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Motivation

• Gomory cuts play a very important in modern MIP solvers

• Gomory cuts are easily read from the optimal tableau rows associated with fractional

components (almost inexpensive to generate)

• Question:

Is it worth to invest more computing time in the attempt of improving Gomory cuts?

• Two possible answers:

1. Derive Gomory cuts from a more clever combination of the initial tableau rows

→ M.F. and A. Lodi “Optimizing over the first Chvàtal closure”

2. Given a fractional row of the optimal tableau, look for a most-violated cut within a
wide family (including Gomory cuts)

→ this talk.
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The Master Cyclig Group Polyhedron

• We study the Integer Linear Program (ILP):

min{cT
x : Ax = b, x ≥ 0 integer} (1)

where A is a rational m× n matrix, and the two associated polyhedra:

P := {x ∈ Rn
+ : Ax = b} (2)

PI := conv{x ∈ Zn
+ : Ax = b} = conv(P ∩ Zn

) . (3)

• We propose an exact separation procedure for the class of interpolated (or template)

subadditive cuts based on the characterization of Gomory and Johnson (1972) of the following

master cyclic group polyhedron:

T (k, r) = conv{t ∈ Zk−1
+ :

k−1∑
i=1

(i/k) · ti ≡ r/k (mod 1)} (4)

where k ≥ 2 (group order) and r ∈ {1, · · · , k − 1} are given integers

• The space Rk−1 of the t variables is called the T -space
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Previous work

• It is known that the mapping the original x-variable space into the T -space allows one to use

polyhedral information on T (k, r) to derive valid inequalities for PI (Gomory and Johnson,

1972)

• Recent papers by Gomory, Johnson, Araoz, and Evans and by Dash and Gunluk deal with

the Gomory’s shooting experiment: the point t∗ ∈ Rk−1 to be separated is generated at

random (hence it corresponds to a random “shooting direction” in the T -space), and statistics

on the frequency of the most-violated facets of T (k, r) are collected

• Koppe, Louveaux, Weismantel and Wolsey (2004) study a compact formulation of the

cyclic-group separation problem is embedded into the original ILP model—huge formulation

with limited practical applications

• Letchford and Lodi (2002) and Cornuejols, Li and Vandenbussche (2003) address specific

subfamilies of cyclic-group cuts

• To our knowledge, the practical benefit that can be obtained by implementing these cuts in a

cutting plane algorithm was not investigated computationally by previous authors
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Separation over the Group Polyhedron

• Given any equation

α
T
x = β (5)

valid for PI , where (α, β) ∈ Rn+1 and β fractional, we consider the group polyhedron (in

the x-space)

G(α, β) := conv{x ∈ Zn
+ :

n∑
j=1

αjxj ≡ β (mod 1)} ⊇ PI . (6)

• E.g., the equation αTx = β can be obtained by setting (α, β)T := uT (A, b) for any

u ∈ Rm such that uTb is fractional ⇒ e.g., an equation read from the tableau associated

with a fractional optimal solution of the LP relaxation

• Separation problem (g-SEP): Given any point x∗ ≥ 0 and the equation αTx = β with
rational coefficients and fractional β, find (if any) a valid inequality for G(α, β) that is
violated by x∗
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Cuts from Subadditive Functions

• We call a function g : R → R+ subadditive if

1. g(a + b) ≤ g(a) + g(b) for any a, b ∈ R

and, in addition,

2. g(·) is periodic in [0, 1), i.e., g(a + 1) = g(a) for all a ∈ R
3. g(0) = 0

• Gomory and Johnson (1970) showed that, given the equation αTx = β, all the nontrivial

facets of G(α, β) are defined by inequalities of the type

n∑
j=1

g(αj)xj ≥ g(β) (7)

with g(·) subadditive ⇒ g-SEP can be rephrased as follows:

• Separation problem (g-SEP): Given any point x∗ ≥ 0 and the equation αTx = β with

rational coefficients and fractional β, find a subadditive function g(·) such that∑n
j=1 g(αj)x

∗
j < g(β)
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Examples

• Taking g(·) = φ(·) (fractional part) one obtains the well-know Gomory fractional cut
(1958):

n∑
j=1

φ(αj)xj ≥ φ(β) ,

• Taking the subadditive GMI function γβ(·) defined as

γ
β
(a) =

{
φ(a) if φ(a) ≤ φ(β)

φ(β)1−φ(a)
1−φ(β) otherwise

for all a ∈ R (8)

one obtains the stronger Gomory Mixed-Integer (GMI) cut:

n∑
j=1

γ
β
(αj) xj ≥ γ

β
(β) = φ(β) . (9)
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Illustration

Figure 1: Two subadditive functions: the fractional part φ(·) (top) and the GMI function γ2/3(·)
(bottom).
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A separation algorithm for subadditive cuts

• Given the equation αTx = β, let k ≥ 2 be the smallest integer such that k(α, β) is integer

(called ideal k)

• The subadditivity of g(·) implies that the same property holds over the discrete set

{0, 1/k, 2/k, · · · , (k − 1)/k} ⇒ a necessary condition for subadditivity is that the

“sampled” values gi := g(i/k) satisfy the following g-system:


gh ≤ gi + gj, 1 ≤ i, j, h ≤ k − 1 and i + j ≡ h (mod k)

g0 = 0,

0 ≤ gi ≤ 1, i = 1, · · · , k − 1

(10)

where bounds 0 ≤ gi ≤ 1 play a normalization role.

• However ... we also need to compute the value of g(·) outside the sample points
1/k, 2/k, · · · , (k − 1)/k so as to get the required subadditive function g : R → R+
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Interpolation

• Any solution (g0, · · · , gk−1) of the g-system above can be completed so as to define a

subadditive function g : R → R+ through a simple interpolation procedure due to Gomory

and Johnson (1972):

1. take a linear interpolation of the values g0, · · · , gk−1 over [0, 1),

2. extend the resulting piecewise-linear function to R, in the obvious periodic way

Figure 2: The Gomory-Johnson interpolation procedure
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T-space separation

• A given x∗ violates a cut of the form

n∑
j=1

g(αj)xj ≥ g(β)

iff
n∑

j=0

g(αj)x
∗
j < 0

where α0 := β and x∗0 := −1 to simplify notation

• Observation: k ideal ⇒ the value of g(·) outside the sample points i/k is immaterial

n∑
j=0

g(αj)x
∗
j =

k−1∑
i=1

g(i/k) [
∑

j:φ(αj)=i/k

x
∗
j ] =:

k−1∑
i=1

g(i/k) t
∗
i

• Hence we can model g-SEP exactly as the following LP (in the T-space):

g − SEPk : min{
k−1∑
i=1

t
∗
i gi : “g-system” } , (11)
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Dealing with a nonideal k

• Unfortunately, the ideal k is very often too large to be used in practice ⇒ choose a smaller

value in order to produce a manageable g-system

• In this case, the interpolation procedure does restrict (often considerably) the range of

subadditive functions that can be captured by g − SEPk

• Modified definition of the weights t∗i needed to take interpolation into account

• For any given integer k ≥ 2 (not necessarily ideal), the separation weights t∗i are defined

through the following “splitting” algorithm:

1. define the fictitious values α0 := β and x∗0 := −1;

2. initialize t∗0 := t∗1 := · · · := t∗k−1 := 0;

2. for j = 0, 1, · · · , n such that x∗j > 0 and φ(αj) > 0 do
3. let i := bk φ(αj)c and h = i + 1 mod k;

4. let θ := kφ(αj)− i;

5. update t∗i := t∗i + (1− θ)x∗j and t∗h := t∗h + θx∗j
6. enddo
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Weakness of interpolation

• Observe that, for the interpolated function g(·), we sometimes have g(a) > g(β) ⇒ an

interpolated subadditive cut
∑n

j=1 g(αj)xj ≥ g(β) can easily be improved to its clipped
form:

n∑
j=1

min{g(αj), g(β)}xj ≥ g(β) (12)

Figure 3: GMI and interpolated GMI functions (normalization of the rhs value)
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Dealing with continuous variables

• Mixed-integer case: some variables xj with j ∈ C (say) are not restricted to be integer valued

• Gomory and Johnson (1972) showed that, for any subadditive function g(·), it is enough to

modify cut
n∑

j=1

g(αj)xj ≥ g(β)

into

n∑
j∈I

g(αj)xj +
∑

j∈C:αj>0

slope+ αjxj +
∑

j∈C:αj<0

slope− αjxj ≥ g(β) , (13)

where

I := {1, · · · , n} \ C is the index set of the integer variables,

slope+ := limδ→0+ g(δ)/δ is the slope of g(·) in 0+, and

slope− := limδ→0− g(δ)/δ is the slope of g(·) in 0− (or, equivalently, in 1−)

• Intuitive explanation based on a simple scaling argument ⇒ one can deal with continuous

variables without any modification of the separation procedure (used as a black box)
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Computational experiments

• Preliminary computational analysis aimed at comparing the quality of Gomory mixed-integer

cuts with that of the interpolated sudadditive cuts, when embedded in a pure cutting plane

method

• Test-bed includes MIPLIB 3.0 instances (reformulated is standard form)

• After the solution of first LP relaxation of our model, we store in our equation pool all the

tableau rows αTx = β with fractional right-hand side β.

• This pool is never updated during the run, i.e., we deliberately avoid generating subadditive

cuts of rank greater than 1

• At each round of separation, at most 200 cuts are generated

• Each run is aborted at the root node, i.e., no branching is allowed.
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Lessons learned

• As reported by other authors, GMI cuts are hard to beat

• For a given equation αTx = β, a GMI cut often captures (alone) the power of the whole

family of subadditive cuts based on that equation ⇒ a single GMI cut is often sufficient to
bring x∗ inside the corresponding group polyhedron G(α, β)

• Interpolated subadditive cuts typically become competitive with (or better than) GMI cuts for

k ≥ 20, though their separation requires a substantial computing-time overhead

• Large number of subadditive cuts generated and the small improvement obtained in some cases

⇒ a more conservative policy that generates GMI cuts first, and only afterward resorts to

g-SEP to generate new violated subadditive cuts

• Better compromise between lower bound quality and computing time: use a clever set of

non-interpolated subadditive functions (GMI, k-cuts or other template functions) first, and

apply g-SEP separation only afterwards

• This goes into the direction suggested by Andreello, Caprara and Fischetti (2003) for an

effective use of easy-to-compute cuts such as GMI and k-cuts
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