Combinatorial Benders' Cuts

Gianni Codato
DEI, University of Padova, Italy

Matteo Fischetti
DEI, University of Padova, Italy
matteo.fischetti@unipd.it

IPCO X, New York, June 2004

Introduction

- Consider a 0-1 ILP of the form

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

Introduction

- Consider a 0-1 ILP of the form

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by a set of "conditional" linear constraints involving additional continuous variables y

Introduction

- Consider a 0-1 ILP of the form

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by a set of "conditional" linear constraints involving additional continuous variables y

$$
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i} \quad \text { for all } i \in I
$$

Introduction

- Consider a 0-1 ILP of the form

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by a set of "conditional" linear constraints involving additional continuous variables y

$$
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i} \quad \text { for all } i \in I
$$

plus a (possibly empty) set of "unconditional" linear constraints on the continuous variables y

$$
D y \geq e
$$

Introduction

- Consider a 0-1 ILP of the form

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by a set of "conditional" linear constraints involving additional continuous variables y

$$
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i} \quad \text { for all } i \in I
$$

plus a (possibly empty) set of "unconditional" linear constraints on the continuous variables y

$$
D y \geq e
$$

- Note: the continuous variables y do not appear in the objective function-they are only introduced to force some feasibility properties of the x 's.

Examples

- Asymmetric Travelling Salesman Problem with Time Windows

Examples

- Asymmetric Travelling Salesman Problem with Time Windows
- binary variables $x_{i j}=$ usual arc variables

Examples

- Asymmetric Travelling Salesman Problem with Time Windows
- binary variables $x_{i j}=$ usual arc variables
- continuous variables $y_{i}=$ arrival time at city i

Examples

- Asymmetric Travelling Salesman Problem with Time Windows
- binary variables $x_{i j}=$ usual arc variables
- continuous variables $y_{i}=$ arrival time at city i
- conditional constraints are the logical implications:

$$
x_{i j}=1 \Rightarrow y_{j} \geq y_{i}+\text { travel_time }(i, j)
$$

- unconditional constraints limit the arrival time at each city i :

$$
\text { early_arrival_time }(i) \leq y_{i} \leq \text { late_arrival_time }(i) .
$$

Examples

- Asymmetric Travelling Salesman Problem with Time Windows
- binary variables $x_{i j}=$ usual arc variables
- continuous variables $y_{i}=$ arrival time at city i
- conditional constraints are the logical implications:

$$
x_{i j}=1 \Rightarrow y_{j} \geq y_{i}+\text { travel_time }(i, j)
$$

- unconditional constraints limit the arrival time at each city i :

$$
\text { early_arrival_time }(i) \leq y_{i} \leq \text { late_arrival_time }(i) .
$$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map

Examples

- Asymmetric Travelling Salesman Problem with Time Windows
- binary variables $x_{i j}=$ usual arc variables
- continuous variables $y_{i}=$ arrival time at city i
- conditional constraints are the logical implications:

$$
x_{i j}=1 \Rightarrow y_{j} \geq y_{i}+\text { travel_time }(i, j)
$$

- unconditional constraints limit the arrival time at each city i :

$$
\text { early_arrival_time }(i) \leq y_{i} \leq \text { late_arrival_time }(i) .
$$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map
- binary variables are associated to the relative position of the pairs of labels to be placed

Examples

- Asymmetric Travelling Salesman Problem with Time Windows
- binary variables $x_{i j}=$ usual arc variables
- continuous variables $y_{i}=$ arrival time at city i
- conditional constraints are the logical implications:

$$
x_{i j}=1 \Rightarrow y_{j} \geq y_{i}+\text { travel_time }(i, j)
$$

- unconditional constraints limit the arrival time at each city i :

$$
\text { early_arrival_time }(i) \leq y_{i} \leq \text { late_arrival_time }(i) .
$$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map
- binary variables are associated to the relative position of the pairs of labels to be placed
- continuous variables give the placement coordinates of the labels

Examples

- Asymmetric Travelling Salesman Problem with Time Windows
- binary variables $x_{i j}=$ usual arc variables
- continuous variables $y_{i}=$ arrival time at city i
- conditional constraints are the logical implications:

$$
x_{i j}=1 \Rightarrow y_{j} \geq y_{i}+\text { travel_time }(i, j)
$$

- unconditional constraints limit the arrival time at each city i :

$$
\text { early_arrival_time }(i) \leq y_{i} \leq \text { late_arrival_time }(i) .
$$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map
- binary variables are associated to the relative position of the pairs of labels to be placed
- continuous variables give the placement coordinates of the labels
- conditional constraints are of the type "if label i is placed on the right of label j, then the horizontal coordinates of i and j must obey a certain linear inequality giving a suitable separation condition"

Examples

- Asymmetric Travelling Salesman Problem with Time Windows
- binary variables $x_{i j}=$ usual arc variables
- continuous variables $y_{i}=$ arrival time at city i
- conditional constraints are the logical implications:

$$
x_{i j}=1 \Rightarrow y_{j} \geq y_{i}+\text { travel_time }(i, j)
$$

- unconditional constraints limit the arrival time at each city i :

$$
\text { early_arrival_time }(i) \leq y_{i} \leq \text { late_arrival_time }(i) .
$$

- Map Labelling Problem: placing as many rectangular labels as possible (without overlap) in a given 2-dimensional map
- binary variables are associated to the relative position of the pairs of labels to be placed
- continuous variables give the placement coordinates of the labels
- conditional constraints are of the type "if label i is placed on the right of label j, then the horizontal coordinates of i and j must obey a certain linear inequality giving a suitable separation condition"
- unconditional constraints limit the label coordinates

The (in)famous big- M method

- Conditional constraints

$$
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i} \quad \text { for all } i \in I
$$

typically modeled as follows (for sufficiently large $M_{i}>0$):

$$
a_{i}^{T} y \geq b_{i}-M_{i}\left(1-x_{j(i)}\right) \quad \text { for all } i \in I
$$

The (in)famous big-M method

- Conditional constraints

$$
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i} \quad \text { for all } i \in I
$$

typically modeled as follows (for sufficiently large $M_{i}>0$):

$$
a_{i}^{T} y \geq b_{i}-M_{i}\left(1-x_{j(i)}\right) \quad \text { for all } i \in I
$$

- Drawbacks:
- Very poor LP relaxation
- Large mixed-integer model involving both x and y variables

The MIP solver is "carrying on its shoulders" the burden of all additional constraints and variables at all branch-decision nodes, while these become relevant only when the corresponding $x_{j(i)}$ attain value 1 (typically, because of branching).

The (in)famous big-M method

- Conditional constraints

$$
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i} \quad \text { for all } i \in I
$$

typically modeled as follows (for sufficiently large $M_{i}>0$):

$$
a_{i}^{T} y \geq b_{i}-M_{i}\left(1-x_{j(i)}\right) \quad \text { for all } i \in I
$$

- Drawbacks:
- Very poor LP relaxation
- Large mixed-integer model involving both x and y variables

The MIP solver is "carrying on its shoulders" the burden of all additional constraints and variables at all branch-decision nodes, while these become relevant only when the corresponding $x_{j(i)}$ attain value 1 (typically, because of branching).

- Note: one can get rid of the y variables by using Benders' decomposition, but this just a way to speed-up the LP solution-the resulting cuts are weak and still depend on the big-M values.

Combinatorial Benders' cuts

$$
\begin{gathered}
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i}, \text { for all } i \in I \\
D y \geq e
\end{gathered}
$$

Combinatorial Benders' cuts

$$
\begin{gathered}
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i}, \text { for all } i \in I \\
D y \geq e
\end{gathered}
$$

- We work on the space of the x-variables only, as in the classical Benders's approach, but ...

Combinatorial Benders' cuts

$$
\begin{gathered}
x_{j(i)}=1 \Rightarrow a_{i}^{T} y \geq b_{i}, \text { for all } i \in I \\
D y \geq e
\end{gathered}
$$

- We work on the space of the x-variables only, as in the classical Benders's approach, but ...
- ... we model the constraints involving the y variables through the following Combinatorial Benders' (CB) cuts:

$$
\sum_{i \in C} x_{j(i)} \leq|C|-1
$$

where $C \subseteq I$ is an inclusion-minimal set such that the linear system

$$
S L A V E(C):=\left\{\begin{array}{c}
a_{i}^{T} y \geq b_{i}, \text { for all } i \in C \\
D y \geq e
\end{array}\right.
$$

has no feasible (continuous) solution y.

CB cut separation

- CB cut violated by a given $x^{*} \in[0,1]^{n}$ iff $\sum_{i \in C}\left(1-x_{j(i)}^{*}\right)<1$, hence;
(i) weigh each conditional constraint $a_{i}^{T} y \leq b_{i}$ by $1-x_{j(i)}^{*}$;
(ii) weigh each unconditional constraint in $D y \geq e$ by 0 ;
(iii) look for a minimum-weight MIS (minimal infeasible system, or IIS) of the resulting weighted system (NP-hard).

CB cut separation

- CB cut violated by a given $x^{*} \in[0,1]^{n}$ iff $\sum_{i \in C}\left(1-x_{j(i)}^{*}\right)<1$, hence;
(i) weigh each conditional constraint $a_{i}^{T} y \leq b_{i}$ by $1-x_{j(i)}^{*}$;
(ii) weigh each unconditional constraint in $D y \geq e$ by 0 ;
(iii) look for a minimum-weight MIS (minimal infeasible system, or IIS) of the resulting weighted system (NP-hard).
- A simple polynomial-time heuristic:
- start with $C:=\left\{i \in I: x_{j(i)}^{*}=1\right\}$,
- verify the infeasibility of

$$
S L A V E(C):=\left\{\begin{array}{c}
a_{i}^{T} y \geq b_{i}, \text { for all } i \in C \\
D y \geq e
\end{array}\right.
$$

by classical LP tools,

- make C inclusion-minimal in a greedy way.

CB cut separation

- CB cut violated by a given $x^{*} \in[0,1]^{n}$ iff $\sum_{i \in C}\left(1-x_{j(i)}^{*}\right)<1$, hence;
(i) weigh each conditional constraint $a_{i}^{T} y \leq b_{i}$ by $1-x_{j(i)}^{*}$;
(ii) weigh each unconditional constraint in $D y \geq e$ by 0 ;
(iii) look for a minimum-weight MIS (minimal infeasible system, or IIS) of the resulting weighted system (NP-hard).
- A simple polynomial-time heuristic:
- start with $C:=\left\{i \in I: x_{j(i)}^{*}=1\right\}$,
- verify the infeasibility of

$$
S L A V E(C):=\left\{\begin{array}{c}
a_{i}^{T} y \geq b_{i}, \text { for all } i \in C \\
D y \geq e
\end{array}\right.
$$

by classical LP tools,

- make C inclusion-minimal in a greedy way.
- The above heuristic is indeed exact when x^{*} is integer.

A Branch\&Cut solution scheme

- Work in the x space. At each branching node:

1. solve the LP relaxation of the Master Problem

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by the CB cuts generated so far

A Branch\&Cut solution scheme

- Work in the x space. At each branching node:

1. solve the LP relaxation of the Master Problem

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by the CB cuts generated so far
2. apply the CB separation heuristic so as to generate new violated combinatorial cuts-and to assert the feasibility of x^{*}, if integer.

A Branch\&Cut solution scheme

- Work in the x space. At each branching node:

1. solve the LP relaxation of the Master Problem

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by the CB cuts generated so far
2. apply the CB separation heuristic so as to generate new violated combinatorial cuts-and to assert the feasibility of x^{*}, if integer.

Notes:

A Branch\&Cut solution scheme

- Work in the x space. At each branching node:

1. solve the LP relaxation of the Master Problem

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by the CB cuts generated so far
2. apply the CB separation heuristic so as to generate new violated combinatorial cuts-and to assert the feasibility of x^{*}, if integer.

Notes:

- The generated CB cuts automatically distill combinatorial information hidden in the MIP model, triggering the activation of other classes of combinatorial cuts, including Caprara-Fischetti $\{0,1 / 2\}$-cuts.

A Branch\&Cut solution scheme

- Work in the x space. At each branching node:

1. solve the LP relaxation of the Master Problem

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by the CB cuts generated so far
2. apply the CB separation heuristic so as to generate new violated combinatorial cuts-and to assert the feasibility of x^{*}, if integer.

Notes:

- The generated CB cuts automatically distill combinatorial information hidden in the MIP model, triggering the activation of other classes of combinatorial cuts, including Caprara-Fischetti $\{0,1 / 2\}$-cuts.
- The role of the big-M terms in the MIP model vanishes-only logical implications are relevant, no matter the way they are modelled \Rightarrow logical implications can be stated explicitly in the model.

A Branch\&Cut solution scheme

- Work in the x space. At each branching node:

1. solve the LP relaxation of the Master Problem

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by the CB cuts generated so far
2. apply the CB separation heuristic so as to generate new violated combinatorial cuts-and to assert the feasibility of x^{*}, if integer.

Notes:

- The generated CB cuts automatically distill combinatorial information hidden in the MIP model, triggering the activation of other classes of combinatorial cuts, including Caprara-Fischetti $\{0,1 / 2\}$-cuts.
- The role of the big-M terms in the MIP model vanishes-only logical implications are relevant, no matter the way they are modelled \Rightarrow logical implications can be stated explicitly in the model.
- Related to the concept of nogoods (minimal infeasible configurations of the binary variables) used in Constraint Programming (Hooker and Ottosson, 2003, and Thorsteinsson, 2001).

A Branch\&Cut solution scheme

- Work in the x space. At each branching node:

1. solve the LP relaxation of the Master Problem

$$
\min \left\{c^{T} x: F x \leq g, x \in\{0,1\}^{n}\right\}
$$

amended by the CB cuts generated so far
2. apply the CB separation heuristic so as to generate new violated combinatorial cuts-and to assert the feasibility of x^{*}, if integer.

Notes:

- The generated CB cuts automatically distill combinatorial information hidden in the MIP model, triggering the activation of other classes of combinatorial cuts, including Caprara-Fischetti $\{0,1 / 2\}$-cuts.
- The role of the big-M terms in the MIP model vanishes-only logical implications are relevant, no matter the way they are modelled \Rightarrow logical implications can be stated explicitly in the model.
- Related to the concept of nogoods (minimal infeasible configurations of the binary variables) used in Constraint Programming (Hooker and Ottosson, 2003, and Thorsteinsson, 2001).
- Interesting connections with Chvátal's resolution search and with Glover-Tangedhal's dynamic branch and bound.

A more general framework

- Consider a MIP problem with the following structure:

$$
\begin{align*}
z^{*}:=\min & c^{T} x+0^{T} y \tag{1}\\
\text { s.t. } & F x \leq g \tag{2}\\
& M x+A y \geq b \tag{3}\\
& D y \geq e \tag{4}\\
& x_{j} \in\{0,1\} \quad \text { for } j \in B \tag{5}
\end{align*}
$$

A more general framework

- Consider a MIP problem with the following structure:

$$
\begin{align*}
z^{*}:=\min & c^{T} x+0^{T} y \tag{1}\\
\text { s.t. } & F x \leq g \tag{2}\\
& M x+A y \geq b \tag{3}\\
& D y \geq e \tag{4}\\
& x_{j} \in\{0,1\} \quad \text { for } j \in B \tag{5}
\end{align*}
$$

- We assume linking constraints (3) are of the type:

$$
\begin{equation*}
m_{i, j(i)} x_{j(i)}+a_{i}^{T} y \geq b_{i} \text { for all } i \in I \tag{6}
\end{equation*}
$$

A more general framework

- Consider a MIP problem with the following structure:

$$
\begin{align*}
z^{*}:=\min & c^{T} x+0^{T} y \tag{1}\\
\text { s.t. } & F x \leq g \tag{2}\\
& M x+A y \geq b \tag{3}\\
& D y \geq e \tag{4}\\
& x_{j} \in\{0,1\} \quad \text { for } j \in B \tag{5}
\end{align*}
$$

- We assume linking constraints (3) are of the type:

$$
\begin{equation*}
m_{i, j(i)} x_{j(i)}+a_{i}^{T} y \geq b_{i} \text { for all } i \in I \tag{6}
\end{equation*}
$$

- A useful trick: introduce a continuous copy x_{j}^{c} of each binary variable $x_{j}, j \in B$, and link the two copies through the constraints:

$$
\begin{equation*}
x_{j}=x_{j}^{c} \quad \text { for } j \in B \tag{7}
\end{equation*}
$$

Master-slave solution scheme

- MASTER:

$$
\begin{array}{cc}
z^{*}=\min & c^{T} x \\
\text { s.t. } & F x \leq g \quad \text { (plus additional cuts, if any) } \\
& x_{j} \in\{0,1\} \text { for } j \in B
\end{array}
$$

Master-slave solution scheme

- MASTER:

$$
\begin{array}{cc}
z^{*}=\min & c^{T} x \\
\text { s.t. } & F x \leq g \quad \text { (plus additional cuts, if any) } \\
& x_{j} \in\{0,1\} \text { for } j \in B
\end{array}
$$

- $\operatorname{SLAVE}(x)$, a linear system parametrized by x :

$$
\begin{gather*}
A y \geq b-M x \tag{11}\\
D y \geq e \tag{12}
\end{gather*}
$$

Master-slave solution scheme

- MASTER:

$$
\begin{array}{cc}
z^{*}=\min & c^{T} x \\
\text { s.t. } & F x \leq g \quad \text { (plus additional cuts, if any) } \\
& x_{j} \in\{0,1\} \text { for } j \in B \tag{10}
\end{array}
$$

- SLAVE (x), a linear system parametrized by x :

$$
\begin{gather*}
A y \geq b-M x \tag{11}\\
D y \geq e \tag{12}
\end{gather*}
$$

- If x^{*} integer and $S L A V E\left(x^{*}\right)$ infeasible, take any MIS of $\operatorname{SLAVE}\left(x^{*}\right)$ involving the rows of A indexed by C (say)

Master-slave solution scheme

- MASTER:

$$
\begin{array}{cc}
z^{*}=\min & c^{T} x \\
\text { s.t. } & F x \leq g \quad \text { (plus additional cuts, if any) } \\
& x_{j} \in\{0,1\} \text { for } j \in B \tag{10}
\end{array}
$$

- SLAVE (x), a linear system parametrized by x :

$$
\begin{gather*}
A y \geq b-M x \tag{11}\\
D y \geq e \tag{12}
\end{gather*}
$$

- If x^{*} integer and $S L A V E\left(x^{*}\right)$ infeasible, take any MIS of $\operatorname{SLAVE}\left(x^{*}\right)$ involving the rows of A indexed by C (say) \Rightarrow at least one binary variable $x_{j(i)}, i \in C$, has to be changed in order to break the infeasibility

Master-slave solution scheme

- MASTER:

$$
\begin{array}{cc}
z^{*}=\min & c^{T} x \\
\text { s.t. } & F x \leq g \quad \text { (plus additional cuts, if any) } \\
& x_{j} \in\{0,1\} \text { for } j \in B \tag{10}
\end{array}
$$

- $\operatorname{SLAVE}(x)$, a linear system parametrized by x :

$$
\begin{gather*}
A y \geq b-M x \tag{11}\\
D y \geq e \tag{12}
\end{gather*}
$$

- If x^{*} integer and $S L A V E\left(x^{*}\right)$ infeasible, take any MIS of $\operatorname{SLAVE}\left(x^{*}\right)$ involving the rows of A indexed by C (say) \Rightarrow at least one binary variable $x_{j(i)}, i \in C$, has to be changed in order to break the infeasibility \Rightarrow Combinatorial Benders' (CB) cut:

$$
\begin{equation*}
\sum_{i \in C: x_{j(i)}^{*}=0} x_{j}+\sum_{i \in C: x_{j(i)}^{*}=1}\left(1-x_{j}\right) \geq 1 \tag{13}
\end{equation*}
$$

Computational Results

- Implementation in C++ embedded within the ILOG-Cplex Concert Technology 1.2 framework (ILOG-Cplex 8.1 MIP solver).
- Experiments on a PC AMD Athlon $2100+$ with 1 GByte RAM, with a time-limit of 3 CPU hours for each run.

Computational Results

- Implementation in C++ embedded within the ILOG-Cplex Concert Technology 1.2 framework (ILOG-Cplex 8.1 MIP solver).
- Experiments on a PC AMD Athlon $2100+$ with 1 GByte RAM, with a time-limit of 3 CPU hours for each run.
- The test-bed:

1. Map Labelling (max. problem): placing as many rectangular labels as possible (without overlap) in a given map (Mützel and Klau, 2003)
2. Two-Group Statistical Classification (discriminant analysis): given a population whose members can be divided into two distinct classes, define a linear function of some available measures so as to decide whether a new member belongs to the first or second class (Rubin, 1997).

Computational Results

- Implementation in C++ embedded within the ILOG-Cplex Concert Technology 1.2 framework (ILOG-Cplex 8.1 MIP solver).
- Experiments on a PC AMD Athlon $2100+$ with 1 GByte RAM, with a time-limit of 3 CPU hours for each run.
- The test-bed:

1. Map Labelling (max. problem): placing as many rectangular labels as possible (without overlap) in a given map (Mützel and Klau, 2003)
2. Two-Group Statistical Classification (discriminant analysis): given a population whose members can be divided into two distinct classes, define a linear function of some available measures so as to decide whether a new member belongs to the first or second class (Rubin, 1997).

- All instances have been processed twice:

Cplex: the original MIP model is solved through the commercial ILOG-Cplex 8.1 solver (with default settings), and

CBC: the master/slave reformulation is solved by using $C B$ cuts and $\{0,1 / 2\}$-cuts (still using the ILOG-Cplex 8.1 library).

Subset 1 File name	opt.	Cplex		CBC	Statistics	
		$\begin{array}{r} \text { Time } \\ \text { hh: mm } \end{array}$	ss	Time hh: mm : ss	$\begin{gathered} \text { t.Cplex/ } \\ \text { t.CBC } \end{gathered}$	$\begin{aligned} & \hline \text { t.CBC/ } \\ & \text { t.Cplex } \end{aligned}$
MAP LABELLING CMS 600-1	600	1: 08	41	0: 04 : 34	15.0	6.6\%
STAT. ANALYSIS						
Chorales-116	24	1: 24	52	0: 10:18	8.2	12.1\%
Horse-colic-151	5	0: 04	50	0: 00: 23	12.6	7.9\%
Iris-150	18	0: 09	29	0: $01: 10$	8.1	12.3\%
Credit-300	8	0: 19	35	0: 00:02	587.5	0.2\%
Lymphography-142	5	0: 00	11	0: 00:01	11.0	9.1\%
Mech-analysis-107	7	0 : 00	05	0: 00:01	5.0	20.0\%
Mech-analysis-137	18	0: 07	44	0: 00:27	17.2	5.8\%
Monks-tr-122	13	0: 02	05	0: 00:05	25.0	4.0\%
Pb-gr-txt-198	11	0: 04	21	0: 00:05	52.2	1.9\%
Pb-pict-txt-444	7	0: 02	07	0: 00:02	63.5	1.6\%
Pb-hl-pict-277	10	0: 04	17	0: 00:27	9.5	10.5\%
Postoperative-88	16	0: 15	16	0: 00:01	916.0	0.1\%
BV-OS-282	6	0: 05	13	0: 00: 24	13.0	7.7\%
Opel-Saab-80	6	0: 01	03	0: 00: 13	4.8	20.6\%
Bus-Van-437	6	0: 09	17	0: 00: 28	19.9	5.0\%
HouseVotes84-435	6	0: 04	59	0: 00: 11	27.2	3.7\%
Water-treat-206	4	0: 01	10	0: 00:06	11.7	8.6\%
Water-treat-213	5	0: 17	00	0: 00:51	20.0	5.0\%
TOTALS		8: 29	51	0: 24 : 11	21.1	5\%

Table 1: Problems solved to proven optimality by both Cplex and CBC

File name (Subset 1)	n. nodes Cplex	n.nodes CBC STAT. ANALYSIS
Chorales-116		
Horse-colic-151	1329,312	20,382
Iris-150	970,659	2,184
Credit-300	176,956	66
Lymphography-142	8,157	106
Mech-analysis-107	11,101	68
Mech-analysis-137	938,088	1,888
Monks-tr-122	262,431	357
Pb-gr-txt-198	135,980	110
Pb-pict-txt-277	71,031	1,026
Pb-hl-pict-444	22,047	115
Postoperative-88	$2,282,109$	171
BV-OS-282	56,652	1,044
Opel-Saab-80	87,542	7,314
Bus-Van-437	55,224	6,795
HouseVotes84-435	42,928	734
Water-treat-206	12,860	482
Water-treat-213	168,656	4,036
MAP LABELLING		
CMS 600-1	110,138	14

Table 2: Number of branch-decision nodes enumerated by Cplex and by CBC, respectively

Figure 1: Optimizing the statistical-analysis instance Chorales-116 (minimization problem)

Subset 2	Cplex					CBC	
File Name	$\begin{gathered} \text { Time } \\ \text { hh:mm:ss } \end{gathered}$	best sol.	$\begin{array}{r} \text { best } \\ \text { bound } \end{array}$	Gap	mem MB	Time hh:mm:ss	opt.
Chorales-134	0: 36 :23	33	16.0	51\%	371	0: 36 :23	30
	3: $00: 58$	30	21.1	30\%	992		
Chorales-107	0: 04 :19	28	12.1	57\%	61	0: 04 :19	27
	3: $01: 27$	27	22.2	18\%	711		
Breast-Cancer-600	0: $00: 13$	108	1.5	99\%	9	0: $00: 13$	16
	3: $00: 11$	16	13.2	18\%	45		
Bridges-132	0: $03: 39$	33	5.1	85\%	44	0: $03: 39$	23
	3: $01: 09$	23	10.0	56\%	1406		
Mech-analysis-152	0: 34 :12	22	12.1	45\%	328	0: 34 :12	21
	3: $00: 50$	21	16.1	24\%	865		
Monks-tr-124	0: 01 :55	27	8.1	70\%	25	0: 01 :55	24
	3: $00: 35$	24	20.0	17\%	381		
Monks-tr-115	0: 04 :16	29	9.1	69\%	67	0: 04 :16	27
	3: $01: 07$	27	19.0	30\%	1131		
Solar-flare-323	0: 00 :04	51	5.0	90\%	18	0: 00 :04	38
	3: $00: 45$	43	17.0	61\%	977		
BV-OS-376	0: 09 :04	9	3.1	65\%	9	0: $09: 04$	9
	3: $00: 10$	9	6.0	33\%	56		
BusVan-445	0: $10: 31$	13	3.0	77\%	11	0: $10: 31$	8
	3: $00: 06$	9	5.1	43\%	56		
TOTALS		Gap	(same t.)	71\%		1: 44 :36	
	30: 07 :18		(end)	33\%			

Table 3: Statistical Analysis problems solved to proven optimality by CBC but not by Cplex

Subset 2	Cplex					CBC	
File Name	Time hh:mm:ss	best sol.	$\begin{array}{r} \text { best } \\ \text { bound } \end{array}$	$\begin{gathered} \text { Gap } \\ \% \end{gathered}$	mem. MB	Time hh:mm:ss	opt.
CMS 600-0 (4S)	0: 04 :27	592	600	1.35\%	18	0: 04 :27	600
	3: 03 :00	594	600	1.01\%	770		
CMS 650-0 (4S)	0: 06 :26	638	650	1.88\%	20	0: $06: 26$	649
	3: 02 :34	646	650	0.62\%	480		
CMS 650-1 (4S)	0: 04 :50	647	650	0.46\%	7	0: 04 :50	649
	3: $03: 13$	648	650	0.31\%	904		
CMS 700-1 (4S)	0: 13 :06	686	700	2.04\%	58	0: 13 :06	699
	3: $03: 00$	691	700	1.30\%	1045		
CMS 750-1 (4S)	0: $07: 53$	738	750	1.63\%	28	0: 07 :53	750
	3: 02 :19	741	750	1.21\%	521		
CMS 750-4 (4S)	0: 07 :05	736	750	1.90\%	28	0: 07 :05	748
	3: $00: 24$	743	750	0.94\%	417		
CMS 800-0 (4S)	0: 19 :15	773	800	3.49\%	55	0: $19: 15$	798
	3: 02 :16	773	800	3.49\%	533		
CMS 800-1 (4S)	0: 22 :24	784	800	2.04\%	92	0: 22 :24	800
	3: 02 :30	786	800	1.78\%	761		
CMS 600-0 (4P)	0: $00: 01$	543	600	10.5\%	2	0: $00: 04$	600
	3: $02: 57$	574	600	4.53\%	782		
CMS 600-1 (4P)	0: $39: 07$	565	600	6.19\%	184	0: $39: 07$	597
	3: $02: 55$	568	600	5.63\%	831		
TOTALS		Gap	(same t.)	3.6\%		2: 05 :4.1	
	33: $25: 10$		(end)	2.0\%			

Table 4: Map Labelling problems solved to proven optimality by CBC but not by Cplex

Figure 2: Optimizing the statistical-analysis instance Bridges-132 (minimization problem)

Figure 3: Optimizing the map labelling instance CMS600-1 (4P) (maximization problem)

Subset 3	Cplex							
File Name	Time hh:mm:ss	best sol.	best bound	Gap \%	mem. MB			
Flags-169	$3: 00: 19$	10	5.0	49.8%	290			
Horse-colic-253	$3: 00: 15$	13	5.0	61.5%	279			
Horse-colic-185	$3: 00: 16$	11	5.0	54.4%	265			
Solar-flare-1066	$3: 00: 18$	273	7.6	97.3%	787			
TOTAL	12: 01:08	Mean Gap					$\mathbf{6 5 . 5 \%}$	-

Subset 3	CBC					
File Name	Time hh:mm:ss	best sol.	best bound	Gap \%	mem. MB	Δ Gap \%
Flags-169	$3: 02: 46$	10	6.50	35.0%	4052	14.8%
Horse-colic-253	$3: 02: 59$	13	8.91	31.5%	3394	30.0%
Horse-colic-185	$3: 01: 25$	12	6.33	47.3%	4494	7.1%
Solar-flare-1066	$3: 01: 16$	284	201.30	29.1%	1423	68.2%
TOTAL	$\mathbf{1 2 : ~ 0 2 : 2 6 ~}$	Mean Gaps				
$\mathbf{3 5 . 7 \%}$	-	$\mathbf{3 0 . 0 \%}$				

Table 5: Statistical Analysis problems solved to proven optimality by neither codes

Subset 3	Cplex							
File Name	Time hh:mm:ss	best sol.	best bound	Gap \%	mem. MB			
Berlin	$3: 06: 43$	37	47.8	29.1%	1063			
CMS 900-0 (4S)	$3: 02: 47$	881	900	2.2%	676			
CMS 1000-0(4S)	$3: 01: 46$	945	1000	5.8%	566			
US-Abbrv	$3: 01: 18$	73	104.8	43.6%	740			
CMS 650-0 (4P)	$3: 04: 55$	611	650	6.4%	764			
CMS 650-1 (4P)	$3: 02: 51$	604	650	7.6%	798			
TOTAL	$\mathbf{1 8 : ~ 2 0 : 2 0 ~}$	Mean Gap					$\mathbf{1 5 . 8 \%}$	-

Subset 3	CBC					
File Name	Time hh:mm:ss	best sol.	best bound	Gap \%	mem. MB	Δ Gap $\mathbf{\%}$
Berlin	$3: 03: 43$	38	43.0	13.1%	1952	16.0%
CMS 900-0 (4S)	$3: 02: 47$	897	898.5	0.2%	283	2.0%
CMS 1000-0 (4S)	$3: 01: 46$	978	998.3	2.1%	509	3.7%
US-Abbrv	$3: 01: 18$	77	99.7	29.5%	428	14.1%
CMS 650-0 (4P)	$3: 05: 17$	633	646.9	2.2%	1658	4.2%
CMS 650-1 (4P)	$3: 02: 51$	638	648.0	1.6%	706	6.0%
TOTAL	$\mathbf{1 8 : 1 7}: \mathbf{4 2}$	Mean Gaps				
$\mathbf{8}$	$\mathbf{8 . 1 2 \%}$	-	$\mathbf{7 . 7 \%}$			

Table 6: Map Labelling problems solved to proven optimality by neither codes

Figure 4: Optimizing the statistical-analysis instance Solar-flare-1066 (minimization problem)

Figure 5: Optimizing the map labelling instance CMS900-0 (4S) (maximization problem)

