A new heuristic algorithm for the
 Vehicle Routing Problem

Roberto De Franceschi, DEI, University of Padua
Matteo Fischetti, DEI, University of Padua
Paolo Toth, DEIS, University of Bologna

A method for the TSP (Sarvanov and Doroshko, 1981)

The ASSIGN neighborhood

1. consider a given tour as a sequence of nodes
2. fix the nodes in odd position, and remove the nodes in even position
3. Reassign the removed nodes in optimal way-an easy-solvable min-cost assignment problem

Neighborhood of exponential cardinality searchable in polynomial time, recently studied by:
Deineko and Woeginger (2000)
Firla, Spille and Weismantel (2002)

Capacitated Vehicle Routing Problem

Input
Depot
K vehicles
each with capacity C
N customers
with known demand d_{i}
Goal
K routes not exceeding the given capacity
with minimum total cost

Basic extensions - Part I

Issue ...

It seems useful to "move" node v_{3} to route R_{A} (assuming this is feasible w.r.t.the capacity constraints)

But ... this cannot be done by a simple position-exchange between nodes

... solution

Introduce the concepts of restricted solution and insertion point

Basic extensions - Part II

Issue ...

It seems useful to "move" both v_{3} and v_{4} to R_{A} (if feasible)

But ... this cannot be

 done in one step by only "moving" single nodes
... solution

go beyond the basic odd/even scheme and introduce the notion of extracted node sequences

Basic extensions - Part III

The SERR algorithm

Initialization	$\begin{array}{l}\text { generate, by any heuristic or metaheuristic, an initial } \\ \text { solution }\end{array}$
Selection	Iteratively:
select the nodes to be extracted, according to suitable	
criteria (schemes)	
remove the selected nodes and generate the restricted	
solution	

number of derived sequences\end{array}\right\}\)

An example

An example

SERR Algorithm

Node re-insertion

Node re-insertion is done by solving the following set-partitioning model:

$$
\begin{aligned}
& \min \sum_{s \in S} \sum_{i \in I} C_{s i} x_{s i} \\
& \sum_{s s v} \sum_{i \in I} x_{s i}=1 \quad \forall v \text { extracted } \\
& \sum_{s \in S} x_{s i} \leq 1 \quad \forall i \in I \\
& d(r)+\sum_{s \in S} \sum_{i \in r} d(s) x_{s i} \leq C \quad \forall r \in R \\
& 0 \leq x_{s j} \leq 1 \text { integer } \quad \forall s \in S, \forall i \in I
\end{aligned}
$$

$x_{s i}=1$ if and only if sequence s goes into the insertion point i
$C_{s i}$ (best) insertion cost of sequence s into the insertion point i
$d(r)$ total demand of the restricted route r
$d(s)$ total demand in the node sequence s

An example (cont.d)

An example (cont.d)

Initial Solution

Interesting solutions

Instance E-n101-k14 with rounded costs

Initial solution: cost 1076
Xu and Kelly, 1996
Final solution: cost 1067
14
New best known solution

Interesting solutions

Instance M-n151-k12 with rounded costs

Initial solution: cost 1023
Gendreau, Hertz and Laporte, 1996

Final solution: cost 1022
15

New best known solution

Some Computational Results

Instance	Optimal	SERR sol.	Gap	Time
P-n50-k8	631	631	0.00\%	11:08
P-n55-k10	694	700	0.86\%	16:50
P-n60-k10	744	744	0.00\%	25:01
P-n60-k15	968	975	0.72\%	12:27
P-n65-k10	792	796	0.51\%	12:26
P-n70-k10	827	834	0.48\%	50:08
B-n68-k9	1272	1275	0.24\%	3:02:01
E-n51-k5	521	521	0.00\%	4:30
E-n76-k7	682	682	0.00\%	27:35
E-n76-k8	735	742	0.95\%	30:39
E-n76-k10	830	835	0.60\%	1:19:30
E-n76-k14	1021	1032	1.08\%	2:45:20
E-n101-k8	815	820	0.61\%	2:54:04
E051-05e	524.61	524.61	0.00\%	4:51
E076-10e	835.26	835.32	< 0.01\%	1:12:05
E101-08e	826.14	831.91	0.70\%	2:30:55
E101-10c	819.56	819.56	0.00\%	2:35:36
E-n101-k14	-	1076 -> 1067	-	1:36:05
M-n151-k12-a	-	$1023->1022$	-	7:46:33

New best known solution
Optimal solution(*)
New best heuristic solution known

CPU times in the format [hh:]mm:ss

PC: Pentium M 1.6GHz
(*) Most optimal solutions have been found very recently by Fukasawa, Poggi de Aragao, Reis, and Uchoa (September 2003)

Results

Convergence properties of the SERR method

Low-cost solutions available in the first iterations

The best heuristics
from the literature are credited for errors of about 2\%

Conclusions

Achieved goals

1. Definition of a new neighborhood with exponential cardinality and of an effective (non-polynomial) search algorithm
2. Simple implementation based on a general ILP solver
3. Evaluation of the algorithm on a widely-used set of instances
4. Determination of the new best solution for two of the few instances not yet solved to optimality

Future directions of work

1. Adaptation of the method to more constrained versions of VRP, including VRP with precedence constraints
2. Use of an external metaheuristic scheme

Special contents...

Capacitated Vehicle Routing Problem

Selected literature on VRP heuristics

1959 Dantzig and Ramser: problem formulation
1964 Clarke and Wright: heuristic algorithm
Balinski and Quandt: set-partitioning model
1976 Foster and Ryan: Petal heuristic
1981 Fisher and Jaikumar: Generalized Assignment heuristic
1993 Taillard: Tabu Search metaheuristic
1998 Toth and Vigo: Granular Tabu Search metaheuristic

Properties

-Important practical applications
-NP-hard

- Generalizes the Traveling Salesman Problem (TSP)

