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Motivation

Gomory cuts play a very important in modern MIP solvers

Gomory cuts are easily read from the optimal tableau rows associated with fractional
components (almost inexpensive to generate)

Question:

-~

Is it worth to invest more computing time in the attempt of improving Gomory cuts

Three possible answers:

1. Derive standard Gomory cuts from the optimal tableau, and improve them afterwards
— Balas and Perregaard (2003), Andersen, Cornuejols and Li (2004), etc.

2. Derive Gomory cuts from a more clever combination of the initial tableau rows
— M.F. and A. Lodi “Optimizing over the first Chvatal closure”

3. Given a fractional row of the optimal tableau, look for a most-violated cut within a
wide family (including Gomory cuts)
— this talk.
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The Master Cyclig Group Polyhedron

e We study the Integer Linear Program (ILP):
min{c' z : Az = b,z > 0 integer} (1)
where A is a rational m X m matrix, and the two associated polyhedra:

P :={x € Rl : Az = b} (2)
Pr := conv{x € Z : Az = b} = conv(P NZ") . (3)

e We propose an exact separation procedure for the class of interpolated (or template)
subadditive cuts based on the characterization of Gomory and Johnson (1972) of the following
master cyclic group polyhedron:

k—1
T(k,r) = conv{t € Z5" : > (i/k) - t; = r/k (mod 1)} (4)
i=1
where k > 2 (group order) and r € {1,---,k — 1} are given integers

e The space R* ™! of the ¢ variables is called the T'-space
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Previous work

It is known that the mapping the original x-variable space into the T'-space allows one to use
polyhedral information on T'(k, r) to derive valid inequalities for P; (Gomory and Johnson,
1972)

Recent papers by Gomory, Johnson, Araoz, and Evans and by Dash and Gunluk deal with
the Gomory's shooting experiment: the point t* € R* ! to be separated is generated at
random (hence it corresponds to a random “shooting direction” in the T-space), and statistics
on the frequency of the most-violated facets of T'(k, r) are collected

Koppe, Louveaux, Weismantel and Wolsey (2004) study a compact (but huge) formulation
of the cyclic-group separation problem is embedded into the original ILP model

Letchford and Lodi (2002) and Cornuejols, Li and Vandenbussche (2003) address specific
subfamilies of cyclic-group cuts

To our knowledge, the practical benefit that can be obtained by implementing these cuts in a
cutting plane algorithm was not investigated computationally by previous authors
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Separation over the Group Polyhedron

e Given any equation

oz = 0 (5)

valid for P;, where («, B) € R"™*! and 3 fractional, we consider the group polyhedron (in
the x-space)

G(a, B) := conv{x € Z, : Z a;z; =6 (mod 1)} D Pr. (6)

g=1

e E.g. the equation a’x = B can be obtained by setting (o, ) := u’ (A, b) for any
uw € R™ such that ulb is fractional = the equation is read from the tableau associated with
a fractional optimal solution of the LP relaxation

e Separation problem (g-SEP): Given any point * > 0 and the equation o’z = 3 with
rational coefficients and fractional 3, find (if any) a valid inequality for G(«, 3) that is
violated by x*

M. Fischetti, C. Saturni, Mixed-Integer Cuts from Cyclic Groups 4



Cuts from Subadditive Functions

e We call a function g : R — R, subadditive if

1. gla+b) < g(a)+ g(b) forany a,b € R
and, in addition,

2. g(+) is periodicin [0,1), i.e., gla +1) = g(a) foralla € R
3. g(0) =0

e Gomory and Johnson (1970) showed that, given the equation o’

facets of G(«, 3) are defined by inequalities of the type

x = 3, all the nontrivial

n

> glaj)z; > g(B) (7)

j=1
with g(-) subadditive = g-SEP can be rephrased as follows

e Separation problem (g-SEP): Given any point 2* > 0 and the equation o’z = 3 with

rational coefficients and such that ¢(3) > 0, find a subadditive function g(-) such that

2 j-19(ag)z; < g(B)

M. Fischetti, C. Saturni, Mixed-Integer Cuts from Cyclic Groups 5



Examples

e Taking g(-) = ¢&(-) (fractional part) one obtains the well-know Gomory fractional cut
(1958):

> dlaj)z; > $(B)

j=1
e Taking the subadditive GMI function ~”(-) defined as

—dla . foralla € R
d(B) i_géﬁg otherwise

7ﬁ(a):{qs(a) f d(a) < 6(5)

one obtains the stronger Gomory Mixed-Integer (GMI) cut:

1 — ¢(ay)
1 — ¢(B)

Z min{¢(c;), ¢(B) tzj 2 ¢(B) -
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lllustration
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Figure 1: Two subadditive functions: the fractional part ¢(-) (top) and the GMI function 72/3(.)
(bottom).
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A separation algorithm for subadditive cuts

e Given the equation o’z = (3, let k > 2 be the smallest integer such that k(a, 3) is integer
(ideal k)

e The subadditivity of g(-) implies that the same property holds over the discrete set
{0,1/k,2/k,---,(k —1)/k} = a necessary condition for subadditivity is that the
“sampled” values g; := g(i/k) satisfy the following g-system:

ghggi+gj7 1§z,j,h§k—1andz—|—jEh(modk)
90:07 (10)

where bounds 0 < g; < 1 play a normalization role.

e However ... we also need to compute the value of g(-) outside the sample points
1/k,2/k,---,(k —1)/k so as to get the required subadditive function g : R — R
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Interpolation

e Any solution (go, - -, gr—1) of the g-system above can be completed so as to define a
subadditive function g : R — R through a simple interpolation procedure due to Gomory
and Johnson (1972):

1. take a linear interpolation of the values gg, - - -, gx—1 over [0, 1),
2. extend the resulting piecewise-linear function to R, in the obvious periodic way

Figure 2: The Gomory-Johnson interpolation procedure
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T-space separation

e The given x™ violates a cut of the form
> glay)z; > g(B) — Y gloy)m; + g(B)(—=1) >0
j=1 j=1

iff

n n

> glaj)z; + gla)zg = > glaj)z; <0
j=1 §=0
where ap := 3 and x;, := —1 to simplify notation

e Observation: k ideal = the value of g(-) outside the sample points i /k is immaterial

n k—1 k—1
> 9lay)zi =3 gG/R)[ >, @l =) gGi/k)

j=0 j:(b(ocj):i/k

e Hence we can model g-SEP exactly as the following LP (in the T-space):

k—1
g— SEP;: min{ Z t:gi: “g-system” } | (11)
i=1
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Dealing with a nonideal &

Unfortunately, the ideal k is very often too large to be used in practice = choose a smaller
value in order to produce a manageable g-system

In this case, the interpolation procedure does restrict (often considerably) the range of
subadditive functions that can be captured by g — S FE P

Modified definition of the weights ¢t] needed to take interpolation into account

For any given integer k > 2 (not necessarily ideal), the separation weights t; are defined
through the following “splitting” algorithm:

. define the fictitious values «g := (@ and .CUS = —1;
initialize tj:=1t] (= ---:=1t; ; :=0;
. for j =0,1,---,n such that z; > 0 and ¢(a;) > 0 do

let i := |k ¢(e;)] and h =i+ 1 mod k;
let 0 := k¢(aj) — 1;
update t; :=t; + (1 — Q)xj and t, :=t, + H:U;‘f

. enddo
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Weakness of interpolation

e Observe that, for the interpolated function g(-), we sometimes have g(a) > g(8) = an
interpolated subadditive cut Z?Zl g(aj)x; > g(B) can easily be improved to its clipped
form:

>_ min{g(e;), 9(8)}z; > 9(B) (12)

—_ GH|
—_— ﬁufupila-‘!e(

Figure 3: GMI and interpolated GMI functions (normalization of the rhs value)
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Dealing with continuous variables

e Mixed-integer case: some variables x; with j € C (say) are not restricted to be integer valued

e Gomory and Johnson (1972) showed that, for any subadditive function g(-), it is enough to
modify cut

> glaj)z; > g(B)
j=1
into
Z g(aj)x,; + Z slopey oz + Z slope_ ajx; > g(B) , (13)
JjeL jEC:aj>0 jEC:aj<0
where
Z:={1,---,n} \ Cis the index set of the integer variables,

slope; := lim;_ ,+ g(8)/d is the slope of g(-) in 0T, and
slope_ :=lim; ,— g(8)/9 is the slope of g(-) in 0~ (or, equivalently, in 17)

e Intuitive explanation based on a simple scaling argument = one can deal with continuous
variables without any modification of the separation procedure (used as a black box)
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Computational experiments

Extensive computational analysis aimed at comparing the quality of Gomory mixed-integer cuts
with that of the interpolated sudadditive cuts, when embedded in a pure cutting plane method

Test-bed includes MIPLIB 3.0/2003 instances

After the solution of first LP relaxation of our model, we store in our equation pool all the

tableau rows o’ x = (3 with fractional right-hand side 3.

This pool is never updated during the run, i.e., we deliberately avoid generating subadditive
cuts of rank greater than 1

At each round of separation, at most 200 cuts are generated

Each run is aborted at the root node, i.e., no branching is allowed.
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Computational results: MIPLIB Pure Integer Problems

Type of . Closed Separation Total Number of
Problem Cuts Final LB Gap Time Time Cuts

air04 GMI 55583.78 8.04% 2.12 352.16 202
5613700 K=10 55580.69 7.52% 3.16 | 539.35 283
55535 44 K=20% 55583.86 8.05% 6.38 | 537.86 300
27 08 K=30x% 55585.19 8.27% 10.61 | 614.55 370
K=60% 55586.21 8.44% 208.45 | 757.56 389
1152lav GMI 4664.41 12.25% 0.07 0.41 51
4792 00 K=10 4664.03 11.67% 0.21 0.85 88
4656.36 K=20% 4664.60 12.54% 0.54 1.20 88
0.08 K=30x 4665.26 13.55% 2.29 3.65 237
' K=60x 4665.87 14.48% 90.01 93.08 349
lseu GMI 991.87 55.09% 0.00 0.00 13
1120.00 K=10% 996.29 56.64% 0.01 0.02 22
334 68 K=20% 997.34 57.01% 0.08 0.08 25
0.00 K=30x 998.64 57.47% 0.41 0.43 42
K=60% 1000.29 58.04% 8.78 8.78 31
GMI 6535.50 21.47% 0.06 0.44 34

mod010
6548.00 K=10 6535.46 21.24% 0.13 0.70 38
6539.08 K=20 6535.46 21.24% 0.16 0.66 36
0.08 K=30x 6535.75 23.04% 0.25 0.74 36
K=60x 6536.00 24.61% 3.07 3.61 40
harp2 GMI —74251958.32 22.35% 0.03 0.20 30
_ 73899798.00 K=10% —74247224.08 23.40% 0.20 0.73 58
74353341 50 K=20x% —74236993.08 25.65% 0.36 0.99 62
0.03 K=30x —74236058.30 25.86% 1.02 1.76 71
K=60% —74225928.01 28.09% 28.39 29.32 75
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Computational results: MIPLIB Mixed-Integer Problems

Type of . Closed Separation Total Number of
Problem Cuts Final LB Gap Time Time Cuts

bell5 GMI 8660422.46 14.53% 0.00 0.00 40
8066406.49 K=10 8654669.96 12.92% 0.03 0.07 59
860841795 K=20 8657274.83 13.65% 0.12 0.14 60
0.01 K=30 8658662.54 14.04% 0.44 0.45 59
' K=60% 8661152.43 14.73% 13.15 13.16 77
mas74 GMI 10570.72 6.67% 0.00 0.01 12
11801.20 K=10% 10570.94 6.69% 0.01 0.04 33
10482.80 K=20% 10576.54 7.11% 0.14 0.17 44
0.00 K=30x 10581.80 7.51% 0.86 0.94 71
' K=60x 10585.87 7.82% 27.94 28.00 79
mas76 GMI 38965.29 6.42% 0.00 0.01 11
40005.10 K=10% 38968.36 6.70% 0.00 0.04 25
3889390 K=20% 38972.76 7.10% 0.09 0.14 43
0.00 K=30x 38975.64 7.36% 0.48 0.52 34
K=60% 38977.76 7.55% 20.09 20.16 52

mke GMI —609.41 5.09% 0.73 1.22 142
 563.85 K=10% —609.32 5.27% 5.18 7.09 367
_611.85 K=20% —609.32 5.27% 8.70 11.40 463
0.11 K=30x —609.08 5.76% 16.68 20.28 600
' K=60x —608.92 6.11% 408.78 | 416.19 958
qnet1 GMI 14445.72 9.78% 0.10 0.27 55
1602969 K=10% 14446.24 9.80% 0.20 0.48 59
1497410 K=20x% 14446.24 9.80% 0.37 0.63 63
0.04 K=30x 14446.24 9.80% 1.04 1.34 69
' K=60% 14447.10 9.85% 24.51 24.86 75
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Lessons learned

As reported by other authors (k-cuts etc.), GMI cuts are hard to beat by just using clever
subadditive functions

For a given equation o’z = 3, a GMI cut often captures (alone) the power of the whole

family of subadditive cuts based on that equation =- a single GMI cut is often sufficient to
bring ™ inside the corresponding group polyhedron G(«, 3)

Negative role of interpolation: interpolated subadditive cuts typically become competitive with
(or slightly better than) GMI cuts for £ > 20, though their separation requires a substantial
computing-time overhead

Future work should address the possibility of exploiting 2 (or more) tableau rows at the same
time, so as to better approximate the optimization over Gomory’s corner polyhedron:

min{c' = : xp + B~ 'Nzy = B 'b (mod 1), z > 0 integer} (14)

But ... is this worth doing? In other words: who knows how tight is this relaxation?
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Just ask!

LP relaxation Corner GMI 15 closure
ID B I % gap| % gap closed | % gap closed | % gap closed
air03 10757 O 0.38 100.00 100.00 100.00
cap6000| 6000 O 0.01 21.42 41.65 26.90
|152lav | 1989| O 1.39 14.68 12.25 69.20
mitre 10724 O 0.36 > 46.02 82.20 100.00
mod008 [ 319 O 5.23([23.66 - 62.66] 20.88 100.00
mod010 | 2655| O 0.24 100.00 21.47 100.00
p0033 331 O 18.40|[31.86 - 52.85] 54.60 85.40
p0282 282 O 31.56 9.28 3.70 99.90
stein27 271 O 27.78 100.00 0.00 0.00
stein4b 45( 0 26.67 100.00 0.00 0.00
gt2 24164 36.41 46.79 71.88 100.00

. more in the forthcoming paper

M. F. and M. Monaci, “On the optimal value of Gomory’s corner relaxation”, Technical Report DEI,
University of Padova, 2005.
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