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The Nesting Problem

Given a set of 2-dimensional pieces of generic (irregular) form and
a 2-dimensional container, find the best non-overlapping position
of the pieces within the container.

big pieces

small pieces

Pieces:  45/76 Length: 1652.52 Eff.: 85.86%

Complexity: NP-hard (and very hard in practice)
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A MIP model for the nesting problem

Input

• We are given a set P of n := |P| pieces. The form of each piece
is defined by a simple polygon described through the list of its
vertices. In addition, each piece i is associated with an arbitrary
reference point whose 2-dimensional coordinates vi = (xi, yi)
will be used to define the placement of the piece within the
container.

• The container is assumed to be of rectangular form, with fixed
height maxY and infinity length.

(x , y )ii ���
�

i i

i

i

left right

bottom

top

length

maxY

Variables

• vi = (xi, yi) : coordinates of the reference point of piece i

• length : right margin of the used area within the container
("makespan")

Objective

Minimize length, i.e., maximize the percentage efficiency computed
as:

efficiency =
∑n

i=1 areai

length ∗maxY
∗ 100
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How to check/model the overlap between two pieces?

The Minkowski sum of two polygons A and B is defined as:

A⊕B = {a + b : a ∈ A, b ∈ B}

The no-fit polygon between two polygons A and B is defined as

UAB := A⊕ (−B)

y − y
B A

x − xAB

vB

vB
vB

v  = (0,0)A

intersect A
B  does not

B  overlaps  AUAB

B touches A

Interpretation: place the reference point of polygon A at the
origin; then the no-fit polygon represents the trajectory of the
reference point of polygon B when it is moved around A so as to be
in touch (with no overlap) with it.
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The Minkowski difference between polygons A and B is defines
as:

AªB =
⋂

b ∈B

Ab

The containment polygon corresponding to two polygons A and
B is defined as:

VAB := Aª (−B)

and represents the region of containment (without overlap) of a
piece B inside a hole A.

ABV

A

B
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Using the no-fit polygon

How to express the non-overlapping condition between two pieces i

and j?

vj−vi =


 xj

yj


−


 xi

yi


 6∈ Uij ⇐⇒ vj−vi ∈ U ij , ∀ i, j ∈ P : i < j

Partition the non-convex region U ij into a collection of mij disjoint
polyhedra U

k

ij called slices.

x −x ij

j
y −y

i

U
__8

ij

U
__7

ij

U
__9

ij

U
__1

ij

U
__2

ij

U
__3

ij

U
__4

ij

U
__5

ijU
__6

ij

Uij

O

Each slice can be represented through a set of linear constraints of
the form:

U
k

ij = {u ∈ IR2 : Ak
ij · u ≤ bk

ij}
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The MIP model

A variant of a model by Daniels, Li, and Milenkovic (1994)

Variables

• vi = (xi, yi) : coordinates of the reference point of piece i

• length : rightmost used margin of the container

• zk
ij =





1 if vj − vi ∈ U
k

ij

0 otherwise
∀ i, j ∈ P : i < j, k = 1 . . . mij

Model

min length + ε
∑

i∈P
(xi + yi)

s. t. lefti ≤ xi ≤ length− righti ∀ i ∈ P
bottomi ≤ yi ≤ maxY − topi ∀ i ∈ P
Ak

ij(vj − vi) ≤ bk
ij + M(1− zk

ij) · 1
∀ i, j ∈ P : i < j, k = 1 . . .mij

mij∑

k=1

zk
ij = 1 ∀ i, j ∈ P : i < j

zk
ij ∈ {0, 1} ∀ i, j ∈ P : i < j, k = 1 . . . mij
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Constraint coefficient lifting

Issue: the use of big-M coefficients makes the LP relaxation of the
model quite poor

αkf
ij (xj −xi)+βkf

ij (yj − yi) ≤ γkf
ij +M(1− zk

ij) ∀ f = 1 . . . tkij

Replace the big-M coefficient by:

δkfh
ij := max

(vj−vi) ∈ U
h

ij∩B

αkf
ij (xj − xi) + βkf

ij (yj − yi)

so as to obtain (easily computable) lifted constraints of the form:

αkf
ij (xj − xi) + βkf

ij (yj − yi) ≤
mij∑

h=1

δkfh
ij zh

ij

j
y −y

i

x −x ij

Uij
k

Uij
h

Uij

2 
* 

m
ax

Y

2 * maxX

O
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Some computational results

1 2

3
4

5 3

4

7

2

1

5

6
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3

45
6

7
8

9

INSTANCE PIECES INT PRIOR NODES TIME GAP

Glass1 5 73 no 470 0.26” 0%

yes 111 0.11” 0%

Glass2 7 173 no 100,000 97.40” 32.08%

yes 11,414 13.29” 0%

Glass3 9 302 no 100,000 157.76” 59.82%

yes 100,000 203.48” 58.70%

PRIOR yes/no refers to the use of a specific branching strategy
based on "clique priorities"

Solved with ILOG-CPLEX 7.0 on a PC AMD Athlon/1.2 GHz

"Not usable in practice for real-world problems"
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Multiple Containment Problem

An important subproblem: after having placed the "big pieces", find
the best placement of the remaining "small pieces" by using the
holes left by the big ones.

A greedy approach for placing the small pieces can produce poor
results

Aim: Define an approximate MIP for guiding the placement of the
small pieces

Idea: Small pieces can be approximated well by rectangles

Input

• Set P of n small pieces

• Set H of m irregular polygons representing the available holes
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Geometrical considerations

• rectangular approximation of the small pieces

• original holes and usable holes

• placement grid within each hole.
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An approximate multiple-containment MIP model

min
∑

h∈H
(holeAreah · Uh −

Rh∑
r=1

Ch∑
c=1

∑

p∈P
pieceAreap · Zhp

rc )

+ ε
∑

h∈H

Rh∑
r=1

Ch∑
c=1

(Xh
rc + Y h

rc)

s. t.
∑

p∈P
Zhp

rc ≤ Uh ∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch

∑

p∈P
pieceAreap

Rh∑
r=1

Ch∑
c=1

Zhp
rc ≤ holeAreah ∀ h ∈ H

Xh
rc +

∑

p∈P
lengthp Zhp

rc ≤ Xr, c+1

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch − 1

Xh
rc +

∑

p∈P
lengthp Zhp

rc ≤ rowEndh
r

∀ h ∈ H, r = 1 . . . Rh, c = Ch

∑

p∈P
lengthp

Ch∑
c=1

Zhp
rc ≤ rowLengthh

r ∀ h ∈ H, r = 1 . . . Rh

Y h
rc +

∑

p∈P
widthp Zhp

rc ≤ Yr+1, c

∀ h ∈ H, r = 1 . . . Rh − 1, c = 1 . . . Ch

Y h
rc +

∑

p∈P
widthp Zhp

rc ≤ colEndh
c

∀ h ∈ H, r = Rh, c = 1 . . . Ch

∑

p∈P
widthp

Rh∑
r=1

Zhp
rc ≤ colWidthh

c ∀ h ∈ H, c = 1 . . . Ch
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Bounds on the variables

max(rowStarthr , origXh + (c− 1) · cellLengthh) ≤ Xh
rc

≤ min(rowEndh
r , origXh + (c) · cellLengthh)

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch

max(colStarthc , origYh + (r − 1) · cellWidthh) ≤ Y h
rc

≤ min(colEndh
c , origYh + r · cellWidthh)

∀ h ∈ H, r = 1 . . . Rh, c = 1 . . . Ch

Uh ∈ {0, 1} ∀ h ∈ H
Zhp

rc ∈ {0, 1} ∀ h ∈ H, p ∈ P, r = 1 . . . Rh, c = 1 . . . Ch

Remark 1: Solvable in short computing time

Remark 2: To be followed by a greedy post-processing procedure
for fixing possible overlaps

Remark 3: Sequential approach: big pieces placed first, "special
pieces" of intermediate size/difficulty second, and "trims" last.
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Example: Smart vs. greedy placement of "special pieces"

Pieces: 34/76 Length: 1643.53 Eff.: 83.97%

Eff.: 81.54%Pieces: 30/76 Length: 1634.55
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Example (cont’d): Smart vs. greedy placement of "trims"

Pieces: 44/76 Length: 1665.50 Eff.: 86.13%

Pieces: 42/76 Length: 1660.87 Eff.: 85.67%
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Pieces: 44/50 Length: 3840.28 Efficiency: 82.12 %

Length: Pieces: 42/50 3838.27 Efficiency: 81.57 %

Pieces: 44/54 Length: 4697.05 Efficiency: 83.74 %

Pieces: 39/54 Length: 4671.81 Efficiency: 83.58 %
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Preliminary Computational Results

INSTANCE PIECES TRIMS LENGTH EFFIC.

82 - group 1

smart 34/76 14 1643.53 83.97%

greedy 30/76 10 1634.55 81.54%

82 - group 2

smart 44/76 10 1665.50 86.13%

greedy 42/76 8 1660.87 85.67%

101

smart 44/50 10 3840.28 82.12%

greedy 42/50 8 3838.27 81.57%

385

smart 44/54 22 4697.05 83.74%

greedy 39/54 17 4671.81 83.58%
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