* < 1/2$$

• or equivalently: find $2\lambda =: \mu \in \{0,1\}^m$ such that

$$\mu^T A$$
 is even, $\mu^T b$ is odd, and $\mu^T s^* < 1$

0-1/2 cuts express parity requirements of the integer solution...

- 0-1/2 CUT separation: NP-hard in general, but polynomially solvable in some special cases
- In particular when each row of matrix A contains no more than 2 odd coefficients
- . In this case, each inequality of the original system $a_i^T x \le b_i$ is characterized by:

The **two** specific variables for which the coefficient is **odd**

an **odd/even** r.h.s. b_i

• slack $s_i^* := b_i - a_i^T x^*$

• 0-1/2 CUT separation: Find and odd cycle in the separation graph of weight less than 1 (polynomial)

WHAT if some inequalities have 3 or more odd coefficients?

Eureka, you RELAX

Admittedly, it does not sound as good as *"Eureka, you shrink"* but, you know, **HE** copyrighted everything... WHAT if some inequalities have 3 or more odd coefficients? Relax it...

- Our heuristic 0-1/2 CUT separation: do it systematically, by dynamic programming (polynomial)
- Nice theoretical applications: Linear Ordering, Clique Partitioning, etc.
- General separation tool to be invoked within a ILOG-Cplex 8.1 callback for general 0-1 ILP's

Cut Selection Criteria

Cuts $\gamma == \underline{a}^T \underline{x} \le b$ can be characterized in terms of:

• Euclidean distance from the LP solution x^*

$$dist\left(\underline{x}^{*},\gamma\right) = \frac{\mid \underline{a}^{T} \underline{x}^{*} - b \mid}{\left\|\underline{a}\right\|}$$

• Angle between two cuts γ_i and γ_j (=1 parallel, =0 orthogonal) $angle(\gamma_i, \gamma_j) = \frac{|\underline{a_i}^T \underline{a_j}|}{||\underline{a_i}||||\underline{a_j}||}$

A set of cuts $\{\gamma_i : i = 1, ..., k\}$ is supposed to be effective if

(1)
$$\forall i : dist(\underline{x}^*, \gamma_i) \ge \min_{j \in I} dist$$

(2) $\forall i, j : angle(\gamma_i, \gamma_i) \le \max_{j \in I} angle$

Comparison of two algorithms X and Y over a given test bed

- The sum of solution times: useful, but
 - no distinction between solved and time-out instances
 - time-out instances is likely to dominate the sum.
- A **detailed table** with n. of nodes, cpu times, % gaps, etc. may be difficult to understand for **humans** (other than Paolo, of course ...)

- 1. discard the instances solved in less than 20 seconds (say) by both X and Y (too easy)
- 2. compute the average **speedup time(X) / time(Y)** on the instances solved by both X and Y
- 3. count the n. of instances solved by X but not by Y, and compute the average time(X)
- 4. count the n. of instances solved by Y but not by X, and compute the average rime(Y)
- 5. count the n. of instances not solved by X or Y

Average: geometric mean is more robust than the arithmetic one when the standard deviation is high

Arithmetic mean:
$$\frac{1}{n} \left(\sum_{i} speedup_{i} \right)$$
 Vs. Geometric mean: $\left(\prod_{i} speedup_{i} \right)^{\frac{1}{n}}$

9

Our test bed

- IP formulations of about 100 SAT problems from DIMACS Challenge (feasibility problems)
- Objective function randomly generated (sum of some of the constraints of the formulation)
- Optimization stopped as soon as the first integer feasible solution is found

Main features:

- constraint matrix A has 0-1 coefficients (nice combinatorial structure expected)
- number of constraints is larger than number of variables
- standard cuts from ILOG-CPLEX arsenal are ineffective (more combinatorial ones needed)

Computational results

Reference configuration for all runs: **Default ILOG CPLEX 8.1 with a null cut callback**

(null) cut callbacks force CPLEX to disable some preprocessing

	Solved	Speedup	Solved by neither	Solved only by reference	Solved only by current
Default w/out callback	19	0.89	16	4	0
Default w/out cuts	19	1.10	18	3	0
Null callbk w/out cuts	16	1.42	20	1	2

Alternative CPLEX 8.1 configurations

But this is Cplex alone; what about 0-1/2 cuts embedded into Cplex?

Much worse than Cplex alone, I presume !!

0-1/2 CUTS

- Skip_step: Cut separation applied at each skip_step backtrackings (Cplex-like)
- Static cuts: Cuts are never removed from the LP (Cplex-like)
- Internal Pool: used to store the 0-1/2 generated in previous calls, so as to increase the degree of freedom in the choice of the (few) cuts to add statically to the LP
- **Cut recombination**: allow for high-rank 0-1/2 cuts

0-1/2 CUT: Initial configurations

Solved Speedup Solved by Solved only by Solved only by neither Cplex 8.1 0-1/2 CUT Lots of cuts (5x) 19 0.35 14 5 8 Few cuts (0.3 x)18 1.07 17 5 1

Skip_step=1, no other criteria, 5x or 0.3x n. of row in the original LP

Fixing max_angle= 0.3 and min_dist = 0.2

Tuning skip_step

skip_step = *, max_angle = 0.3, min_dist = 0.2

Skip_step	Solved	Speedup	Solved by neither	Solved only by Cplex 8.1	Solved only by 0-1/2 CUT
1	16	2.76	4	4	6
4	15	<mark>3.80</mark>	8	5	9
5	17	3.42	6	4	9
7	13	2.35	9	6	12
10	16	3.03	8	2	8
13	17	2.37	7	4	9
16	15	3.31	6	6	9

Tuning max_angle (=0 only orthogonal cuts, =1 all cuts) skip_step = 4, max_angle= *, min_dist = 0.2

Max_angle	Solved	Speedup	Solved by neither	Solved only by Cplex 8.1	Solved only by 0-1/2 CUT
0.001	14	3.71	16	4	9
0.1	13	<mark>3.91</mark>	16	5	9
0.3	15	3.80	8	5	9
0.3	13	3.14	13	5	12
0.5	15	3.05	15	2	10
0.7	16	2.34	15	2	10
0.9	14	3.16	18	4	7
1.0	14	3.67	18	4	8

Tuning min_dist

skip_step = 4, max_angle= 0.1, min_dist = *

Min_dist	Solved	Speedup	Solved by neither	Solved only by Cplex 8.1	Solved only by 0-1/2 CUT
0.00	15	2.59	18	3	8
0.05	14	3.35	15	5	11
0.10	14	2.84	14	6	12
0.15	14	3.35	15	5	11
0.20	13	3.91	16	5	9
0.25	13	<mark>3.99</mark>	15	5	11

Conclusions

On specific ILP instances with a strong combinatorial structure, the use of 0-1/2 cuts can result into a considerable speed-up

STONGLY RECOMMENDED FOR HARD ILP'S

Any comment?

I hope they will not expect I include this \$%£@# in my next book!!

I hope they will not expect I include this \$%£@# in the new Cplex release!!