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Motivation

• Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard)

combinatorial problems.
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paramount important in practice.

• This issue became even more important in the recent years, due to the success of local-search

approaches for general MIPs such as local branching [Fischetti & Lodi, 2002]

and RINS and guided dives [Danna, Rothberg, Le Pape, 2003]
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Motivation

• Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard)

combinatorial problems.

• However, the exact solution of the resulting models often cannot be carried out for the problem

sizes of interest in real-world applications, hence one is interested in effective heuristic methods.

• Moreover, in some important practical cases, state-of-the-art MIP solvers may spend a very

large computational effort before initializing their incumbent solution.

• We concentrate on heuristic methods to find a feasible solution for hard MIPs which are of

paramount important in practice.

• This issue became even more important in the recent years, due to the success of local-search

approaches for general MIPs such as local branching [Fischetti & Lodi, 2002]

and RINS and guided dives [Danna, Rothberg, Le Pape, 2003]

Indeed, these methods can only be applied if an initial feasible solution is known.

Hence: the earlier a feasible solution is found, the better!
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The basic scheme

• How do you define feasibility for a MIP problem of the form:

min{cTx : Ax ≥ b, xj integer ∀j ∈ I} ?

M. Fischetti, F. Glover, A. Lodi, The feasibility pump 2



The basic scheme

• How do you define feasibility for a MIP problem of the form:

min{cTx : Ax ≥ b, xj integer ∀j ∈ I} ?

• We propose the following definition:

M. Fischetti, F. Glover, A. Lodi, The feasibility pump 2



The basic scheme

• How do you define feasibility for a MIP problem of the form:

min{cTx : Ax ≥ b, xj integer ∀j ∈ I} ?

• We propose the following definition:

a feasible solution is a point x∗ ∈ P := {x : Ax ≥ b} s.t. is coincident with its rounding x̃

M. Fischetti, F. Glover, A. Lodi, The feasibility pump 2



The basic scheme

• How do you define feasibility for a MIP problem of the form:

min{cTx : Ax ≥ b, xj integer ∀j ∈ I} ?
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where:

1. [·] represents scalar rounding to the nearest integer;

2. x̃j := [x∗
j ] if j ∈ I; and

3. x̃j := x∗
j otherwise.
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The basic scheme

• How do you define feasibility for a MIP problem of the form:

min{cTx : Ax ≥ b, xj integer ∀j ∈ I} ?

• We propose the following definition:

a feasible solution is a point x∗ ∈ P := {x : Ax ≥ b} s.t. is coincident with its rounding x̃

where:

1. [·] represents scalar rounding to the nearest integer;

2. x̃j := [x∗
j ] if j ∈ I; and

3. x̃j := x∗
j otherwise.

• Replacing coincident with as close as possible relatively to a suitable distance function

∆(x∗, x̃) suggests an iterative heuristic for finding a feasible solution of a given MIP.
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The basic scheme (cont.d)

• We start from any x∗ ∈ P , and define its rounding x̃.
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• We start from any x∗ ∈ P , and define its rounding x̃.

• At each iteration we look for a point x∗ ∈ P which is as close as possible to the current x̃ by

solving the problem:

min{∆(x, x̃) : x ∈ P}

Assuming ∆(x, x̃) is chosen appropriately, is an easily solvable LP problem.
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• At each iteration we look for a point x∗ ∈ P which is as close as possible to the current x̃ by

solving the problem:

min{∆(x, x̃) : x ∈ P}

Assuming ∆(x, x̃) is chosen appropriately, is an easily solvable LP problem.

• If ∆(x∗, x̃) = 0, then x∗ is a feasible MIP solution and we are done.
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• From a geometric point of view, this simple heuristic generates two hopefully convergent

trajectories of points x∗ and x̃ which satisfy feasibility in a complementary but partial way:

M. Fischetti, F. Glover, A. Lodi, The feasibility pump 3
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• We start from any x∗ ∈ P , and define its rounding x̃.

• At each iteration we look for a point x∗ ∈ P which is as close as possible to the current x̃ by

solving the problem:

min{∆(x, x̃) : x ∈ P}

Assuming ∆(x, x̃) is chosen appropriately, is an easily solvable LP problem.

• If ∆(x∗, x̃) = 0, then x∗ is a feasible MIP solution and we are done.

• Otherwise, we replace x̃ by the rounding of x∗, and repeat.

• From a geometric point of view, this simple heuristic generates two hopefully convergent

trajectories of points x∗ and x̃ which satisfy feasibility in a complementary but partial way:

1. one satisfies the linear constraints, x∗,

2. the other the integer requirement, x̃.
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Plot of the infeasibility measure ∆(x∗, x̃) at each iteration
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Definition of ∆(x∗, x̃)

• We consider the L1-norm distance between a generic point x ∈ P and a given integer x̃,

defined as:

∆(x, x̃) =
∑
j∈I

|xj − x̃j|

The continuous variables xj with j 6∈ I, if any, do not contribute to this function.
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Definition of ∆(x∗, x̃)

• We consider the L1-norm distance between a generic point x ∈ P and a given integer x̃,

defined as:

∆(x, x̃) =
∑
j∈I

|xj − x̃j|

The continuous variables xj with j 6∈ I, if any, do not contribute to this function.

• If w.l.o.g. MIP constraints include the bounds lj ≤ xj ≤ uj, ∀ j ∈ I, we can write:

∆(x, x̃) :=
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

(x
+
j + x

−
j )

where the additional variables x+
j and x−

j require the additional constraints:

xj = x̃j + x
+
j − x

−
j , x

+
j ≥ 0, x

−
j ≥ 0, ∀j ∈ I : lj < x̃j < uj (1)
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j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

(x
+
j + x

−
j )

where the additional variables x+
j and x−

j require the additional constraints:

xj = x̃j + x
+
j − x

−
j , x

+
j ≥ 0, x

−
j ≥ 0, ∀j ∈ I : lj < x̃j < uj (1)

• Given an integer x̃, the closest point x∗ ∈ P can therefore be determined by solving the LP:

min{∆(x, x̃) : Ax ≥ b, (1) } (2)
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Definition of ∆(x∗, x̃) (cont.d)

• When all integer-constrained variables are binary (again Ax ≥ b include

0 ≤ xj ≤ 1, ∀j ∈ I) no additional variables x+
j and x−

j (1) are required in the definition of

∆(x∗, x̃), which attains the simpler form:

∆(x, x̃) :=
∑

j∈I:x̃j=0

xj +
∑

j∈I:x̃j=1

(1 − xj) (3)
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(1 − xj) (3)

• An important feature of the method is related to the infeasibility measure used to guide x̃

towards feasibility: instead of taking a weighted combination of the degree of violation of the

single linear constraints, as is customary in MIP heuristics, we use the distance ∆(x∗, x̃) of x̃

from polyhedron P .
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Definition of ∆(x∗, x̃) (cont.d)

• When all integer-constrained variables are binary (again Ax ≥ b include

0 ≤ xj ≤ 1, ∀j ∈ I) no additional variables x+
j and x−

j (1) are required in the definition of

∆(x∗, x̃), which attains the simpler form:

∆(x, x̃) :=
∑

j∈I:x̃j=0

xj +
∑

j∈I:x̃j=1

(1 − xj) (3)

• An important feature of the method is related to the infeasibility measure used to guide x̃

towards feasibility: instead of taking a weighted combination of the degree of violation of the

single linear constraints, as is customary in MIP heuristics, we use the distance ∆(x∗, x̃) of x̃

from polyhedron P .

• This distance can be interpreted as a sort of difference of pressure between the two

complementary infeasibility of x∗ and x̃, that we try to reduce by pumping the integrality of x̃

into x∗.

• Hence the name of the heuristic: feasibility pump (FP).
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A first FP implementation

• MAIN PROBLEM, stalling issues:

as soon as ∆(x∗, x̃) is not reduced when replacing x̃ by x∗.

If ∆(x∗, x̃) > 0 we still want to modify x̃, even if this increases its distance from x∗.

Hence, we reverse the rounding of some variables x∗
j , j ∈ I chosen so as to minimize the

increase in the current value of ∆(x∗, x̃).
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A first FP implementation

• MAIN PROBLEM, stalling issues:

as soon as ∆(x∗, x̃) is not reduced when replacing x̃ by x∗.

If ∆(x∗, x̃) > 0 we still want to modify x̃, even if this increases its distance from x∗.

Hence, we reverse the rounding of some variables x∗
j , j ∈ I chosen so as to minimize the

increase in the current value of ∆(x∗, x̃).

1. initialize x∗ := argmin{cTx : Ax ≥ b} and x̃ := rounding of x∗;

2. nIter := 0;
3. while (∆(x∗, x̃) > 0 and nIter < maxIter) do
4. nIter := nIter+1;

5. x∗ := argmin{∆(x, x̃) : Ax ≥ b};

6. if ∆(x∗, x̃) > 0 then
7. for each j ∈ I define the flip score σj := |x∗

j − x̃j|;
8. flip all entries x̃j with j ∈ I : σj > 0.5, for a total of (say) k variables;

9. if k < T, then flip the T-k new entries of x̃ with highest score
10. endif
11. enddo
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Plot of the infeasibility measure ∆(x∗, x̃) at each pumping cycle
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FP and local branching

• The FP can also be viewed as modified local branching (LB) strategy [Fischetti & Lodi, 2002]
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integer requirement, and we face the problem of finding a feasible solution (if any) within a

small-distance neighborhood, i.e., changing only a small subset of its variables.
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integer requirement, and we face the problem of finding a feasible solution (if any) within a

small-distance neighborhood, i.e., changing only a small subset of its variables.

• In the LB context, this subproblem would have been modeled by the MIP:

min{c
T
x : Ax ≥ b, xj integer ∀j ∈ I, (1), ∆(x, x̃) ≤ k}

for a suitable value of parameter k, and solved through an enumerative MIP method.
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min{c
T
x : Ax ≥ b, xj integer ∀j ∈ I, (1), ∆(x, x̃) ≤ k}

for a suitable value of parameter k, and solved through an enumerative MIP method.

• In the FP context, instead, the same subproblem is modeled in a relaxed way through the LP:

min{∆(x, x̃) : Ax ≥ b, (1)}

where the “small distance” requirement is translated in terms of objective function.
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• The FP can also be viewed as modified local branching (LB) strategy [Fischetti & Lodi, 2002]

• Indeed, at each pumping cycle we have an incumbent (infeasible) solution x̃ satisfying the

integer requirement, and we face the problem of finding a feasible solution (if any) within a

small-distance neighborhood, i.e., changing only a small subset of its variables.

• In the LB context, this subproblem would have been modeled by the MIP:

min{c
T
x : Ax ≥ b, xj integer ∀j ∈ I, (1), ∆(x, x̃) ≤ k}

for a suitable value of parameter k, and solved through an enumerative MIP method.

• In the FP context, instead, the same subproblem is modeled in a relaxed way through the LP:

min{∆(x, x̃) : Ax ≥ b, (1)}

where the “small distance” requirement is translated in terms of objective function.

• Hypothesis: the objective function ∆(x, x̃) will discourage x∗ for be too far from x̃.

Hence, we expect a large number of the integer-constrained (integer-valued) variables in x̃ will

maintain their value also in the optimal x∗.
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Computational results

49 hard 0-1 MIPs - Pentium M 1.6 GHz notebook - ILOG-Cplex halted at the root node

T = 10 ILOG-Cplex 8.1, emp=1 ILOG-Cplex 8.1 default

Name value nIT time value time value time

danoint N/A 3 0.00 N/A 1.60 66.50 1.57

markshare1 70.00 0 0.00 710.00 0.01 710.00 0.00

markshare2 648.00 2 0.00 1,735.00 0.00 1,735.00 0.00

seymour 443.00 6 3.91 463.00 3.85 463.00 4.11

nsrand ipx 336,000.00 2 0.68 62,560.00 0.76 62,560.00 0.76

van 7.68 3 986.93 5.09 3594.95 5.09 3594.95

biella1 3,400,802.15 3 11.99 N/A 10.40 N/A 37.00

dc1c 5,163,390.90 3 20.53 N/A 25.60 N/A 82.10

dc1l 17,055,833.44 3 155.57 751,003,858.46 75.20 751,003,858.46 73.71

dolom1 199,787,276.17 4 121.74 N/A 31.90 N/A 121.30

siena1 129,121,289.71 5 721.28 N/A 87.60 N/A 271.80

trento1 27,186,350.03 1 86.61 N/A 25.60 45,717,270.00 45.92

rail507 181.00 2 34.79 211.00 36.15 211.00 36.89

rail2536c 709.00 0 166.67 763.00 16.48 763.00 16.49

rail2586c 994.00 2 132.27 1,078.00 57.05 1,078.00 57.49

rail4284c 1,130.00 2 516.19 1,226.00 180.30 1,226.00 181.46

rail4872c 1,611.00 4 617.19 1,736.00 239.43 1,736.00 241.22
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T = 10 ILOG-Cplex 8.1, emp=1 ILOG-Cplex 8.1 default

Name value nIT time value time value time

A1C1S1 15,463.18 7 2.87 N/A 1.30 N/A 15.10

A2C1S1 17,503.02 5 2.26 20,865.33 0.09 20,865.33 0.09

B1C1S1 37,986.94 10 4.12 69,933.52 0.10 69,933.52 0.10

B2C1S1 43,716.58 9 4.77 70,575.52 0.13 70,575.52 0.13

tr12-30 261,826.00 11 0.11 N/A 0.30 140,084.00 2.11

sp97ar 1,187,905,237.44 3 4.66 729,774,537.92 3.93 729,774,537.92 3.98

sp97ic 834,114,625.76 1 2.17 495,919,360.00 2.19 495,919,360.00 2.26

sp98ar 873,197,861.44 2 4.34 604,367,012.64 4.05 604,367,012.64 4.10

sp98ic 795,108,323.36 1 1.84 542,322,911.84 1.77 542,322,911.84 1.79

blp-ic98 13,211.71 3 0.97 N/A 3.00 N/A 7.30

blp-ir98 5,659.48 1 0.27 N/A 1.30 N/A 3.20

berlin 5 8 0 76.00 14 0.22 N/A 0.30 N/A 0.80

railway 8 1 0 434.00 46 0.73 N/A 0.20 474.00 0.33

bg512142 120,738,665.00 0 0.18 120,670,203.50 0.29 120,670,203.50 0.29

dg012142 153,406,921.50 0 0.96 153,397,300.00 1.01 153,397,300.00 1.00

ljb2 7.24 0 0.05 N/A 0.20 1.69 0.43

ljb7 8.61 0 0.53 N/A 1.70 0.96 4.74

ljb9 9.48 0 0.72 N/A 2.10 9.48 5.57

ljb10 7.31 0 0.89 N/A 2.70 2.36 4.72

ljb12 6.20 0 0.70 N/A 2.10 6.20 6.03
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Summary of the results (1)

• Over 37 hard 0-1 MIP instances:

FP failed in finding a feasible solution only in 1 case, while

ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.
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ILOG-Cplex 8.1 (default) failed 8 times.

• The quality of the solutions obtained is generally comparable, as well as the computing times.

• There are still 12 0-1 MIPs on the testbed which cannot be solved by the three algorithms.

• When ILOG-Cplex is not able to find a feasible solution obviously it resorts to branching, and

it is then able to find a feasible solution:

to all MIPs from a min of 30 to a max of 207,918 nodes for ILOG-Cplex (emp=1),

to all but 3 MIPs from a min of 10 to a max of 37,320 nodes for ILOG-Cplex (default) within

a time limit of 1,200 CPU seconds.
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• Over 37 hard 0-1 MIP instances:

FP failed in finding a feasible solution only in 1 case, while

ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.

• The quality of the solutions obtained is generally comparable, as well as the computing times.

• There are still 12 0-1 MIPs on the testbed which cannot be solved by the three algorithms.

• When ILOG-Cplex is not able to find a feasible solution obviously it resorts to branching, and

it is then able to find a feasible solution:

to all MIPs from a min of 30 to a max of 207,918 nodes for ILOG-Cplex (emp=1),

to all but 3 MIPs from a min of 10 to a max of 37,320 nodes for ILOG-Cplex (default) within

a time limit of 1,200 CPU seconds.

• Better results have been obtained by Ed Rothberg by avoiding preprocessing!!
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Summary of the results (2)

• The problem with FP is that, due to the flipping at step 9 of the algorithm, some cycling is

possible: a same sequence of points x∗ and x̃ is visited again and again.
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• Simple anti-stalling and anti-cycling rules borrowed from metaheuristics can be implemented

within the basic FP framework.

• Instead, we found extremely effective the idea of introducing some enumeration.

• Let xF (F for fractional) be the LP point x∗ (as computed at step 5) which is as close as

possible to its rounding [xF ], chosen among those generated by the FP procedure before

cycling: typically, the infeasibility degree ∆(xF , [xF ]) is small.

• Therefore, before doing anything else, it seems reasonable to fix xF and use a truncated

enumerative MIP method in the attempt of finding a feasible integer point close to xF .

• For 0-1 MIPs, this amounts to optimize min{∆(xF , x) : Ax ≥ b, xj integer ∀j ∈ I},

where:

∆(x
F
, x) =

∑
j∈I

[(1 − x
F
j )xj + x

F
j (1 − xj)] =

∑
j∈I

x
F
j +

∑
j∈I

(1 − 2x
F
j )xj

is a suitable redefinition of the distance function of a generic integer point x with respect to

the given fractional point xF .
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Improving the basic FP scheme

initial final B&B B&B total

Name value nIT nR nH ∆(x∗, x̃) ∆(x∗, x̃) nodes time time

danoint 82.00 3 0 1 3.0 3.0 33 0.69 0.87

glass4 4.10e9 100 0 1 0.3 0.1 0 0.01 0.38

net12 296.00 7 0 1 84.1 4.0 0 1.20 6.31

blp-ar98 14,269.65 23 0 1 13.7 3.4 340 8.21 12.41

blp-ic97 6,573.63 16 0 1 5.1 0.4 0 0.78 2.35

CMS750 4 517.00 44 0 1 234.4 131.7 550 12.23 18.94

usAbbrv.8.25 70 164.00 58 0 1 110.3 1.0 0 0.16 1.60

manpower1 6.00 4 0 1 80.3 60.5 0 1.46 3.15

manpower2 6.00 8 0 1 80.7 47.3 10 2.80 7.59

manpower3 6.00 7 0 1 114.7 56.5 13 7.34 11.32

manpower3a 7.00 10 0 1 88.0 42.5 19 5.18 11.03

manpower4 6.00 9 0 1 88.9 24.5 30 5.83 10.68

manpower4a 7.00 10 0 1 80.7 15.2 8 2.24 8.77

As a measure of the effectiveness of FP + redefinition of the objective function + branching, the

overall number of B&B nodes of the improved version of FP, ILOG-Cplex 8.1 (emp=1), and

ILOG-Cplex 8.1 (default) is 1003, 224576 and 13016, respectively.
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