Combinatorial Benders' Cuts

Gianni Codato DEI, University of Padova, Italy

Matteo Fischetti DEI, University of Padova, Italy matteo.fischetti@unipd.it

IPCO X, New York, June 2004

G. Codato, M. Fischetti, Combinatorial Benders' Cuts

• Consider a 0-1 ILP of the form

$$\min\{c^T x : F x \le g, x \in \{0, 1\}^n\}$$

• Consider a 0-1 ILP of the form

$$\min\{c^{T}x: Fx \le g, x \in \{0, 1\}^{n}\}\$$

amended by a set of "conditional" linear constraints involving additional continuous variables \boldsymbol{y}

• Consider a 0-1 ILP of the form

$$\min\{c^{T}x: Fx \le g, x \in \{0, 1\}^{n}\}\$$

amended by a set of "conditional" linear constraints involving additional continuous variables \boldsymbol{y}

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i \quad \text{ for all } i \in I$$

• Consider a 0-1 ILP of the form

$$\min\{c^{T}x: Fx \le g, x \in \{0, 1\}^{n}\}\$$

amended by a set of "conditional" linear constraints involving additional continuous variables y

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i \quad \text{ for all } i \in I$$

plus a (possibly empty) set of "unconditional" linear constraints on the continuous variables \boldsymbol{y}

 $Dy \ge e$

• Consider a 0-1 ILP of the form

$$\min\{c^{T}x: Fx \le g, x \in \{0, 1\}^{n}\}\$$

amended by a set of "conditional" linear constraints involving additional continuous variables y

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i \quad \text{ for all } i \in I$$

plus a (possibly empty) set of "unconditional" linear constraints on the continuous variables y

$$Dy \ge e$$

• Note: the continuous variables y do not appear in the objective function—they are only introduced to force some feasibility properties of the x's.

• Asymmetric Travelling Salesman Problem with Time Windows

• Asymmetric Travelling Salesman Problem with Time Windows

- binary variables x_{ij} = usual arc variables

• Asymmetric Travelling Salesman Problem with Time Windows

- binary variables x_{ij} = usual arc variables
- continuous variables y_i = arrival time at city i

• Asymmetric Travelling Salesman Problem with Time Windows

- binary variables x_{ij} = usual arc variables
- continuous variables y_i = arrival time at city i
- conditional constraints are the logical implications:

 $x_{ij} = 1 \Rightarrow y_j \ge y_i + travel_time(i, j)$

- **unconditional** constraints limit the arrival time at each city *i*:

 $early_arrival_time(i) \le y_i \le late_arrival_time(i).$

• Asymmetric Travelling Salesman Problem with Time Windows

- binary variables x_{ij} = usual arc variables
- continuous variables y_i = arrival time at city i
- conditional constraints are the logical implications:

 $x_{ij} = 1 \Rightarrow y_j \ge y_i + travel_time(i, j)$

- **unconditional** constraints limit the arrival time at each city *i*:

 $early_arrival_time(i) \le y_i \le late_arrival_time(i).$

• Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map

• Asymmetric Travelling Salesman Problem with Time Windows

- binary variables x_{ij} = usual arc variables
- continuous variables y_i = arrival time at city i
- conditional constraints are the logical implications:

 $x_{ij} = 1 \Rightarrow y_j \ge y_i + travel_time(i, j)$

- **unconditional** constraints limit the arrival time at each city i:

 $early_arrival_time(i) \le y_i \le late_arrival_time(i).$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map
 - binary variables are associated to the relative position of the pairs of labels to be placed

• Asymmetric Travelling Salesman Problem with Time Windows

- binary variables x_{ij} = usual arc variables
- continuous variables y_i = arrival time at city i
- conditional constraints are the logical implications:

 $x_{ij} = 1 \Rightarrow y_j \ge y_i + travel_time(i, j)$

- **unconditional** constraints limit the arrival time at each city *i*:

 $early_arrival_time(i) \le y_i \le late_arrival_time(i).$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map
 - binary variables are associated to the relative position of the pairs of labels to be placed
 - continuous variables give the placement coordinates of the labels

• Asymmetric Travelling Salesman Problem with Time Windows

- binary variables x_{ij} = usual arc variables
- continuous variables $y_i =$ arrival time at city i
- conditional constraints are the logical implications:

 $x_{ij} = 1 \Rightarrow y_j \ge y_i + travel_time(i, j)$

- **unconditional** constraints limit the arrival time at each city *i*:

 $early_arrival_time(i) \le y_i \le late_arrival_time(i).$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map
 - binary variables are associated to the relative position of the pairs of labels to be placed
 - continuous variables give the placement coordinates of the labels

- **conditional** constraints are of the type "if label i is placed on the right of label j, then the horizontal coordinates of i and j must obey a certain linear inequality giving a suitable separation condition"

• Asymmetric Travelling Salesman Problem with Time Windows

- binary variables x_{ij} = usual arc variables
- continuous variables $y_i =$ arrival time at city i
- conditional constraints are the logical implications:

 $x_{ij} = 1 \Rightarrow y_j \ge y_i + travel_time(i, j)$

- **unconditional** constraints limit the arrival time at each city *i*:

 $early_arrival_time(i) \le y_i \le late_arrival_time(i).$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map
 - binary variables are associated to the relative position of the pairs of labels to be placed
 - continuous variables give the placement coordinates of the labels
 - **conditional** constraints are of the type "if label i is placed on the right of label j, then the horizontal coordinates of i and j must obey a certain linear inequality giving a suitable separation condition"
 - unconditional constraints limit the label coordinates

The (in)famous big-M method

• Conditional constraints

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i \quad \text{ for all } i \in I$$

typically modeled as follows (for sufficiently large $M_i > 0$):

$$a_i^T y \ge b_i - M_i(1 - x_{j(i)})$$
 for all $i \in I$

The (in)famous big-M method

• Conditional constraints

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i \quad \text{ for all } i \in I$$

typically modeled as follows (for sufficiently large $M_i > 0$):

$$a_i^T y \ge b_i - M_i(1 - x_{j(i)})$$
 for all $i \in I$

- Drawbacks:
 - Very poor LP relaxation
 - Large mixed-integer model involving both x and y variables

The MIP solver is "carrying on its shoulders" the burden of *all* additional constraints and variables at *all* branch-decision nodes, while these become relevant only when the corresponding $x_{j(i)}$ attain value 1 (typically, because of branching).

The (in)famous big-M method

Conditional constraints

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i \quad \text{ for all } i \in I$$

typically modeled as follows (for sufficiently large $M_i > 0$):

$$a_i^T y \ge b_i - M_i(1 - x_{j(i)})$$
 for all $i \in I$

- Drawbacks:
 - Very poor LP relaxation
 - Large mixed-integer model involving both x and y variables

The MIP solver is "carrying on its shoulders" the burden of *all* additional constraints and variables at *all* branch-decision nodes, while these become relevant only when the corresponding $x_{j(i)}$ attain value 1 (typically, because of branching).

• Note: one can get rid of the *y* variables by using **Benders' decomposition**, but this just a way to speed-up the LP solution—the resulting cuts are weak and still depend on the big-M values.

Combinatorial Benders' cuts

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i$$
, for all $i \in I$

 $Dy \ge e$

Combinatorial Benders' cuts

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i$$
, for all $i \in I$

 $Dy \ge e$

• We work on the space of the x-variables only, as in the classical Benders's approach, **but** ...

Combinatorial Benders' cuts

$$x_{j(i)} = 1 \Rightarrow a_i^T y \ge b_i$$
, for all $i \in I$

$$Dy \ge e$$

- We work on the space of the x-variables only, as in the classical Benders's approach, but ...
- ... we model the constraints involving the y variables through the following Combinatorial Benders' (CB) cuts:

$$\sum_{i \in C} x_{j(i)} \le |C| - 1$$

where $C \subseteq I$ is an **inclusion-minimal** set such that the linear system

$$SLAVE(C) := \begin{cases} a_i^T y \ge b_i, \text{ for all } i \in C \\ Dy \ge e \end{cases}$$

has no feasible (continuous) solution y.

CB cut separation

- CB cut violated by a given $x^* \in [0,1]^n$ iff $\sum_{i \in C} (1-x^*_{j(i)}) < 1$, hence;
 - (i) weigh each conditional constraint $a_i^T y \leq b_i$ by $1 x_{j(i)}^*$;
 - (ii) weigh each unconditional constraint in $Dy \ge e$ by 0;

(iii) look for a minimum-weight MIS (minimal infeasible system, or IIS) of the resulting weighted system (NP-hard).

CB cut separation

- CB cut violated by a given $x^* \in [0,1]^n$ iff $\sum_{i \in C} (1-x^*_{j(i)}) < 1$, hence;
 - (i) weigh each conditional constraint $a_i^T y \leq b_i$ by $1 x_{j(i)}^*$;
 - (ii) weigh each unconditional constraint in $Dy \ge e$ by 0;

(iii) look for a minimum-weight MIS (minimal infeasible system, or IIS) of the resulting weighted system (NP-hard).

- A simple polynomial-time heuristic:
 - start with $C:=\{i\in I: x^*_{j(i)}=1\}$,
 - verify the infeasibility of

$$SLAVE(C) := \begin{cases} a_i^T y \ge b_i, \text{ for all } i \in C \\ Dy \ge e \end{cases}$$

by classical LP tools,

- make C inclusion-minimal in a greedy way.

CB cut separation

- CB cut violated by a given $x^* \in [0,1]^n$ iff $\sum_{i \in C} (1-x^*_{j(i)}) < 1$, hence;
 - (i) weigh each conditional constraint $a_i^T y \leq b_i$ by $1 x_{j(i)}^*$;
 - (ii) weigh each unconditional constraint in $Dy \ge e$ by 0;

(iii) look for a minimum-weight MIS (minimal infeasible system, or IIS) of the resulting weighted system (NP-hard).

- A simple polynomial-time heuristic:
 - start with $C:=\{i\in I: x^*_{j(i)}=1\}$,
 - verify the infeasibility of

$$SLAVE(C) := \begin{cases} a_i^T y \ge b_i, \text{ for all } i \in C \\ Dy \ge e \end{cases}$$

by classical LP tools,

- make C inclusion-minimal in a greedy way.

• The above heuristic is indeed **exact** when x^* is integer.

- Work in the x space. At each branching node:
 - 1. solve the LP relaxation of the *Master Problem*

$$\min\{c^T x : F x \le g, x \in \{0, 1\}^n\}$$

amended by the CB cuts generated so far

- Work in the x space. At each branching node:
 - 1. solve the LP relaxation of the *Master Problem*

$$\min\{c^T x : Fx \le g, x \in \{0, 1\}^n\}$$

amended by the CB cuts generated so far

2. apply the CB separation heuristic so as to generate new violated combinatorial cuts—and to assert the feasibility of x^* , if integer.

- Work in the x space. At each branching node:
 - 1. solve the LP relaxation of the *Master Problem*

$$\min\{c^T x : Fx \le g, x \in \{0, 1\}^n\}$$

amended by the CB cuts generated so far

2. apply the CB separation heuristic so as to generate new violated combinatorial cuts—and to assert the feasibility of x^* , if integer.

- Work in the x space. At each branching node:
 - 1. solve the LP relaxation of the *Master Problem*

$$\min\{c^T x : F x \le g, x \in \{0, 1\}^n\}$$

amended by the CB cuts generated so far

2. apply the CB separation heuristic so as to generate new violated combinatorial cuts—and to assert the feasibility of x^* , if integer.

Notes:

 The generated CB cuts automatically distill combinatorial information hidden in the MIP model, triggering the activation of other classes of combinatorial cuts, including Caprara-Fischetti {0, 1/2}-cuts.

- Work in the x space. At each branching node:
 - 1. solve the LP relaxation of the *Master Problem*

$$\min\{c^{T}x:Fx\leq g,x\in\left\{0,1\right\}^{n}\}$$

amended by the CB cuts generated so far

2. apply the CB separation heuristic so as to generate new violated combinatorial cuts—and to assert the feasibility of x^* , if integer.

- The generated CB cuts automatically **distill** combinatorial information hidden in the MIP model, triggering the activation of other classes of combinatorial cuts, including Caprara-Fischetti $\{0, 1/2\}$ -cuts.
- The role of the big-M terms in the MIP model vanishes—only logical implications are relevant, no matter the way they are modelled ⇒ logical implications can be stated explicitly in the model.

- Work in the x space. At each branching node:
 - 1. solve the LP relaxation of the *Master Problem*

$$\min\{c^{T}x:Fx\leq g,x\in\left\{0,1\right\}^{n}\}$$

amended by the CB cuts generated so far

2. apply the CB separation heuristic so as to generate new violated combinatorial cuts—and to assert the feasibility of x^* , if integer.

- The generated CB cuts automatically **distill** combinatorial information hidden in the MIP model, triggering the activation of other classes of combinatorial cuts, including Caprara-Fischetti $\{0, 1/2\}$ -cuts.
- The role of the big-M terms in the MIP model vanishes—only logical implications are relevant, no matter the way they are modelled ⇒ logical implications can be stated explicitly in the model.
- Related to the concept of **nogoods** (minimal infeasible configurations of the binary variables) used in Constraint Programming (Hooker and Ottosson, 2003, and Thorsteinsson, 2001).

- Work in the x space. At each branching node:
 - 1. solve the LP relaxation of the *Master Problem*

$$\min\{c^T x : F x \le g, x \in \{0, 1\}^n\}$$

amended by the CB cuts generated so far

2. apply the CB separation heuristic so as to generate new violated combinatorial cuts—and to assert the feasibility of x^* , if integer.

- The generated CB cuts automatically **distill** combinatorial information hidden in the MIP model, triggering the activation of other classes of combinatorial cuts, including Caprara-Fischetti $\{0, 1/2\}$ -cuts.
- The role of the big-M terms in the MIP model vanishes—only logical implications are relevant, no matter the way they are modelled ⇒ logical implications can be stated explicitly in the model.
- Related to the concept of **nogoods** (minimal infeasible configurations of the binary variables) used in Constraint Programming (Hooker and Ottosson, 2003, and Thorsteinsson, 2001).
- Interesting connections with Chvátal's **resolution search** and with Glover-Tangedhal's **dynamic branch and bound**.

A more general framework

• Consider a MIP problem with the following structure:

$$z^* := \min \qquad c^T x + 0^T y \tag{1}$$

s.t.
$$Fx \leq g$$
 (2)

$$Mx + Ay \ge b \tag{3}$$

$$Dy \ge e$$
 (4)

$$x_j \in \{0, 1\} \quad \text{for } j \in B \tag{5}$$

A more general framework

• Consider a MIP problem with the following structure:

$$z^* := \min \qquad c^T x + 0^T y \tag{1}$$

s.t.
$$Fx \leq g$$
 (2)

$$Mx + Ay \ge b \tag{3}$$

$$Dy \ge e$$
 (4)

$$x_j \in \{0, 1\} \quad \text{for } j \in B \tag{5}$$

• We assume linking constraints (3) are of the type:

$$m_{i,j(i)}x_{j(i)} + a_i^T y \ge b_i \text{ for all } i \in I$$
(6)

A more general framework

• Consider a MIP problem with the following structure:

$$z^* := \min \qquad c^T x + 0^T y \tag{1}$$

s.t.
$$Fx \leq g$$
 (2)

$$Mx + Ay \ge b \tag{3}$$

$$Dy \ge e$$
 (4)

$$x_j \in \{0, 1\} \quad \text{for } j \in B \tag{5}$$

• We assume linking constraints (3) are of the type:

$$m_{i,j(i)}x_{j(i)} + a_i^T y \ge b_i \text{ for all } i \in I$$
 (6)

• A useful trick: introduce a continuous copy x_j^c of each binary variable x_j , $j \in B$, and link the two copies through the constraints:

$$x_j = x_j^c \quad \text{for } j \in B$$
 (7)

• *MASTER*:

$$z^* = \min \qquad c^T x \tag{8}$$

s.t.
$$Fx \leq g$$
 (plus additional cuts, if any) (9)

$$x_j \in \{0, 1\} \quad \text{for} \quad j \in B \tag{10}$$

• MASTER:

$$z^* = \min \qquad c^T x \tag{8}$$

s.t.
$$Fx \leq g$$
 (plus additional cuts, if any) (9)

$$x_j \in \{0,1\} \quad \text{for} \quad j \in B \tag{10}$$

• SLAVE(x), a linear system parametrized by x:

$$Ay \ge b - Mx \tag{11}$$

$$Dy \ge e$$
 (12)

• MASTER:

$$z^* = \min \qquad c^T x \tag{8}$$

s.t.
$$Fx \leq g$$
 (plus additional cuts, if any) (9)

$$x_j \in \{0, 1\} \quad \text{for} \quad j \in B \tag{10}$$

• SLAVE(x), a linear system parametrized by x:

$$Ay \ge b - Mx \tag{11}$$

$$Dy \ge e \tag{12}$$

• If x^* integer and $SLAVE(x^*)$ infeasible, take any MIS of SLAVE (x^*) involving the rows of A indexed by C (say)

• MASTER:

$$z^* = \min \qquad c^T x \tag{8}$$

s.t.
$$Fx \leq g$$
 (plus additional cuts, if any) (9)

$$x_j \in \{0,1\} \quad \text{for} \quad j \in B \tag{10}$$

• SLAVE(x), a linear system parametrized by x:

$$Ay \ge b - Mx \tag{11}$$

$$Dy \ge e \tag{12}$$

 If x^{*} integer and SLAVE(x^{*}) infeasible, take any MIS of SLAVE(x^{*}) involving the rows of A indexed by C (say) ⇒ at least one binary variable x_{j(i)}, i ∈ C, has to be changed in order to break the infeasibility

• MASTER:

$$z^* = \min \qquad c^T x \tag{8}$$

s.t.
$$Fx \leq g$$
 (plus additional cuts, if any) (9)

$$x_j \in \{0,1\} \quad \text{for} \quad j \in B \tag{10}$$

• SLAVE(x), a linear system parametrized by x:

$$Ay \ge b - Mx \tag{11}$$

$$Dy \ge e \tag{12}$$

 If x^{*} integer and SLAVE(x^{*}) infeasible, take any MIS of SLAVE(x^{*}) involving the rows of A indexed by C (say) ⇒ at least one binary variable x_{j(i)}, i ∈ C, has to be changed in order to break the infeasibility ⇒ Combinatorial Benders' (CB) cut:

$$\sum_{i \in C: x_{j(i)}^* = 0} x_j + \sum_{i \in C: x_{j(i)}^* = 1} (1 - x_j) \ge 1.$$
(13)

Computational Results

- Implementation in C++ embedded within the ILOG-Cplex Concert Technology 1.2 framework (ILOG-Cplex 8.1 MIP solver).
- Experiments on a PC AMD Athlon 2100+ with 1 GByte RAM, with a time-limit of 3 CPU hours for each run.

Computational Results

- Implementation in C++ embedded within the ILOG-Cplex Concert Technology 1.2 framework (ILOG-Cplex 8.1 MIP solver).
- Experiments on a PC AMD Athlon 2100+ with 1 GByte RAM, with a time-limit of 3 CPU hours for each run.
- The test-bed:

1. **Map Labelling** (max. problem): placing as many rectangular labels as possible (without overlap) in a given map (Mützel and Klau, 2003)

2. **Two-Group Statistical Classification** (discriminant analysis): given a population whose members can be divided into two distinct classes, define a linear function of some available measures so as to decide whether a new member belongs to the first or second class (Rubin, 1997).

Computational Results

- Implementation in C++ embedded within the ILOG-Cplex Concert Technology 1.2 framework (ILOG-Cplex 8.1 MIP solver).
- Experiments on a PC AMD Athlon 2100+ with 1 GByte RAM, with a time-limit of 3 CPU hours for each run.
- The test-bed:

1. **Map Labelling** (max. problem): placing as many rectangular labels as possible (without overlap) in a given map (Mützel and Klau, 2003)

2. **Two-Group Statistical Classification** (discriminant analysis): given a population whose members can be divided into two distinct classes, define a linear function of some available measures so as to decide whether a new member belongs to the first or second class (Rubin, 1997).

• All instances have been processed twice:

Cplex: the original MIP model is solved through the commercial ILOG-Cplex 8.1 solver (with default settings), and

CBC: the master/slave reformulation is solved by using CB cuts and $\{0, 1/2\}$ -cuts (still using the ILOG-Cplex 8.1 library).

Subset 1		Cplex CBC		Statis	stics
File name	opt.	Time	Time	t.Cplex/	t.CBC/
		hh:mm:ss	hh:mm:ss	t.CBC	t.Cplex
MAP LABELLING					
CMS 600-1	600	1: 08 : 41	0:04:34	15.0	6.6%
STAT. ANALYSIS					
Chorales-116	24	1:24:52	0:10:18	8.2	12.1%
Horse-colic-151	5	0:04:50	0:00:23	12.6	7.9%
Iris-150	18	0:09:29	0: 01 : 10	8.1	12.3%
Credit-300	8	0:19:35	0:00:02	587.5	0.2%
Lymphography-142	5	0:00:11	0:00:01	11.0	9.1%
Mech-analysis-107	7	0:00:05	0:00:01	5.0	20.0%
Mech-analysis-137	18	0:07:44	0:00:27	17.2	5.8%
Monks-tr-122	13	0:02:05	0:00:05	25.0	4.0%
Pb-gr-txt-198	11	0:04:21	0:00:05	52.2	1.9%
Pb-pict-txt-444	7	0:02:07	0:00:02	63.5	1.6%
Pb-hl-pict-277	10	0:04:17	0:00:27	9.5	10.5%
Postoperative-88	16	0:15:16	0:00:01	916.0	0.1%
BV-OS-282	6	0:05:13	0:00:24	13.0	7.7%
Opel-Saab-80	6	0: 01:03	0:00:13	4.8	20.6%
Bus-Van-437	6	0:09:17	0:00:28	19.9	5.0%
HouseVotes84-435	6	0:04:59	0:00:11	27.2	3.7%
Water-treat-206	4	0: 01 : 10	0:00:06	11.7	8.6%
Water-treat-213	5	0: 17:00	0:00:51	20.0	5.0%
TOTALS		8 : 29 : 51	0:24:11	21.1	5%

Table 1: Problems solved to proven optimality by both Cplex and CBC

File name	n. nodes	n. nodes
(Subset 1)	Cplex	CBC
STAT. ANALYSIS		
Chorales-116	10,329,312	20,382
Horse-colic-151	135,018	2,184
Iris-150	970,659	1,290
Credit-300	176,956	66
Lymphography-142	8,157	106
Mech-analysis-107	11,101	68
Mech-analysis-137	938,088	1,888
Monks-tr-122	262,431	357
Pb-gr-txt-198	135,980	110
Pb-pict-txt-277	71,031	1,026
Pb-hl-pict-444	22,047	115
Postoperative-88	2,282,109	171
BV-0S-282	56,652	1,044
Opel-Saab-80	87,542	7,314
Bus-Van-437	55,224	6,795
HouseVotes84-435	42,928	734
Water-treat-206	12,860	482
Water-treat-213	168,656	4,036
MAP LABELLING		
CMS 600-1	110,138	14

Table 2: Number of branch-decision nodes enumerated by Cplex and by CBC, respectively

Figure 1: Optimizing the statistical-analysis instance Chorales-116 (minimization problem)

Subset 2		CBC					
File Name	Time	best	best	Gap	mem	Time	opt.
	hh:mm:ss	sol.	bound	%	MB	hh:mm:ss	
Chorales-134	0: 36 :23	33	16.0	51%	371	0: 36 :23	30
	3: 00 :58	30	21.1	30%	992		
Chorales-107	0: 04 :19	28	12.1	57%	61	0: 04 :19	27
	3: 01 :27	27	22.2	18%	711		
Breast-Cancer-600	0: 00 :13	108	1.5	99%	9	0: 00 :13	16
	3: 00 :11	16	13.2	18%	45		
Bridges-132	0: 03 :39	33	5.1	85%	44	0: 03 :39	23
	3: 01 :09	23	10.0	56%	1406		
Mech-analysis-152	0: 34 :12	22	12.1	45%	328	0: 34 :12	21
	3: 00 :50	21	16.1	24%	865		
Monks-tr-124	0: 01 :55	27	8.1	70%	25	0: 01 :55	24
	3: 00 :35	24	20.0	17%	381		
Monks-tr-115	0: 04 :16	29	9.1	69%	67	0: 04 :16	27
	3: 01 :07	27	19.0	30%	1131		
Solar-flare-323	0: 00 :04	51	5.0	90%	18	0: 00 :04	38
	3: 00 :45	43	17.0	61%	977		
BV-OS-376	0: 09 :04	9	3.1	65%	9	0: 09 :04	9
	3: 00 :10	9	6.0	33%	56		
BusVan-445	0: 10 :31	13	3.0	77%	11	0: 10 :31	8
	3: 00 :06	9	5.1	43%	56		
TOTALS		Gap (same t.)	71%		1: 44 :36	
	30 : 07 : 18	Gap (end)		33%			

Table 3: Statistical Analysis problems solved to proven optimality by CBC but not by Cplex

Subset 2	Cplex				CBC		
File Name	Time	best	best	Gap	mem.	Time	opt.
	hh:mm:ss	sol.	bound	%	MB	hh:mm:ss	
CMS 600-0 (4S)	0: 04 :27	592	600	1.35%	18	0: 04 :27	600
	3: 03 :00	594	600	1.01%	770		
CMS 650-0 (4S)	0: 06 :26	638	650	1.88%	20	0: 06 :26	649
	3: 02 :34	646	650	0.62%	480		
CMS 650-1 (4S)	0: 04 :50	647	650	0.46%	7	0: 04 :50	649
	3: 03 :13	648	650	0.31%	904		
CMS 700-1 (4S)	0: 13 :06	686	700	2.04%	58	0: 13 :06	699
	3: 03 :00	691	700	1.30%	1045		
CMS 750-1 (4S)	0: 07 :53	738	750	1.63%	28	0: 07 :53	750
	3: 02 :19	741	750	1.21%	521		
CMS 750-4 (4S)	0: 07 :05	736	750	1.90%	28	0: 07 :05	748
	3: 00 :24	743	750	0.94%	417		
CMS 800-0 (4S)	0: 19 :15	773	800	3.49%	55	0: 19 :15	798
	3: 02 :16	773	800	3.49%	533		
CMS 800-1 (4S)	0: 22 :24	784	800	2.04%	92	0: 22 :24	800
	3: 02 :30	786	800	1.78%	761		
CMS 600-0 (4P)	0: 00 :01	543	600	10.5%	2	0: 00 :04	600
	3: 02 :57	574	600	4.53%	782		
CMS 600-1 (4P)	0: 39 :07	565	600	6.19%	184	0: 39 :07	597
	3: 02 :55	568	600	5.63%	831		
TOTALS		Gap (same t.)	3.6%		2: 05 :4.1	
	33 : 25 :10	Ga	Gap (end)				

Table 4: Map Labelling problems solved to proven optimality by CBC but not by Cplex

Figure 2: Optimizing the statistical-analysis instance Bridges-132 (minimization problem)

Figure 3: Optimizing the map labelling instance CMS600-1 (4P) (maximization problem)

Subset 3	Cplex								
File Name	Time	Gap	mem.						
	hh:mm:ss	sol.	bound	%	MB				
Flags-169	3: 00 :19	10	5.0	49.8%	290				
Horse-colic-253	3: 00 :15	13	5.0	61.5%	279				
Horse-colic-185	3: 00 :16	11	5.0	54.4%	265				
Solar-flare-1066	3: 00 :18	273	7.6	97.3%	787				
TOTAL	12: 01 :08	Mean Gap		65.5%					

Subset 3						
File Name	Time	best	best	Gap	mem.	Δ Gap
	hh:mm:ss	sol.	bound	%	MB	%
Flags-169	3: 02 :46	10	6.50	35.0%	4052	14.8%
Horse-colic-253	3: 02 :59	13	8.91	31.5%	3394	30.0%
Horse-colic-185	3: 01 :25	12	6.33	47.3%	4494	7.1%
Solar-flare-1066	3: 01 :16	284	201.30	29.1%	1423	68.2%
TOTAL	12: 02 :26	Mean Gaps		35.7%	_	30.0%

Table 5: Statistical Analysis problems solved to proven optimality by neither codes

Subset 3	Cplex							
File Name	Time	best	best	Gap	mem.			
	hh:mm:ss	sol.	bound	%	MB			
Berlin	3: 06 :43	37	47.8	29.1%	1063			
CMS 900-0 (4S)	3: 02 :47	881	900	2.2%	676			
CMS 1000-0 (4S)	3: 01 :46	945	1000	5.8%	566			
US-Abbrv	3: 01 :18	73	104.8	43.6%	740			
CMS 650-0 (4P)	3: 04 :55	611	650	6.4%	764			
CMS 650-1 (4P)	3: 02 :51	604	650	7.6%	798			
TOTAL	18: 20 :20	Mean Gap		15.8%				

Subset 3						
File Name	Time	best	best	Gap	mem.	Δ Gap
	hh:mm:ss	sol.	bound	%	MB	%
Berlin	3: 03 :43	38	43.0	13.1%	1952	16.0%
CMS 900-0 (4S)	3: 02 :47	897	898.5	0.2%	283	2.0%
CMS 1000-0 (4S)	3: 01 :46	978	998.3	2.1%	509	3.7%
US-Abbrv	3: 01 :18	77	99.7	29.5%	428	14.1%
CMS 650-0 (4P)	3: 05 :17	633	646.9	2.2%	1658	4.2%
CMS 650-1 (4P)	3: 02 :51	638	648.0	1.6%	706	6.0%
TOTAL	18: 17:42	Mean Gaps		8.12%		7.7%

Table 6: Map Labelling problems solved to proven optimality by neither codes

Figure 4: Optimizing the statistical-analysis instance Solar-flare-1066 (minimization problem)

Figure 5: Optimizing the map labelling instance CMS900-0 (4S) (maximization problem)