The feasibility pump

Matteo Fischetti University of Padova, Italy

matteo.fischetti@unipd.it

Fred W. Glover University of Colorado at Boulder, USA fred.glover@colorado.edu

> Andrea Lodi University of Bologna, Italy alodi@deis.unibo.it

Aussois, January 2004

M. Fischetti, F. Glover, A. Lodi, The feasibility pump

• Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard) combinatorial problems.

- Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard) combinatorial problems.
- However, the exact solution of the resulting models often cannot be carried out for the problem sizes of interest in real-world applications, hence one is interested in effective heuristic methods.

- Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard) combinatorial problems.
- However, the exact solution of the resulting models often cannot be carried out for the problem sizes of interest in real-world applications, hence one is interested in effective heuristic methods.
- Moreover, in some important practical cases, state-of-the-art MIP solvers may spend a very large computational effort before initializing their incumbent solution.

- Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard) combinatorial problems.
- However, the exact solution of the resulting models often cannot be carried out for the problem sizes of interest in real-world applications, hence one is interested in effective heuristic methods.
- Moreover, in some important practical cases, state-of-the-art MIP solvers may spend a very large computational effort before initializing their incumbent solution.
- We concentrate on heuristic methods to find a feasible solution for hard MIPs which are of paramount important in practice.

- Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard) combinatorial problems.
- However, the exact solution of the resulting models often cannot be carried out for the problem sizes of interest in real-world applications, hence one is interested in effective heuristic methods.
- Moreover, in some important practical cases, state-of-the-art MIP solvers may spend a very ۲ large computational effort before initializing their incumbent solution.
- We concentrate on heuristic methods to find a feasible solution for hard MIPs which are of paramount important in practice.
- This issue became even more important in the recent years, due to the success of local-search [Fischetti & Lodi, 2002] approaches for general MIPs such as *local branching* [Danna, Rothberg, Le Pape, 2003] and RINS and guided dives

Indeed, these methods can only be applied if an initial feasible solution is known.

- Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard) combinatorial problems.
- However, the exact solution of the resulting models often cannot be carried out for the problem sizes of interest in real-world applications, hence one is interested in effective heuristic methods.
- Moreover, in some important practical cases, state-of-the-art MIP solvers may spend a very large computational effort before initializing their incumbent solution.
- We concentrate on heuristic methods to find a feasible solution for hard MIPs which are of paramount important in practice.
- This issue became even more important in the recent years, due to the success of local-search approaches for general MIPs such as *local branching* [Fischetti & Lodi, 2002] and *RINS* and *guided dives* [Danna, Rothberg, Le Pape, 2003]

Indeed, these methods can only be applied if an initial feasible solution is known.

Hence: the earlier a feasible solution is found, the better!

• How do you define feasibility for a MIP problem of the form:

 $\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}\} ?$

• How do you define feasibility for a MIP problem of the form:

$$\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}\} ?$$

• We propose the following definition:

• How do you define feasibility for a MIP problem of the form:

$$\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}\} ?$$

• We propose the following definition:

a feasible solution is a point $x^* \in P := \{x : Ax \ge b\}$ s.t. is coincident with its rounding \widetilde{x}

• How do you define feasibility for a MIP problem of the form:

$$\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}\} ?$$

• We propose the following definition:

a feasible solution is a point $x^* \in P := \{x : Ax \ge b\}$ s.t. is coincident with its rounding \widetilde{x}

where:

- 1. $[\cdot]$ represents scalar rounding to the nearest integer;
- 2. $\widetilde{x}_j := [x_j^*]$ if $j \in \mathcal{I}$; and
- 3. $\widetilde{x}_j := x_j^*$ otherwise.

• How do you define feasibility for a MIP problem of the form:

$$\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}\} ?$$

• We propose the following definition:

a feasible solution is a point $x^* \in P := \{x : Ax \ge b\}$ s.t. is coincident with its rounding \widetilde{x}

where:

- 1. $[\cdot]$ represents scalar rounding to the nearest integer;
- 2. $\widetilde{x}_j := [x_j^*]$ if $j \in \mathcal{I}$; and 3. $\widetilde{x}_j := x_j^*$ otherwise.
- Replacing coincident with as close as possible relatively to a suitable distance function $\Delta(x^*, \tilde{x})$ suggests an iterative heuristic for finding a feasible solution of a given MIP.

• We start from any $x^* \in P$, and define its rounding \widetilde{x} .

- We start from any $x^* \in P$, and define its rounding \widetilde{x} .
- At each iteration we look for a point $x^* \in P$ which is as close as possible to the current \tilde{x} by solving the problem:

$$\min\{\Delta(x,\tilde{x}): x \in P\}$$

Assuming $\Delta(x, \tilde{x})$ is chosen appropriately, is an easily solvable LP problem.

- We start from any $x^* \in P$, and define its rounding \widetilde{x} .
- At each iteration we look for a point $x^* \in P$ which is as close as possible to the current \tilde{x} by solving the problem:

$$\min\{\Delta(x,\tilde{x}): x \in P\}$$

Assuming $\Delta(x, \tilde{x})$ is chosen appropriately, is an easily solvable LP problem.

• If $\Delta(x^*, \tilde{x}) = 0$, then x^* is a feasible MIP solution and we are done.

- We start from any $x^* \in P$, and define its rounding \widetilde{x} .
- At each iteration we look for a point $x^* \in P$ which is as close as possible to the current \tilde{x} by solving the problem:

$$\min\{\Delta(x,\tilde{x}): x \in P\}$$

Assuming $\Delta(x, \tilde{x})$ is chosen appropriately, is an easily solvable LP problem.

- If $\Delta(x^*, \tilde{x}) = 0$, then x^* is a feasible MIP solution and we are done.
- Otherwise, we replace \widetilde{x} by the rounding of x^* , and repeat.

- We start from any $x^* \in P$, and define its rounding \widetilde{x} .
- At each iteration we look for a point $x^* \in P$ which is as close as possible to the current \tilde{x} by solving the problem:

$$\min\{\Delta(x,\tilde{x}): x \in P\}$$

Assuming $\Delta(x, \tilde{x})$ is chosen appropriately, is an easily solvable LP problem.

- If $\Delta(x^*, \tilde{x}) = 0$, then x^* is a feasible MIP solution and we are done.
- Otherwise, we replace \widetilde{x} by the rounding of x^* , and repeat.

• From a geometric point of view, this simple heuristic generates two hopefully convergent trajectories of points x^* and \tilde{x} which satisfy feasibility in a complementary but partial way:

- We start from any $x^* \in P$, and define its rounding \widetilde{x} .
- At each iteration we look for a point $x^* \in P$ which is as close as possible to the current \tilde{x} by solving the problem:

$$\min\{\Delta(x,\tilde{x}): x \in P\}$$

Assuming $\Delta(x, \tilde{x})$ is chosen appropriately, is an easily solvable LP problem.

- If $\Delta(x^*, \tilde{x}) = 0$, then x^* is a feasible MIP solution and we are done.
- Otherwise, we replace \widetilde{x} by the rounding of x^* , and repeat.

- From a geometric point of view, this simple heuristic generates two hopefully convergent trajectories of points x^* and \tilde{x} which satisfy feasibility in a complementary but partial way:
 - 1. one satisfies the linear constraints, x^{st} ,
 - 2. the other the integer requirement, \widetilde{x} .

Definition of $\Delta(x^*, \widetilde{x})$

• We consider the L_1 -norm distance between a generic point $x \in P$ and a given integer \tilde{x} , defined as:

$$\Delta(x, \widetilde{x}) = \sum_{j \in \mathcal{I}} |x_j - \widetilde{x}_j|$$

The continuous variables x_j with $j \not\in \mathcal{I}$, if any, do not contribute to this function.

Definition of $\Delta(x^*, \widetilde{x})$

• We consider the L_1 -norm distance between a generic point $x \in P$ and a given integer \tilde{x} , defined as:

$$\Delta(x, \widetilde{x}) = \sum_{j \in \mathcal{I}} |x_j - \widetilde{x}_j|$$

The continuous variables x_j with $j \notin \mathcal{I}$, if any, do not contribute to this function.

• If w.l.o.g. MIP constraints include the bounds $l_j \leq x_j \leq u_j, \ \forall \ j \in \mathcal{I}$, we can write:

$$\Delta(x,\widetilde{x}) := \sum_{j \in \mathcal{I}: \widetilde{x}_j = l_j} (x_j - l_j) + \sum_{j \in \mathcal{I}: \widetilde{x}_j = u_j} (u_j - x_j) + \sum_{j \in \mathcal{I}: l_j < \widetilde{x}_j < u_j} (x_j^+ + x_j^-)$$

where the additional variables x_j^+ and x_j^- require the additional constraints:

$$x_j = \tilde{x}_j + x_j^+ - x_j^-, \quad x_j^+ \ge 0, \ x_j^- \ge 0, \quad \forall j \in \mathcal{I} : l_j < \tilde{x}_j < u_j$$
(1)

Definition of $\Delta(x^*, \widetilde{x})$

• We consider the L_1 -norm distance between a generic point $x \in P$ and a given integer \tilde{x} , defined as:

$$\Delta(x, \widetilde{x}) = \sum_{j \in \mathcal{I}} |x_j - \widetilde{x}_j|$$

The continuous variables x_j with $j \notin \mathcal{I}$, if any, do not contribute to this function.

• If w.l.o.g. MIP constraints include the bounds $l_j \leq x_j \leq u_j, \ \forall \ j \in \mathcal{I}$, we can write:

$$\Delta(x,\widetilde{x}) := \sum_{j \in \mathcal{I}: \widetilde{x}_j = l_j} (x_j - l_j) + \sum_{j \in \mathcal{I}: \widetilde{x}_j = u_j} (u_j - x_j) + \sum_{j \in \mathcal{I}: l_j < \widetilde{x}_j < u_j} (x_j^+ + x_j^-)$$

where the additional variables x_j^+ and x_j^- require the additional constraints:

$$x_j = \tilde{x}_j + x_j^+ - x_j^-, \quad x_j^+ \ge 0, \ x_j^- \ge 0, \quad \forall j \in \mathcal{I} : l_j < \tilde{x}_j < u_j$$
(1)

• Given an integer \tilde{x} , the closest point $x^* \in P$ can therefore be determined by solving the LP:

$$\min\{\Delta(x,\tilde{x}): Ax \ge b, \ (1)\}$$
(2)

Definition of $\Delta(x^*, \widetilde{x})$ (cont.d)

 When all integer-constrained variables are binary (again Ax ≥ b include 0 ≤ x_j ≤ 1, ∀j ∈ I) no additional variables x⁺_j and x⁻_j (1) are required in the definition of Δ(x^{*}, x̃), which attains the simpler form:

$$\Delta(x,\tilde{x}) := \sum_{j\in\mathcal{I}:\tilde{x}_j=0} x_j + \sum_{j\in\mathcal{I}:\tilde{x}_j=1} (1-x_j)$$
(3)

Definition of $\Delta(x^*, \widetilde{x})$ (cont.d)

 When all integer-constrained variables are binary (again Ax ≥ b include 0 ≤ x_j ≤ 1, ∀j ∈ I) no additional variables x⁺_j and x⁻_j (1) are required in the definition of Δ(x^{*}, x̃), which attains the simpler form:

$$\Delta(x,\tilde{x}) := \sum_{j\in\mathcal{I}:\tilde{x}_j=0} x_j + \sum_{j\in\mathcal{I}:\tilde{x}_j=1} (1-x_j)$$
(3)

• An important feature of the method is related to the infeasibility measure used to guide \tilde{x} towards feasibility: instead of taking a weighted combination of the degree of violation of the single linear constraints, as is customary in MIP heuristics, we use the distance $\Delta(x^*, \tilde{x})$ of \tilde{x} from polyhedron P.

Definition of $\Delta(x^*, \widetilde{x})$ (cont.d)

 When all integer-constrained variables are binary (again Ax ≥ b include 0 ≤ x_j ≤ 1, ∀j ∈ I) no additional variables x⁺_j and x⁻_j (1) are required in the definition of Δ(x^{*}, x̃), which attains the simpler form:

$$\Delta(x,\tilde{x}) := \sum_{j\in\mathcal{I}:\tilde{x}_j=0} x_j + \sum_{j\in\mathcal{I}:\tilde{x}_j=1} (1-x_j)$$
(3)

- An important feature of the method is related to the infeasibility measure used to guide \tilde{x} towards feasibility: instead of taking a weighted combination of the degree of violation of the single linear constraints, as is customary in MIP heuristics, we use the distance $\Delta(x^*, \tilde{x})$ of \tilde{x} from polyhedron P.
- This distance can be interpreted as a sort of difference of pressure between the two
 complementary infeasibility of x* and x
 , that we try to reduce by pumping the integrality of x
 into x*.

Definition of $\Delta(x^*, \tilde{x})$ (cont.d)

 When all integer-constrained variables are binary (again Ax ≥ b include 0 ≤ x_j ≤ 1, ∀j ∈ I) no additional variables x⁺_j and x⁻_j (1) are required in the definition of Δ(x^{*}, x̃), which attains the simpler form:

$$\Delta(x,\tilde{x}) := \sum_{j\in\mathcal{I}:\tilde{x}_j=0} x_j + \sum_{j\in\mathcal{I}:\tilde{x}_j=1} (1-x_j)$$
(3)

- An important feature of the method is related to the infeasibility measure used to guide \tilde{x} towards feasibility: instead of taking a weighted combination of the degree of violation of the single linear constraints, as is customary in MIP heuristics, we use the distance $\Delta(x^*, \tilde{x})$ of \tilde{x} from polyhedron P.
- This distance can be interpreted as a sort of difference of pressure between the two
 complementary infeasibility of x* and x
 , that we try to reduce by pumping the integrality of x
 into x*.
- Hence the name of the heuristic: feasibility pump (FP).

A first FP implementation

• MAIN PROBLEM, stalling issues:

as soon as $\Delta(x^*, \widetilde{x})$ is not reduced when replacing \widetilde{x} by x^* .

If $\Delta(x^*, \tilde{x}) > 0$ we still want to modify \tilde{x} , even if this increases its distance from x^* .

Hence, we reverse the rounding of some variables x_j^* , $j \in \mathcal{I}$ chosen so as to minimize the increase in the current value of $\Delta(x^*, \tilde{x})$.

A first FP implementation

• MAIN PROBLEM, stalling issues:

as soon as $\Delta(x^*, \tilde{x})$ is not reduced when replacing \tilde{x} by x^* .

If $\Delta(x^*, \tilde{x}) > 0$ we still want to modify \tilde{x} , even if this increases its distance from x^* .

Hence, we reverse the rounding of some variables x_j^* , $j \in \mathcal{I}$ chosen so as to minimize the increase in the current value of $\Delta(x^*, \tilde{x})$.

1. initialize
$$x^* := \operatorname{argmin} \{c^T x : Ax \ge b\}$$
 and $\tilde{x} := \operatorname{rounding} \operatorname{of} x^*$;
2. nIter := 0;
3. while $(\Delta(x^*, \tilde{x}) > 0 \text{ and nIter < maxIter})$ do
4. nIter := nIter+1;
5. $x^* := \operatorname{argmin} \{\Delta(x, \tilde{x}) : Ax \ge b\};$
6. if $\Delta(x^*, \tilde{x}) > 0$ then
7. for each $j \in \mathcal{I}$ define the flip score $\sigma_j := |x_j^* - \tilde{x}_j|;$
8. flip all entries \tilde{x}_j with $j \in \mathcal{I} : \sigma_j > 0.5$, for a total of (say) k variables;
9. if k < T, then flip the T-k new entries of \tilde{x} with highest score
10. endif
11. enddo

Plot of the infeasibility measure $\Delta(x^*,\widetilde{x})$ at each pumping cycle

• The FP can also be viewed as modified *local branching* (LB) strategy

[Fischetti & Lodi, 2002]

- The FP can also be viewed as modified *local branching* (LB) strategy [Fischetti & Lodi, 2002]
- Indeed, at each pumping cycle we have an incumbent (infeasible) solution \tilde{x} satisfying the integer requirement, and we face the problem of finding a feasible solution (if any) within a small-distance neighborhood, i.e., changing only a small subset of its variables.

- The FP can also be viewed as modified *local branching* (LB) strategy [Fischetti & Lodi, 2002]
- Indeed, at each pumping cycle we have an incumbent (infeasible) solution \tilde{x} satisfying the integer requirement, and we face the problem of finding a feasible solution (if any) within a small-distance neighborhood, i.e., changing only a small subset of its variables.
- In the LB context, this subproblem would have been modeled by the MIP:

$$\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}, (1), \ \Delta(x, \widetilde{x}) \le k\}$$

for a suitable value of parameter k, and solved through an enumerative MIP method.

- The FP can also be viewed as modified *local branching* (LB) strategy [Fischetti & Lodi, 2002]
- Indeed, at each pumping cycle we have an incumbent (infeasible) solution \tilde{x} satisfying the integer requirement, and we face the problem of finding a feasible solution (if any) within a small-distance neighborhood, i.e., changing only a small subset of its variables.
- In the LB context, this subproblem would have been modeled by the MIP:

$$\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}, (1), \ \Delta(x, \widetilde{x}) \le k\}$$

for a suitable value of parameter k, and solved through an enumerative MIP method.

• In the FP context, instead, the same subproblem is modeled in a relaxed way through the LP:

$$\min\{\Delta(x,\widetilde{x}): Ax \ge b, (1)\}\$$

where the "small distance" requirement is translated in terms of objective function.

- The FP can also be viewed as modified *local branching* (LB) strategy [Fischetti & Lodi, 2002]
- Indeed, at each pumping cycle we have an incumbent (infeasible) solution \tilde{x} satisfying the integer requirement, and we face the problem of finding a feasible solution (if any) within a small-distance neighborhood, i.e., changing only a small subset of its variables.
- In the LB context, this subproblem would have been modeled by the MIP:

$$\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}, (1), \ \Delta(x, \widetilde{x}) \le k\}$$

for a suitable value of parameter k, and solved through an enumerative MIP method.

• In the FP context, instead, the same subproblem is modeled in a relaxed way through the LP:

$$\min\{\Delta(x,\tilde{x}): Ax \ge b, (1)\}\$$

where the "small distance" requirement is translated in terms of objective function.

Hypothesis: the objective function Δ(x, x̃) will discourage x* for be too far from x̃.
 Hence, we expect a large number of the integer-constrained (integer-valued) variables in x̃ will maintain their value also in the optimal x*.

Computational results

49 hard 0-1 MIPs - Pentium M 1.6 GHz notebook - ILOG-Cplex halted at the root node

	T = 10			ILOG-Cplex 8.1	, emp=1	ILOG-Cplex 8.1	l default
Name	value	nIT	time	value	time	value	time
danoint	N/A	3	0.00	N/A	1.60	66.50	1.57
markshare1	70.00	0	0.00	710.00	0.01	710.00	0.00
markshare2	648.00	2	0.00	1,735.00	0.00	1,735.00	0.00
seymour	443.00	6	3.91	463.00	3.85	463.00	4.11
nsrand_ipx	336,000.00	2	0.68	62,560.00	0.76	62,560.00	0.76
van	7.68	3	986.93	5.09	3594.95	5.09	3594.95
biella1	3,400,802.15	3	11.99	N/A	10.40	N/A	37.00
dc1c	5,163,390.90	3	20.53	N/A	25.60	N/A	82.10
dc1l	17,055,833.44	3	155.57	751,003,858.46	75.20	751,003,858.46	73.71
dolom1	199,787,276.17	4	121.74	N/A	31.90	N/A	121.30
siena1	129,121,289.71	5	721.28	N/A	87.60	N/A	271.80
trento1	27,186,350.03	1	86.61	N/A	25.60	45,717,270.00	45.92
rail507	181.00	2	34.79	211.00	36.15	211.00	36.89
rail2536c	709.00	0	166.67	763.00	16.48	763.00	16.49
rail2586c	994.00	2	132.27	1,078.00	57.05	1,078.00	57.49
rail4284c	1,130.00	2	516.19	1,226.00	180.30	1,226.00	181.46
rail4872c	1,611.00	4	617.19	1,736.00	239.43	1,736.00	241.22

	T = 10		ILOG-Cplex 8.1,	emp=1	ILOG-Cplex 8.1	default
Name	value	nIT time	value	time	value	time
A1C1S1	15,463.18	7 2.87	N/A	1.30	N/A	15.10
A2C1S1	17,503.02	5 2.26	20,865.33	0.09	20,865.33	0.09
B1C1S1	37,986.94	10 4.12	69,933.52	0.10	69,933.52	0.10
B2C1S1	43,716.58	9 4.77	70,575.52	0.13	70,575.52	0.13
tr12-30	261,826.00	11 0.11	N/A	0.30	140,084.00	2.11
sp97ar	1,187,905,237.44	3 4.66	729,774,537.92	3.93	729,774,537.92	3.98
sp97ic	834,114,625.76	1 2.17	495,919,360.00	2.19	495,919,360.00	2.26
sp98ar	873,197,861.44	2 4.34	604,367,012.64	4.05	604,367,012.64	4.10
sp98ic	795,108,323.36	1 1.84	542,322,911.84	1.77	542,322,911.84	1.79
blp-ic98	13,211.71	3 0.97	N/A	3.00	N/A	7.30
blp-ir98	5,659.48	1 0.27	N/A	1.30	N/A	3.20
berlin_5_8_0	76.00	14 0.22	N/A	0.30	N/A	0.80
railway_8_1_0	434.00	46 0.73	N/A	0.20	474.00	0.33
bg512142	120,738,665.00	0 0.18	120,670,203.50	0.29	120,670,203.50	0.29
dg012142	153,406,921.50	0 0.96	153,397,300.00	1.01	153,397,300.00	1.00
ljb2	7.24	0 0.05	N/A	0.20	1.69	0.43
ljb7	8.61	0 0.53	N/A	1.70	0.96	4.74
ljb9	9.48	0 0.72	N/A	2.10	9.48	5.57
ljb10	7.31	0 0.89	N/A	2.70	2.36	4.72
ljb12	6.20	0 0.70	N/A	2.10	6.20	6.03

• Over 37 hard 0-1 MIP instances:

FP failed in finding a feasible solution only in 1 case, while

ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.

• Over 37 hard 0-1 MIP instances:

FP failed in finding a feasible solution only in 1 case, while

ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.

• The quality of the solutions obtained is generally comparable, as well as the computing times.

• Over 37 hard 0-1 MIP instances:

FP failed in finding a feasible solution only in 1 case, while

ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.

- The quality of the solutions obtained is generally comparable, as well as the computing times.
- There are still 12 0-1 MIPs on the testbed which cannot be solved by the three algorithms.

• Over 37 hard 0-1 MIP instances:

FP failed in finding a feasible solution only in 1 case, while

ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.

- The quality of the solutions obtained is generally comparable, as well as the computing times.
- There are still 12 0-1 MIPs on the testbed which cannot be solved by the three algorithms.
- When ILOG-Cplex is not able to find a feasible solution obviously it resorts to branching, and it is then able to find a feasible solution:

to all MIPs from a min of 30 to a max of 207,918 nodes for ILOG-Cplex (emp=1),

to all but 3 MIPs from a min of 10 to a max of 37,320 nodes for ILOG-Cplex (default) within a time limit of 1,200 CPU seconds.

• Over 37 hard 0-1 MIP instances:

FP failed in finding a feasible solution only in 1 case, while

ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.

- The quality of the solutions obtained is generally comparable, as well as the computing times.
- There are still 12 0-1 MIPs on the testbed which cannot be solved by the three algorithms.
- When ILOG-Cplex is not able to find a feasible solution obviously it resorts to branching, and it is then able to find a feasible solution:

to all MIPs from a min of 30 to a max of 207,918 nodes for ILOG-Cplex (emp=1),

to all but 3 MIPs from a min of 10 to a max of 37,320 nodes for ILOG-Cplex (default) within a time limit of 1,200 CPU seconds.

• Better results have been obtained by Ed Rothberg by avoiding preprocessing!!

• The problem with FP is that, due to the flipping at step 9 of the algorithm, some cycling is possible: a same sequence of points x^* and \tilde{x} is visited again and again.

- The problem with FP is that, due to the flipping at step 9 of the algorithm, some cycling is possible: a same sequence of points x^* and \tilde{x} is visited again and again.
- Simple anti-stalling and anti-cycling rules borrowed from metaheuristics can be implemented within the basic FP framework.

- The problem with FP is that, due to the flipping at step 9 of the algorithm, some cycling is possible: a same sequence of points x^* and \tilde{x} is visited again and again.
- Simple anti-stalling and anti-cycling rules borrowed from metaheuristics can be implemented within the basic FP framework.
- Instead, we found extremely effective the idea of introducing some enumeration.

- The problem with FP is that, due to the flipping at step 9 of the algorithm, some cycling is possible: a same sequence of points x^* and \tilde{x} is visited again and again.
- Simple anti-stalling and anti-cycling rules borrowed from metaheuristics can be implemented within the basic FP framework.
- Instead, we found extremely effective the idea of introducing some enumeration.
- Let x^F (F for fractional) be the LP point x^* (as computed at step 5) which is as close as possible to its rounding $[x^F]$, chosen among those generated by the FP procedure before cycling: typically, the infeasibility degree $\Delta(x^F, [x^F])$ is small.

- The problem with FP is that, due to the flipping at step 9 of the algorithm, some cycling is possible: a same sequence of points x^* and \tilde{x} is visited again and again.
- Simple anti-stalling and anti-cycling rules borrowed from metaheuristics can be implemented within the basic FP framework.
- Instead, we found extremely effective the idea of introducing some enumeration.
- Let x^F (F for fractional) be the LP point x^* (as computed at step 5) which is as close as possible to its rounding $[x^F]$, chosen among those generated by the FP procedure before cycling: typically, the infeasibility degree $\Delta(x^F, [x^F])$ is small.
- Therefore, before doing anything else, it seems reasonable to fix x^F and use a truncated enumerative MIP method in the attempt of finding a feasible integer point close to x^F .

- The problem with FP is that, due to the flipping at step 9 of the algorithm, some cycling is possible: a same sequence of points x^* and \tilde{x} is visited again and again.
- Simple anti-stalling and anti-cycling rules borrowed from metaheuristics can be implemented within the basic FP framework.
- Instead, we found extremely effective the idea of introducing some enumeration.
- Let x^F (F for fractional) be the LP point x^* (as computed at step 5) which is as close as possible to its rounding $[x^F]$, chosen among those generated by the FP procedure before cycling: typically, the infeasibility degree $\Delta(x^F, [x^F])$ is small.
- Therefore, before doing anything else, it seems reasonable to fix x^F and use a truncated enumerative MIP method in the attempt of finding a feasible integer point close to x^F .
- For 0-1 MIPs, this amounts to optimize $\min\{\Delta(x^F, x) : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}\}$, where:

$$\Delta(x^{F}, x) = \sum_{j \in \mathcal{I}} \left[(1 - x_{j}^{F}) x_{j} + x_{j}^{F} (1 - x_{j}) \right] = \sum_{j \in \mathcal{I}} x_{j}^{F} + \sum_{j \in \mathcal{I}} (1 - 2x_{j}^{F}) x_{j}$$

is a suitable redefinition of the distance function of a generic integer point x with respect to the given fractional point x^{F} .

Improving the basic FP scheme

					initial	final	B&B	B&B	total
Name	value	nIT	nR	nΗ	$\Delta(x^*,\widetilde{x})$	$\Delta(x^*,\widetilde{x})$	nodes	time	time
danoint	82.00	3	0	1	3.0	3.0	33	0.69	0.87
glass4	4.10e9	100	0	1	0.3	0.1	0	0.01	0.38
net12	296.00	7	0	1	84.1	4.0	0	1.20	6.31
blp-ar98	14,269.65	23	0	1	13.7	3.4	340	8.21	12.41
blp-ic97	6,573.63	16	0	1	5.1	0.4	0	0.78	2.35
CMS750_4	517.00	44	0	1	234.4	131.7	550	12.23	18.94
usAbbrv.8.25_70	164.00	58	0	1	110.3	1.0	0	0.16	1.60
manpower1	6.00	4	0	1	80.3	60.5	0	1.46	3.15
manpower2	6.00	8	0	1	80.7	47.3	10	2.80	7.59
manpower3	6.00	7	0	1	114.7	56.5	13	7.34	11.32
manpower3a	7.00	10	0	1	88.0	42.5	19	5.18	11.03
manpower4	6.00	9	0	1	88.9	24.5	30	5.83	10.68
manpower4a	7.00	10	0	1	80.7	15.2	8	2.24	8.77

As a measure of the effectiveness of FP + redefinition of the objective function + branching, the overall number of B&B nodes of the improved version of FP, ILOG-Cplex 8.1 (emp=1), and ILOG-Cplex 8.1 (default) is 1003, 224576 and 13016, respectively.