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Introduction

• Consider a 0-1 ILP of the form

min{cT
x : Fx ≤ g, x ∈ {0, 1}n }

amended by a set of “conditional” linear constraints involving additional continuous

variables y

xj(i) = 1 ⇒ a
T
i y ≥ bi for all i ∈ I

plus a (possibly empty) set of “unconditional” linear constraints on the continuous variables

y

Dy ≥ e

• Note: the continuous variables y do not appear in the objective function—they are only

introduced to force some feasibility properties of the x’s.
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The (in)famous big-M method

• Conditional constraints

xj(i) = 1 ⇒ a
T
i y ≥ bi for all i ∈ I

typically modeled as follows (for sufficiently large Mi > 0):

a
T
i y ≥ bi −Mi(1− xj(i)) for all i ∈ I
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• Drawbacks:

- Very poor LP relaxation

- Large mixed-integer model involving both x and y variables

The MIP solver is “carrying on its shoulders” the burden of all additional constraints
and variables at all branch-decision nodes, while these become relevant only when the
corresponding xj(i) attain value 1 (typically, because of branching).

• Note: one can get rid of the y variables by using Benders’ decomposition, but this just a way

to speed-up the LP solution—the resulting cuts are weak and still depend on the big-M values.
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Combinatorial Benders’ cuts

xj(i) = 1 ⇒ a
T
i y ≥ bi, for all i ∈ I

Dy ≥ e

• We work on the space of the x-variables only, as in the classical Benders’s approach, but ...

• ... we model the constraints involving the y variables through the following Combinatorial
Benders’ (CB) cuts: ∑

i∈C

xj(i) ≤ |C| − 1

where C ⊆ I is an inclusion-minimal set such that the linear system

SLAV E(C) :=

{
a

T
i y ≥ bi, for all i ∈ C

Dy ≥ e

has no feasible (continuous) solution y.
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CB cut separation

• CB cut violated by a given x∗ ∈ [0, 1]n iff
∑

i∈C(1− x∗j(i)) < 1, hence;

(i) weigh each conditional constraint aT
i y ≤ bi by 1− x∗j(i);

(ii) weigh each unconditional constraint in Dy ≥ e by 0;

(iii) look for a minimum-weight MIS (minimal infeasible system, or IIS) of the resulting

weighted system (NP-hard).
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- verify the infeasibility of

SLAV E(C) :=

{
a

T
i y ≥ bi, for all i ∈ C

Dy ≥ e

by classical LP tools,

- make C inclusion-minimal in a greedy way.

• The above heuristic is indeed exact when x∗ is integer.
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A Branch&Cut solution scheme

• Work in the x space. At each branching node:

1. solve the LP relaxation of the Master Problem

min{cT
x : Fx ≤ g, x ∈ {0, 1}n }

amended by the CB cuts generated so far
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model, triggering the activation of other classes of combinatorial cuts, including

Caprara-Fischetti {0, 1/2}-cuts.

• The role of the big-M terms in the MIP model vanishes–only logical implications are relevant, no

matter the way they are modelled ⇒ logical implications can be stated explicitly in the model.

• Related to the concept of nogoods (minimal infeasible configurations of the binary variables)

used in Constraint Programming (Hooker and Ottosson, 2003, and Thorsteinsson, 2001).

• Interesting connections with Chvátal’s resolution search and with Glover-Tangedhal’s

dynamic branch and bound.
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A more general framework

• Consider a MIP problem with the following structure:

z
∗
:= min cTx + 0Ty (1)

s.t. Fx ≤ g (2)

Mx + Ay ≥ b (3)

Dy ≥ e (4)

xj ∈ {0, 1} for j ∈ B (5)
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z
∗
:= min cTx + 0Ty (1)

s.t. Fx ≤ g (2)

Mx + Ay ≥ b (3)

Dy ≥ e (4)

xj ∈ {0, 1} for j ∈ B (5)

• We assume linking constraints (3) are of the type:

mi,j(i)xj(i) + a
T
i y ≥ bi for all i ∈ I (6)

• A useful trick: introduce a continuous copy xc
j of each binary variable xj, j ∈ B, and link the

two copies through the constraints:

xj = x
c
j for j ∈ B (7)
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Master-slave solution scheme
• MASTER:

z
∗
= min cTx (8)

s.t. Fx ≤ g (plus additional cuts, if any) (9)

xj ∈ {0, 1} for j ∈ B (10)
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• SLAVE(x), a linear system parametrized by x:

Ay ≥ b−Mx (11)

Dy ≥ e (12)

• If x∗ integer and SLAV E(x∗) infeasible, take any MIS of SLAVE(x∗) involving the rows of

A indexed by C (say) ⇒ at least one binary variable xj(i), i ∈ C, has to be changed in order

to break the infeasibility ⇒ Combinatorial Benders’ (CB) cut:∑
i∈C:x∗

j(i)
=0

xj +
∑

i∈C:x∗
j(i)

=1

(1− xj) ≥ 1. (13)
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Computational Results

• Implementation in C++ embedded within the ILOG-Cplex Concert Technology 1.2 framework

(ILOG-Cplex 8.1 MIP solver).

• Experiments on a PC AMD Athlon 2100+ with 1 GByte RAM, with a time-limit of 3 CPU

hours for each run.
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• The test-bed:

1. Map Labelling (max. problem): placing as many rectangular labels as possible (without

overlap) in a given map (Mützel and Klau, 2003)

2. Two-Group Statistical Classification (discriminant analysis): given a population whose

members can be divided into two distinct classes, define a linear function of some available

measures so as to decide whether a new member belongs to the first or second class (Rubin,

1997).
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• Implementation in C++ embedded within the ILOG-Cplex Concert Technology 1.2 framework

(ILOG-Cplex 8.1 MIP solver).

• Experiments on a PC AMD Athlon 2100+ with 1 GByte RAM, with a time-limit of 3 CPU

hours for each run.

• The test-bed:

1. Map Labelling (max. problem): placing as many rectangular labels as possible (without

overlap) in a given map (Mützel and Klau, 2003)

2. Two-Group Statistical Classification (discriminant analysis): given a population whose

members can be divided into two distinct classes, define a linear function of some available

measures so as to decide whether a new member belongs to the first or second class (Rubin,

1997).

• All instances have been processed twice:

Cplex: the original MIP model is solved through the commercial ILOG-Cplex 8.1 solver (with

default settings), and

CBC: the master/slave reformulation is solved by using CB cuts and {0, 1/2}-cuts (still

using the ILOG-Cplex 8.1 library).
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Subset 1 Cplex CBC Statistics

File name opt. Time Time t.Cplex/ t.CBC/
hh : mm : ss hh : mm : ss t.CBC t.Cplex

MAP LABELLING
CMS 600-1 600 1 : 08 : 41 0 : 04 : 34 15.0 6.6%

STAT. ANALYSIS
Chorales-116 24 1 : 24 : 52 0 : 10 : 18 8.2 12.1%
Horse-colic-151 5 0 : 04 : 50 0 : 00 : 23 12.6 7.9%
Iris-150 18 0 : 09 : 29 0 : 01 : 10 8.1 12.3%
Credit-300 8 0 : 19 : 35 0 : 00 : 02 587.5 0.2%
Lymphography-142 5 0 : 00 : 11 0 : 00 : 01 11.0 9.1%
Mech-analysis-107 7 0 : 00 : 05 0 : 00 : 01 5.0 20.0%
Mech-analysis-137 18 0 : 07 : 44 0 : 00 : 27 17.2 5.8%
Monks-tr-122 13 0 : 02 : 05 0 : 00 : 05 25.0 4.0%
Pb-gr-txt-198 11 0 : 04 : 21 0 : 00 : 05 52.2 1.9%
Pb-pict-txt-444 7 0 : 02 : 07 0 : 00 : 02 63.5 1.6%
Pb-hl-pict-277 10 0 : 04 : 17 0 : 00 : 27 9.5 10.5%
Postoperative-88 16 0 : 15 : 16 0 : 00 : 01 916.0 0.1%
BV-OS-282 6 0 : 05 : 13 0 : 00 : 24 13.0 7.7%
Opel-Saab-80 6 0 : 01 : 03 0 : 00 : 13 4.8 20.6%
Bus-Van-437 6 0 : 09 : 17 0 : 00 : 28 19.9 5.0%
HouseVotes84-435 6 0 : 04 : 59 0 : 00 : 11 27.2 3.7%
Water-treat-206 4 0 : 01 : 10 0 : 00 : 06 11.7 8.6%
Water-treat-213 5 0 : 17 : 00 0 : 00 : 51 20.0 5.0%

TOTALS 8 : 29 : 51 0 : 24 : 11 21.1 5%

Table 1: Problems solved to proven optimality by both Cplex and CBC
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File name n. nodes n. nodes
(Subset 1) Cplex CBC

STAT. ANALYSIS
Chorales-116 10,329,312 20,382
Horse-colic-151 135,018 2,184
Iris-150 970,659 1,290
Credit-300 176,956 66
Lymphography-142 8,157 106
Mech-analysis-107 11,101 68
Mech-analysis-137 938,088 1,888
Monks-tr-122 262,431 357
Pb-gr-txt-198 135,980 110
Pb-pict-txt-277 71,031 1,026
Pb-hl-pict-444 22,047 115
Postoperative-88 2,282,109 171
BV-OS-282 56,652 1,044
Opel-Saab-80 87,542 7,314
Bus-Van-437 55,224 6,795
HouseVotes84-435 42,928 734
Water-treat-206 12,860 482
Water-treat-213 168,656 4,036

MAP LABELLING
CMS 600-1 110,138 14

Table 2: Number of branch-decision nodes enumerated by Cplex and by CBC, respectively
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Figure 1: Optimizing the statistical-analysis instance Chorales-116 (minimization problem)
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Subset 2 Cplex CBC

File Name Time best best Gap mem Time opt.
hh:mm:ss sol. bound % MB hh:mm:ss

Chorales-134 0: 36 :23 33 16.0 51% 371 0: 36 :23 30
3: 00 :58 30 21.1 30% 992

Chorales-107 0: 04 :19 28 12.1 57% 61 0: 04 :19 27
3: 01 :27 27 22.2 18% 711

Breast-Cancer-600 0: 00 :13 108 1.5 99% 9 0: 00 :13 16
3: 00 :11 16 13.2 18% 45

Bridges-132 0: 03 :39 33 5.1 85% 44 0: 03 :39 23
3: 01 :09 23 10.0 56% 1406

Mech-analysis-152 0: 34 :12 22 12.1 45% 328 0: 34 :12 21
3: 00 :50 21 16.1 24% 865

Monks-tr-124 0: 01 :55 27 8.1 70% 25 0: 01 :55 24
3: 00 :35 24 20.0 17% 381

Monks-tr-115 0: 04 :16 29 9.1 69% 67 0: 04 :16 27
3: 01 :07 27 19.0 30% 1131

Solar-flare-323 0: 00 :04 51 5.0 90% 18 0: 00 :04 38
3: 00 :45 43 17.0 61% 977

BV-OS-376 0: 09 :04 9 3.1 65% 9 0: 09 :04 9
3: 00 :10 9 6.0 33% 56

BusVan-445 0: 10 :31 13 3.0 77% 11 0: 10 :31 8
3: 00 :06 9 5.1 43% 56

TOTALS Gap (same t.) 71% 1: 44 :36
30: 07 :18 Gap (end) 33%

Table 3: Statistical Analysis problems solved to proven optimality by CBC but not by Cplex
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Subset 2 Cplex CBC

File Name Time best best Gap mem. Time opt.
hh:mm:ss sol. bound % MB hh:mm:ss

CMS 600-0 (4S) 0: 04 :27 592 600 1.35% 18 0: 04 :27 600
3: 03 :00 594 600 1.01% 770

CMS 650-0 (4S) 0: 06 :26 638 650 1.88% 20 0: 06 :26 649
3: 02 :34 646 650 0.62% 480

CMS 650-1 (4S) 0: 04 :50 647 650 0.46% 7 0: 04 :50 649
3: 03 :13 648 650 0.31% 904

CMS 700-1 (4S) 0: 13 :06 686 700 2.04% 58 0: 13 :06 699
3: 03 :00 691 700 1.30% 1045

CMS 750-1 (4S) 0: 07 :53 738 750 1.63% 28 0: 07 :53 750
3: 02 :19 741 750 1.21% 521

CMS 750-4 (4S) 0: 07 :05 736 750 1.90% 28 0: 07 :05 748
3: 00 :24 743 750 0.94% 417

CMS 800-0 (4S) 0: 19 :15 773 800 3.49% 55 0: 19 :15 798
3: 02 :16 773 800 3.49% 533

CMS 800-1 (4S) 0: 22 :24 784 800 2.04% 92 0: 22 :24 800
3: 02 :30 786 800 1.78% 761

CMS 600-0 (4P) 0: 00 :01 543 600 10.5% 2 0: 00 :04 600
3: 02 :57 574 600 4.53% 782

CMS 600-1 (4P) 0: 39 :07 565 600 6.19% 184 0: 39 :07 597
3: 02 :55 568 600 5.63% 831

TOTALS Gap (same t.) 3.6% 2: 05 :4.1
33: 25 :10 Gap (end) 2.0%

Table 4: Map Labelling problems solved to proven optimality by CBC but not by Cplex
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Figure 2: Optimizing the statistical-analysis instance Bridges-132 (minimization problem)
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Figure 3: Optimizing the map labelling instance CMS600-1 (4P) (maximization problem)
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Subset 3 Cplex

File Name Time best best Gap mem.
hh:mm:ss sol. bound % MB

Flags-169 3: 00 :19 10 5.0 49.8% 290
Horse-colic-253 3: 00 :15 13 5.0 61.5% 279
Horse-colic-185 3: 00 :16 11 5.0 54.4% 265
Solar-flare-1066 3: 00 :18 273 7.6 97.3% 787

TOTAL 12: 01 :08 Mean Gap 65.5% —

Subset 3 CBC

File Name Time best best Gap mem. ∆Gap
hh:mm:ss sol. bound % MB %

Flags-169 3: 02 :46 10 6.50 35.0% 4052 14.8%
Horse-colic-253 3: 02 :59 13 8.91 31.5% 3394 30.0%
Horse-colic-185 3: 01 :25 12 6.33 47.3% 4494 7.1%
Solar-flare-1066 3: 01 :16 284 201.30 29.1% 1423 68.2%

TOTAL 12: 02 :26 Mean Gaps 35.7% — 30.0%

Table 5: Statistical Analysis problems solved to proven optimality by neither codes
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Subset 3 Cplex

File Name Time best best Gap mem.
hh:mm:ss sol. bound % MB

Berlin 3: 06 :43 37 47.8 29.1% 1063
CMS 900-0 (4S) 3: 02 :47 881 900 2.2% 676
CMS 1000-0 (4S) 3: 01 :46 945 1000 5.8% 566
US-Abbrv 3: 01 :18 73 104.8 43.6% 740
CMS 650-0 (4P) 3: 04 :55 611 650 6.4% 764
CMS 650-1 (4P) 3: 02 :51 604 650 7.6% 798

TOTAL 18: 20 :20 Mean Gap 15.8% —

Subset 3 CBC

File Name Time best best Gap mem. ∆Gap
hh:mm:ss sol. bound % MB %

Berlin 3: 03 :43 38 43.0 13.1% 1952 16.0%
CMS 900-0 (4S) 3: 02 :47 897 898.5 0.2% 283 2.0%
CMS 1000-0 (4S) 3: 01 :46 978 998.3 2.1% 509 3.7%
US-Abbrv 3: 01 :18 77 99.7 29.5% 428 14.1%
CMS 650-0 (4P) 3: 05 :17 633 646.9 2.2% 1658 4.2%
CMS 650-1 (4P) 3: 02 :51 638 648.0 1.6% 706 6.0%

TOTAL 18: 17 :42 Mean Gaps 8.12% — 7.7%

Table 6: Map Labelling problems solved to proven optimality by neither codes
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Figure 4: Optimizing the statistical-analysis instance Solar-flare-1066 (minimization problem)
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Figure 5: Optimizing the map labelling instance CMS900-0 (4S) (maximization problem)
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