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Motivation

• Gomory cuts play a very important in modern MIP solvers

• Gomory cuts are easily read from the optimal tableau rows associated with fractional

components (almost inexpensive to generate)

• Question:

Is it worth to invest more computing time in the attempt of improving Gomory cuts?

• Three possible answers:

1. Derive standard Gomory cuts from the optimal tableau, and improve them afterwards

→ Balas and Perregaard (2003), Andersen, Cornuejols and Li (2004), etc.

2. Derive Gomory cuts from a more clever combination of the initial tableau rows

→ M.F. and A. Lodi “Optimizing over the first Chvàtal closure”

3. Given a fractional row of the optimal tableau, look for a most-violated cut within a
wide family (including Gomory cuts)

→ this talk.
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The Master Cyclig Group Polyhedron

• We study the Integer Linear Program (ILP):

min{cT
x : Ax = b, x ≥ 0 integer} (1)

where A is a rational m× n matrix, and the two associated polyhedra:

P := {x ∈ Rn
+ : Ax = b} (2)

PI := conv{x ∈ Zn
+ : Ax = b} = conv(P ∩ Zn

) . (3)

• We propose an exact separation procedure for the class of interpolated (or template)

subadditive cuts based on the characterization of Gomory and Johnson (1972) of the following

master cyclic group polyhedron:

T (k, r) = conv{t ∈ Zk−1
+ :

k−1∑
i=1

(i/k) · ti ≡ r/k (mod 1)} (4)

where k ≥ 2 (group order) and r ∈ {1, · · · , k − 1} are given integers

• The space Rk−1 of the t variables is called the T -space

M. Fischetti, C. Saturni, Mixed-Integer Cuts from Cyclic Groups 2



Previous work

• It is known that the mapping the original x-variable space into the T -space allows one to use

polyhedral information on T (k, r) to derive valid inequalities for PI (Gomory and Johnson,

1972)

• Recent papers by Gomory, Johnson, Araoz, and Evans and by Dash and Gunluk deal with

the Gomory’s shooting experiment: the point t∗ ∈ Rk−1 to be separated is generated at

random (hence it corresponds to a random “shooting direction” in the T -space), and statistics

on the frequency of the most-violated facets of T (k, r) are collected

• Koppe, Louveaux, Weismantel and Wolsey (2004) study a compact (but huge) formulation

of the cyclic-group separation problem is embedded into the original ILP model

• Letchford and Lodi (2002) and Cornuejols, Li and Vandenbussche (2003) address specific

subfamilies of cyclic-group cuts

• To our knowledge, the practical benefit that can be obtained by implementing these cuts in a

cutting plane algorithm was not investigated computationally by previous authors

M. Fischetti, C. Saturni, Mixed-Integer Cuts from Cyclic Groups 3



Separation over the Group Polyhedron

• Given any equation

α
T
x = β (5)

valid for PI , where (α, β) ∈ Rn+1 and β fractional, we consider the group polyhedron (in

the x-space)

G(α, β) := conv{x ∈ Zn
+ :

n∑
j=1

αjxj ≡ β (mod 1)} ⊇ PI . (6)

• E.g., the equation αTx = β can be obtained by setting (α, β)T := uT (A, b) for any

u ∈ Rm such that uTb is fractional ⇒ the equation is read from the tableau associated with

a fractional optimal solution of the LP relaxation

• Separation problem (g-SEP): Given any point x∗ ≥ 0 and the equation αTx = β with
rational coefficients and fractional β, find (if any) a valid inequality for G(α, β) that is
violated by x∗

M. Fischetti, C. Saturni, Mixed-Integer Cuts from Cyclic Groups 4



Cuts from Subadditive Functions

• We call a function g : R → R+ subadditive if

1. g(a + b) ≤ g(a) + g(b) for any a, b ∈ R

and, in addition,

2. g(·) is periodic in [0, 1), i.e., g(a + 1) = g(a) for all a ∈ R
3. g(0) = 0

• Gomory and Johnson (1970) showed that, given the equation αTx = β, all the nontrivial

facets of G(α, β) are defined by inequalities of the type

n∑
j=1

g(αj)xj ≥ g(β) (7)

with g(·) subadditive ⇒ g-SEP can be rephrased as follows

• Separation problem (g-SEP): Given any point x∗ ≥ 0 and the equation αTx = β with
rational coefficients and such that φ(β) > 0, find a subadditive function g(·) such that∑n

j=1 g(αj)x
∗
j < g(β)
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Examples

• Taking g(·) = φ(·) (fractional part) one obtains the well-know Gomory fractional cut
(1958):

n∑
j=1

φ(αj)xj ≥ φ(β) ,

• Taking the subadditive GMI function γβ(·) defined as

γ
β
(a) =

{
φ(a) if φ(a) ≤ φ(β)

φ(β)1−φ(a)
1−φ(β) otherwise

for all a ∈ R (8)

one obtains the stronger Gomory Mixed-Integer (GMI) cut:

n∑
j=1

min{φ(αj), φ(β)
1− φ(αj)

1− φ(β)
} xj ≥ φ(β) . (9)
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Illustration

Figure 1: Two subadditive functions: the fractional part φ(·) (top) and the GMI function γ2/3(·)
(bottom).
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A separation algorithm for subadditive cuts

• Given the equation αTx = β, let k ≥ 2 be the smallest integer such that k(α, β) is integer

(ideal k)

• The subadditivity of g(·) implies that the same property holds over the discrete set

{0, 1/k, 2/k, · · · , (k − 1)/k} ⇒ a necessary condition for subadditivity is that the

“sampled” values gi := g(i/k) satisfy the following g-system:


gh ≤ gi + gj, 1 ≤ i, j, h ≤ k − 1 and i + j ≡ h (mod k)

g0 = 0,

0 ≤ gi ≤ 1, i = 1, · · · , k − 1

(10)

where bounds 0 ≤ gi ≤ 1 play a normalization role.

• However ... we also need to compute the value of g(·) outside the sample points
1/k, 2/k, · · · , (k − 1)/k so as to get the required subadditive function g : R → R+
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Interpolation

• Any solution (g0, · · · , gk−1) of the g-system above can be completed so as to define a

subadditive function g : R → R+ through a simple interpolation procedure due to Gomory

and Johnson (1972):

1. take a linear interpolation of the values g0, · · · , gk−1 over [0, 1),

2. extend the resulting piecewise-linear function to R, in the obvious periodic way

Figure 2: The Gomory-Johnson interpolation procedure
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T-space separation

• The given x∗ violates a cut of the form

n∑
j=1

g(αj)xj ≥ g(β) →
n∑

j=1

g(αj)xj + g(β)(−1) ≥ 0

iff
n∑

j=1

g(αj)x
∗
j + g(α0)x

∗
0 =

n∑
j=0

g(αj)x
∗
j < 0

where α0 := β and x∗0 := −1 to simplify notation

• Observation: k ideal ⇒ the value of g(·) outside the sample points i/k is immaterial

n∑
j=0

g(αj)x
∗
j =

k−1∑
i=1

g(i/k) [
∑

j:φ(αj)=i/k

x
∗
j ] =:

k−1∑
i=1

g(i/k)t
∗
i

• Hence we can model g-SEP exactly as the following LP (in the T-space):

g − SEPk : min{
k−1∑
i=1

t
∗
i gi : “g-system” } , (11)
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Dealing with a nonideal k

• Unfortunately, the ideal k is very often too large to be used in practice ⇒ choose a smaller

value in order to produce a manageable g-system

• In this case, the interpolation procedure does restrict (often considerably) the range of

subadditive functions that can be captured by g − SEPk

• Modified definition of the weights t∗i needed to take interpolation into account

• For any given integer k ≥ 2 (not necessarily ideal), the separation weights t∗i are defined

through the following “splitting” algorithm:

1. define the fictitious values α0 := β and x∗0 := −1;

2. initialize t∗0 := t∗1 := · · · := t∗k−1 := 0;

2. for j = 0, 1, · · · , n such that x∗j > 0 and φ(αj) > 0 do
3. let i := bk φ(αj)c and h = i + 1 mod k;

4. let θ := kφ(αj)− i;

5. update t∗i := t∗i + (1− θ)x∗j and t∗h := t∗h + θx∗j
6. enddo
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Weakness of interpolation

• Observe that, for the interpolated function g(·), we sometimes have g(a) > g(β) ⇒ an

interpolated subadditive cut
∑n

j=1 g(αj)xj ≥ g(β) can easily be improved to its clipped
form:

n∑
j=1

min{g(αj), g(β)}xj ≥ g(β) (12)

Figure 3: GMI and interpolated GMI functions (normalization of the rhs value)
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Dealing with continuous variables

• Mixed-integer case: some variables xj with j ∈ C (say) are not restricted to be integer valued

• Gomory and Johnson (1972) showed that, for any subadditive function g(·), it is enough to

modify cut
n∑

j=1

g(αj)xj ≥ g(β)

into

n∑
j∈I

g(αj)xj +
∑

j∈C:αj>0

slope+ αjxj +
∑

j∈C:αj<0

slope− αjxj ≥ g(β) , (13)

where

I := {1, · · · , n} \ C is the index set of the integer variables,

slope+ := limδ→0+ g(δ)/δ is the slope of g(·) in 0+, and

slope− := limδ→0− g(δ)/δ is the slope of g(·) in 0− (or, equivalently, in 1−)

• Intuitive explanation based on a simple scaling argument ⇒ one can deal with continuous

variables without any modification of the separation procedure (used as a black box)
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Computational experiments

• Extensive computational analysis aimed at comparing the quality of Gomory mixed-integer cuts

with that of the interpolated sudadditive cuts, when embedded in a pure cutting plane method

• Test-bed includes MIPLIB 3.0/2003 instances

• After the solution of first LP relaxation of our model, we store in our equation pool all the

tableau rows αTx = β with fractional right-hand side β.

• This pool is never updated during the run, i.e., we deliberately avoid generating subadditive

cuts of rank greater than 1

• At each round of separation, at most 200 cuts are generated

• Each run is aborted at the root node, i.e., no branching is allowed.
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Computational results: MIPLIB Pure Integer Problems

Problem
Type of

Cuts
Final LB

Closed
Gap

Separation
Time

Total
Time

Number of
Cuts

air04
56137.00
55535.44
37.98

GMI
K=10
K=20?
K=30?
K=60?

55583.78
55580.69
55583.86
55585.19
55586.21

8.04%
7.52%
8.05%
8.27%
8.44%

2.12
3.16
6.38

10.61
208.45

352.16
539.35
537.86
614.55
757.56

202
283
300
370
389

l152lav
4722.00
4656.36
0.08

GMI
K=10
K=20?
K=30?
K=60?

4664.41
4664.03
4664.60
4665.26
4665.87

12.25%
11.67%
12.54%
13.55%
14.48%

0.07
0.21
0.54
2.29

90.01

0.41
0.85
1.20
3.65

93.08

51
88
88

237
349

lseu
1120.00
834.68
0.00

GMI
K=10?
K=20?
K=30?
K=60?

991.87
996.29
997.34
998.64

1000.29

55.09%
56.64%
57.01%
57.47%
58.04%

0.00
0.01
0.08
0.41
8.78

0.00
0.02
0.08
0.43
8.78

13
22
25
42
31

mod010
6548.00
6532.08
0.08

GMI
K=10
K=20
K=30?
K=60?

6535.50
6535.46
6535.46
6535.75
6536.00

21.47%
21.24%
21.24%
23.04%
24.61%

0.06
0.13
0.16
0.25
3.07

0.44
0.70
0.66
0.74
3.61

34
38
36
36
40

harp2
−73899798.00
−74353341.50
0.03

GMI
K=10?
K=20?
K=30?
K=60?

−74251958.32
−74247224.08
−74236993.08
−74236058.30
−74225928.01

22.35%
23.40%
25.65%
25.86%
28.09%

0.03
0.20
0.36
1.02

28.39

0.20
0.73
0.99
1.76

29.32

30
58
62
71
75
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Computational results: MIPLIB Mixed-Integer Problems

Problem
Type of

Cuts
Final LB

Closed
Gap

Separation
Time

Total
Time

Number of
Cuts

bell5
8966406.49
8608417.95
0.01

GMI
K=10
K=20
K=30
K=60?

8660422.46
8654669.96
8657274.83
8658662.54
8661152.43

14.53%
12.92%
13.65%
14.04%
14.73%

0.00
0.03
0.12
0.44

13.15

0.00
0.07
0.14
0.45

13.16

40
59
60
59
77

mas74
11801.20
10482.80
0.00

GMI
K=10?
K=20?
K=30?
K=60?

10570.72
10570.94
10576.54
10581.80
10585.87

6.67%
6.69%
7.11%
7.51%
7.82%

0.00
0.01
0.14
0.86

27.94

0.01
0.04
0.17
0.94

28.00

12
33
44
71
79

mas76
40005.10
38893.90
0.00

GMI
K=10?
K=20?
K=30?
K=60?

38965.29
38968.36
38972.76
38975.64
38977.76

6.42%
6.70%
7.10%
7.36%
7.55%

0.00
0.00
0.09
0.48

20.09

0.01
0.04
0.14
0.52

20.16

11
25
43
34
52

mkc
−563.85
−611.85
0.11

GMI
K=10?
K=20?
K=30?
K=60?

−609.41
−609.32
−609.32
−609.08
−608.92

5.09%
5.27%
5.27%
5.76%
6.11%

0.73
5.18
8.70

16.68
408.78

1.22
7.09

11.40
20.28

416.19

142
367
463
600
958

qnet1
16029.69
14274.10
0.04

GMI
K=10?
K=20?
K=30?
K=60?

14445.72
14446.24
14446.24
14446.24
14447.10

9.78%
9.80%
9.80%
9.80%
9.85%

0.10
0.20
0.37
1.04

24.51

0.27
0.48
0.63
1.34

24.86

55
59
63
69
75
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Lessons learned

• As reported by other authors (k-cuts etc.), GMI cuts are hard to beat by just using clever

subadditive functions

• For a given equation αTx = β, a GMI cut often captures (alone) the power of the whole

family of subadditive cuts based on that equation ⇒ a single GMI cut is often sufficient to
bring x∗ inside the corresponding group polyhedron G(α, β)

• Negative role of interpolation: interpolated subadditive cuts typically become competitive with

(or slightly better than) GMI cuts for k ≥ 20, though their separation requires a substantial

computing-time overhead

• Future work should address the possibility of exploiting 2 (or more) tableau rows at the same

time, so as to better approximate the optimization over Gomory’s corner polyhedron:

min{cT
x : xB + B

−1
NxN ≡ B

−1
b (mod 1), x ≥ 0 integer} (14)

• But ... is this worth doing? In other words: who knows how tight is this relaxation?
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Just ask!

LP relaxation Corner GMI 1st closure

ID B I % gap % gap closed % gap closed % gap closed

air03 10757 0 0.38 100.00 100.00 100.00
cap6000 6000 0 0.01 21.42 41.65 26.90
l152lav 1989 0 1.39 14.68 12.25 69.20
mitre 10724 0 0.36 ≥ 46.02 82.20 100.00
mod008 319 0 5.23 [23.66 - 62.66] 20.88 100.00
mod010 2655 0 0.24 100.00 21.47 100.00
p0033 33 0 18.40 [31.86 - 52.85] 54.60 85.40
p0282 282 0 31.56 9.28 3.70 99.90
stein27 27 0 27.78 100.00 0.00 0.00
stein45 45 0 26.67 100.00 0.00 0.00
gt2 24 164 36.41 46.79 71.88 100.00

... more in the forthcoming paper

M. F. and M. Monaci,“On the optimal value of Gomory’s corner relaxation”, Technical Report DEI,
University of Padova, 2005.
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