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Motivation

e Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard)
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Moreover, in some important practical cases, state-of-the-art MIP solvers may spend a very
large computational effort before initializing their incumbent solution.

We concentrate on heuristic methods to find a feasible solution for hard MIPs which are of
paramount important in practice.

This issue became even more important in the recent years, due to the success of local-search
approaches for general MIPs such as local branching [Fischetti & Lodi, 2002]
and RINS and guided dives [Danna, Rothberg, Le Pape, 2003]

Indeed, these methods can only be applied if an initial feasible solution is known.
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Motivation

Mixed-integer linear programming plays a central role in modeling difficult-to-solve (NP-hard)
combinatorial problems.

However, the exact solution of the resulting models often cannot be carried out for the problem
sizes of interest in real-world applications, hence one is interested in effective heuristic methods.

Moreover, in some important practical cases, state-of-the-art MIP solvers may spend a very
large computational effort before initializing their incumbent solution.

We concentrate on heuristic methods to find a feasible solution for hard MIPs which are of
paramount important in practice.

This issue became even more important in the recent years, due to the success of local-search
approaches for general MIPs such as local branching [Fischetti & Lodi, 2002]
and RINS and guided dives [Danna, Rothberg, Le Pape, 2003]

Indeed, these methods can only be applied if an initial feasible solution is known.

Hence: the earlier a feasible solution is found, the better!
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The basic scheme

e How do you define feasibility for a MIP problem of the form:

min{c'xz : Az > b, x; integer Vj € Z} 7
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e How do you define feasibility for a MIP problem of the form:

min{c'xz : Az > b, x; integer Vj € Z} 7

e We propose the following definition:

a feasible solution is a point x* € P := {x : Ax > b} s.t. is coincident with its rounding =

where:

1. [-] represents scalar rounding to the nearest integer;
2. zj:=[z}]ifj € Z; and

3. z; := x otherwise.
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The basic scheme

e How do you define feasibility for a MIP problem of the form:

min{c'xz : Az > b, x; integer Vj € Z} 7

e We propose the following definition:

a feasible solution is a point x* € P := {x : Ax > b} s.t. is coincident with its rounding =

where:

1. [-] represents scalar rounding to the nearest integer;
2. zj:=[z}]ifj € Z; and

3. z; := x otherwise.

e Replacing coincident with as close as possible relatively to a suitable distance function
A(x™, x) suggests an iterative heuristic for finding a feasible solution of a given MIP.
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The basic scheme (cont.d)

e We start from any =™ € P, and define its rounding .
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The basic scheme (cont.d)

e We start from any =™ € P, and define its rounding .

e At each iteration we look for a point ™ € P which is as close as possible to the current @ by
solving the problem:

min{A(x,z) : x € P}

Assuming A(x, x) is chosen appropriately, is an easily solvable LP problem.
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The basic scheme (cont.d)

e We start from any =™ € P, and define its rounding .

e At each iteration we look for a point ™ € P which is as close as possible to the current @ by
solving the problem:

min{A(x,z) : x € P}

Assuming A(x, x) is chosen appropriately, is an easily solvable LP problem.

o If A(z", ) = 0, then =" is a feasible MIP solution and we are done.
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The basic scheme (cont.d)

We start from any =™ € P, and define its rounding .

At each iteration we look for a point ™ € P which is as close as possible to the current T by
solving the problem:

min{A(x,z) : x € P}
Assuming A(x, x) is chosen appropriately, is an easily solvable LP problem.
If A(x™,z) = 0, then ™ is a feasible MIP solution and we are done.

Otherwise, we replace T by the rounding of ™, and repeat.
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trajectories of points &™ and x which satisfy feasibility in a complementary but partial way:
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The basic scheme (cont.d)

We start from any =™ € P, and define its rounding .

At each iteration we look for a point ™ € P which is as close as possible to the current T by
solving the problem:

min{A(x,z) : x € P}
Assuming A(x, x) is chosen appropriately, is an easily solvable LP problem.
If A(x™,z) = 0, then ™ is a feasible MIP solution and we are done.

Otherwise, we replace T by the rounding of ™, and repeat.

From a geometric point of view, this simple heuristic generates two hopefully convergent
trajectories of points &™ and x which satisfy feasibility in a complementary but partial way:

1. one satisfies the linear constraints, =™,
2. the other the integer requirement, x.
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Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Plot of the infeasibility measure A(z*,r) at each iteration

“B1C1S17 —

10

M. Fischetti, F. Glover, A. Lodi, The feasibility pump



Definition of A(z*, 7)

e We consider the L -norm distance between a generic point x € P and a given integer ,
defined as:

Az, T) =) |z; — Z]
JjeEL
The continuous variables x; with 7 & Z, if any, do not contribute to this function.
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Definition of A(z*, 7)

e We consider the L -norm distance between a generic point x € P and a given integer ,
defined as:

Az, T) =) |z; — Z]
JjeEL
The continuous variables x; with 7 & Z, if any, do not contribute to this function.

e If w.l.o.g. MIP constraints include the bounds [; < x; < w;, V j € Z, we can write:

Az, z):= > (zj—1l)+ > (u—=z)+ > (z] +az;)
jEI:%j:lj jEI:%j:uj jGI:lj<§j<uj

where the additional variables xj and T require the additional constraints:

T, =%z —x;, x >0,z >0, VjeI:l;<T;<u

(1)
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Definition of A(z*, 7)

e We consider the L -norm distance between a generic point x € P and a given integer ,
defined as:

Az, T) =) |z; — Z]
JjeEL
The continuous variables x; with 7 & Z, if any, do not contribute to this function.

e If w.l.o.g. MIP constraints include the bounds [; < x; < w;, V j € Z, we can write:

Az, z):= > (zj—1l)+ > (u—=z)+ > (z] +az;)

jEI::ch:lj jEI:J:j:uj jGI:lj<ﬂcj<uj

where the additional variables xj and T require the additional constraints:

:Uj:i“j—l—ac;’—a:j_, 33;’20,963-_20, Viel: <z <uy (1)

e Given an integer x, the closest point ™ € P can therefore be determined by solving the LP:

min{A(z,z) : Az > b, (1)) } (2)
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Definition of A(z*,z) (cont.d)

e When all integer-constrained variables are binary (again Ax > b include
0 < z; <1, Vj € T) no additional variables :r:;r and () are required in the definition of
A(z", ), which attains the simpler form:

A(x,x) := | Z x; + Z (1 —x;) (3)
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A(z", ), which attains the simpler form:

A(x,x) := | Z x; + Z (1 —x;) (3)

e An important feature of the method is related to the infeasibility measure used to guide x
towards feasibility: instead of taking a weighted combination of the degree of violation of the
single linear constraints, as is customary in MIP heuristics, we use the distance A(z", x) of
from polyhedron P.
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Definition of A(z*,z) (cont.d)

e When all integer-constrained variables are binary (again Ax > b include
0 <z; <1, Vj € T) no additional variables :r:;r and () are required in the definition of
A(z", ), which attains the simpler form:

A(x,x) := | Z x; + | Z (1 —x;) (3)

e An important feature of the method is related to the infeasibility measure used to guide x
towards feasibility: instead of taking a weighted combination of the degree of violation of the
single linear constraints, as is customary in MIP heuristics, we use the distance A(z", x) of
from polyhedron P.

e This distance can be interpreted as a sort of difference of pressure between the two
complementary infeasibility of ™ and x, that we try to reduce by pumping the integrality of @
into x™.

e Hence the name of the heuristic: feasibility pump (FP).
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A first FP implementation

e MAIN PROBLEM, stalling issues:
as soon as A(x™, ) is not reduced when replacing = by =*.
If A(x™,z) > 0 we still want to modify x, even if this increases its distance from x™.

Hence, we reverse the rounding of some variables x;, 7 € Z chosen so as to minimize the
increase in the current value of A(z™, x).
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A first FP implementation

e MAIN PROBLEM, stalling issues:

as soon as A(x*. ) is not reduced when replacing by x*.
9

If A(x™,z) > 0 we still want to modify x, even if this increases its distance from x™.

Hence, we reverse the rounding of some variables x;, 7 € Z chosen so as to minimize the
increase in the current value of A(z™, x).

10.
11.

1
2
3
4.
5.
6
7
8
9

initialize z* := argmin{c’2 : Az > b} and Z := rounding of z*;

. nIter := 0;
. while (A(z",z) > 0 and nIter < maxIter) do

nlter := nlter-+1;
x* = argmin{A(z,x) : Az > b},
if A(z",z) > 0 then
for each j € 7 define the flip score o := |z — Tj|;
flip all entries z; with j € Z : o; > 0.5, for a total of (say) k variables;
if k < T, then flip the T-k new entries of x with highest score
endif

enddo
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FP and local branching

e The FP can also be viewed as modified local branching (LB) strategy [Fischetti & Lodi, 2002]
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integer requirement, and we face the problem of finding a feasible solution (if any) within a
small-distance neighborhood, i.e., changing only a small subset of its variables.
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e Indeed, at each pumping cycle we have an incumbent (infeasible) solution = satisfying the
integer requirement, and we face the problem of finding a feasible solution (if any) within a
small-distance neighborhood, i.e., changing only a small subset of its variables.

e In the LB context, this subproblem would have been modeled by the MIP:
min{cT:c : Ax > b, x; integer Vj € Z, (), A(z,z) < k}

for a suitable value of parameter k, and solved through an enumerative MIP method.
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The FP can also be viewed as modified local branching (LB) strategy [Fischetti & Lodi, 2002]

Indeed, at each pumping cycle we have an incumbent (infeasible) solution x satisfying the
integer requirement, and we face the problem of finding a feasible solution (if any) within a
small-distance neighborhood, i.e., changing only a small subset of its variables.

In the LB context, this subproblem would have been modeled by the MIP:
min{cT:c : Ax > b, x; integer Vj € Z, (), A(z,z) < k}

for a suitable value of parameter k, and solved through an enumerative MIP method.

In the FP context, instead, the same subproblem is modeled in a relaxed way through the LP:
min{A(z,z) : Az > b, (1)}

where the “small distance” requirement is translated in terms of objective function.
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FP and local branching

The FP can also be viewed as modified local branching (LB) strategy [Fischetti & Lodi, 2002]

Indeed, at each pumping cycle we have an incumbent (infeasible) solution x satisfying the
integer requirement, and we face the problem of finding a feasible solution (if any) within a
small-distance neighborhood, i.e., changing only a small subset of its variables.

In the LB context, this subproblem would have been modeled by the MIP:
min{cT:c : Ax > b, x; integer Vj € Z, (), A(z,z) < k}

for a suitable value of parameter k, and solved through an enumerative MIP method.

In the FP context, instead, the same subproblem is modeled in a relaxed way through the LP:
min{A(z,z) : Az > b, (1)}

where the “small distance” requirement is translated in terms of objective function.
Hypothesis: the objective function A(x, x) will discourage =™ for be too far from .

Hence, we expect a large number of the integer-constrained (integer-valued) variables in z will
maintain their value also in the optimal ™.
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Computational results

49 hard 0-1 MIPs - Pentium M 1.6 GHz notebook - ILOG-Cplex halted at the root node

T =10 ILOG-Cplex 8.1, emp=1|ILOG-Cplex 8.1 default
Name value nIT  time value time value time
danoint N/A 3 0.00 N/A 1.60 66.50 1.57
marksharel 70.00 0 0.00 710.00 0.01 710.00 0.00
markshare2 643.00 2 0.00 1,735.00 0.00 1,735.00 0.00
seymour 44300 6 3.91 463.00 3.85 463.00 411
nsrand_ipx 336,000.00 2 0.68 62,560.00 0.76 62,560.00 0.76
van 7.68 3986.93 5.09 3594.95 5.09 3594.95
biellal 3,400,802.15 3 11.99 N/A 10.40 N/A  37.00
dclc 5,163,390.90 3 20.53 N/A 25.60 N/A  82.10
dcil 17,055,833.44 3 155.57|751,003,858.46 75.20(751,003,858.46  73.71
dolom1 199,787,276.17 4 121.74 N/A 31.90 N/A 121.30
sienal 129,121,289.71 5 721.28 N/A 87.60 N/A 271.80
trentol 27,186,350.03 1 86.61 N/A 25.60( 45,717,270.00 45.92
rail507 181.00 2 34.79 211.00 36.15 211.00 36.89
rail2536c¢ 709.00 0 166.67 763.00 16.48 763.00 16.49
rail2586c¢ 004.00 2132.27 1,078.00 57.05 1,078.00 57.49
rail4284c 1,130.00 2516.19 1,226.00 180.30 1,226.00 181.46
rail4872c 1,611.00 4617.19 1,736.00 239.43 1,736.00 241.22
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T =10 ILOG-Cplex 8.1, emp=1|IL0OG-Cplex 8.1 default
Name value nlIT time value time value time
A1C1S1 15,463.18 7 2.87 N/A 1.30 N/A 15.10
A2(C1S1 17,503.02 5 2.26 20,865.33 0.09 20,865.33 0.09
B1C1S1 37,986.94 10 4.12 69,933.52 0.10 69,933.52 0.10
B2C1S1 43,716.58 9 4.77 70,575.52 0.13 70,575.52 0.13
tr12-30 261,826.00 11 0.11 N/A 0.30 140,084.00 2.11
sp97ar 1,187,905,237.44 3 4.66(729,774,537.92 3.93(729,774,537.92 3.98
sp97ic 834,114,625.76 1 2.17|495,919,360.00 2.19{495,919,360.00 2.26
sp98ar 873,197,861.44 2 4.34(604,367,012.64 4.05/604,367,012.64 4.10
sp98ic 795,108,323.36 1 1.84|542,322,911.84 1.77(542,322,911.84 1.79
blp-ic98 13,211.71 3 0.97 N/A 3.00 N/A 7.30
blp-ir98 5,669.48 1 0.27 N/A 1.30 N/A 3.20
berlin_5_8_0 76.00 14 0.22 N/A 0.30 N/A 0.80
railway_8_1_0 434.00 46 0.73 N/A 0.20 474.00 0.33
bgh12142 120,738,665.00 0 0.18]120,670,203.50 0.29{120,670,203.50 0.29
dg012142 153,406,921.50 0 0.96|153,397,300.00 1.011153,397,300.00 1.00
ljb2 7.24 0 0.05 N/A 0.20 1.69 0.43
ljb7 8.61 00.53 N/A 1.70 0.96 4.74
ljb9 948 00.72 N/A 2.10 0.48 5.57
ljb10 7.31 00.89 N/A 2.70 2.36 4.72
ljb12 6.20 0 0.70 N/A 2.10 6.20 6.03
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Summary of the results (1)
e Over 37 hard 0-1 MIP instances:
FP failed in finding a feasible solution only in 1 case, while
ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.
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® There are still 12 0-1 MIPs on the testbed which cannot be solved by the three algorithms.
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Summary of the results (1)

Over 37 hard 0-1 MIP instances:

FP failed in finding a feasible solution only in 1 case, while
ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.
The quality of the solutions obtained is generally comparable, as well as the computing times.
There are still 12 0-1 MIPs on the testbed which cannot be solved by the three algorithms.

When ILOG-Cplex is not able to find a feasible solution obviously it resorts to branching, and
it is then able to find a feasible solution:

to all MIPs from a min of 30 to a max of 207,918 nodes for ILOG-Cplex (emp=1),

to all but 3 MIPs from a min of 10 to a max of 37,320 nodes for ILOG-Cplex (default) within
a time limit of 1,200 CPU seconds.
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Summary of the results (1)

Over 37 hard 0-1 MIP instances:
FP failed in finding a feasible solution only in 1 case, while
ILOG-Cplex 8.1 (emp=1) failed 18 times, and

ILOG-Cplex 8.1 (default) failed 8 times.
The quality of the solutions obtained is generally comparable, as well as the computing times.
There are still 12 0-1 MIPs on the testbed which cannot be solved by the three algorithms.

When ILOG-Cplex is not able to find a feasible solution obviously it resorts to branching, and
it is then able to find a feasible solution:

to all MIPs from a min of 30 to a max of 207,918 nodes for ILOG-Cplex (emp=1),

to all but 3 MIPs from a min of 10 to a max of 37,320 nodes for ILOG-Cplex (default) within
a time limit of 1,200 CPU seconds.

Better results have been obtained by Ed Rothberg by avoiding preprocessing!!
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Summary of the results (2)

e The problem with FP is that, due to the flipping at step 9 of the algorithm, some cycling is
possible: a same sequence of points ™ and x is visited again and again.
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within the basic FP framework.

Instead, we found extremely effective the idea of introducing some enumeration.

Let 2 (F for fractional) be the LP point z* (as computed at step 5) which is as close as
possible to its rounding [:EF] chosen among those generated by the FP procedure before
cycling: typically, the infeasibility degree A(z, [z¥]) is small.

Therefore, before doing anything else, it seems reasonable to fix % and use a truncated

enumerative MIP method in the attempt of finding a feasible integer point close to z* .

For 0-1 MIPs, this amounts to optimize min{A(z", z) : Az > b, x; integer Vj € T},
where:
F F F F F
Az ,z) =Y [(I—z))zj+a;(1—z)] =) = + > (1—2z;)x;
JET JET JET

is a suitable redefinition of the distance function of a generic integer point = with respect to
the given fractional point ="
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Improving the basic FP scheme

initial final B&B B&B total
Name value nIT nR nH A(x™,z) A(xz",x) nodes time time
danoint 8200 3 0 1 3.0 3.0 33 0.69 0.87
glass4 4.10e9 100 0 1 0.3 0.1 0 0.01 0.38
netl2 296,00 7 0 1 84.1 4.0 0 120 6.31
blp-ar98 14,269.65 23 0 1 13.7 34 340 8.21 12.41
blp-ic97 6,573.63 16 0 1 5.1 0.4 0 0.78 2.35
CMS750_4 517.00 44 0 1 234.4 131.7 550 12.23 18.94
usAbbrv.8.25_70 164.00 58 0 1 110.3 1.0 0 0.16 1.60
manpowerl 6.00 4 0 1 80.3 60.5 0 146 3.15
manpower2 600 8 0 1 80.7 47.3 10 2.80 7.59
manpower3 600 7 0 1 114.7 56.5 13 7.34 11.32
manpower3a 7.00 10 0 1 88.0 42.5 19 5.18 11.03
manpower4 6.00 9 0 1 88.9 24.5 30 5.83 10.68
manpower4a 700 10 0 1 80.7 15.2 8 224 8.77

As a measure of the effectiveness of FP + redefinition of the objective function + branching, the
overall number of B&B nodes of the improved version of FP, ILOG-Cplex 8.1 (emp=1), and
ILOG-Cplex 8.1 (default) is 1003, 224576 and 13016, respectively.
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