# Hybridisation of **Metaheuristic and exact** optimisation techniques for **Mixed Integer Programs**

Matteo Fischetti, DEI, University of Padova

EuroGP-EvoCOP-EVOWorkshops 2005, Lausanne, March 29-April 1st, 2005

#### **MIP solvers for hard optimization problems**

- **Mixed-integer linear programming** (MIP) plays a central role in modelling difficult-to-solve (NP-hard) combinatorial problems
- General-purpose (exact) MIP solvers are very sophisticated tools, but in some hard cases they are **not adequate** even after clever tuning
- One is therefore tempted **to quit the MIP framework** and to design ad-hoc heuristics for the specific problem at hand, thus loosing the advantage of working in a generic MIP framework
- As a matter of fact, too often a MIP model is developed only "to better describe the problem" or, in the best case, to compute bounds for **benchmarking** the proposed ad-hoc heuristics

#### I MIP you

A neologism: To *MIP something* = translate into a MIP model and solve through a black-box solver



#### MIP solver enslaved to the local-search metaheuristic

• **MIPping local search:** use (as a black-box) a general-purpose MIP solver to explore large solution neighbourhoods defined through invalid linear inequalities called **local branching** cuts

#### Heuristic enslaved to the exact MIP solver

• **MIPping Chvàtal-Gomory cuts**: a "dual" scenario where a MIP heuristic is used to derive dual information (cutting planes) enhancing the convergence of an exact MIP solver



(joint work with Andrea Lodi, DEIS, University of Bologna)

#### **0-1 Mixed-Integer Programs**

• We consider a MIP with 0-1 variables

$$\min c^T x$$
  

$$Ax \ge b$$
  

$$x_j \in \{0, 1\} \quad \forall j \in \mathcal{B} \neq \emptyset$$
  

$$x_j \ge 0, \text{ integer } \quad \forall j \in \mathcal{G}$$
  

$$x_j \ge 0 \quad \forall j \in \mathcal{C}$$

Relevant cases:

- 0-1 ILP's (generic or with a special structure)
- MIP's with no "general integer" variables
- MIP's with both general integer and binary variables, the latter being often used to activate/deactivate costs/constraints (possibly using BIG-M tricks...)

# Assumption: once the binary variables have been fixed,

the problem becomes (relatively) easy to solve

• We aim at embedding a **black-box** (general-purpose or specific) 0-1 MIP solver within an overall **heuristic framework** that "helps" the solver to deliver improved heuristic solutions



The desired "Italian flag"

#### An example: the hard MIPLIB problem seymour.lp



Local Branch heuristic on a hard MIPLIB problem (seymour.lp)

#### Variable-fixing strategy (hard version)

A commonly-used (often quite effective) **diving** heuristic framework:

- Let  $x^H$  be an (almost) feasible "target solution"
- **Heuristic depth-first search** of the branching tree:



- iteratively <u>fix to 1</u> certain "highly efficient" variables  $x_j$  such as  $x_j^H = 1$  (green nodes)
- apply the **black-box module** to some **green nodes** only
- only limited **backtracking** allowed

#### **Advantages:**

- Problem size quickly reduced: the black-box solver can concentrate on smaller and smaller "core problems"
- The black-box solver is applied over and over on different subproblems (diversification)

#### **Disadvantages:**

- How to choose the "highly efficient" variables to be fixed?
- Wrong choices at early levels are typically very difficult to detect, even when **lower bounds** are computed along the way...

How to reach a sufficiently-deep branching level with a good lower bound?

#### **Variable-fixing strategy (soft version): local branching**

- <u>General idea:</u> don't decide the actual variables in  $S^H := \{ j \in B : x_j^H = 1 \}$  to be fixed (a difficult task!), but just their **number**  $|S^H| k$
- Introduce the **Local Branching** constraint

$$\Delta(x, x^H) \coloneqq \sum_{j \in B: x_j^H = 1} (1 - x_j) \le k$$

or, more generally,

$$\Delta(x, x^{H}) := \sum_{j \in B: x_{j}^{H} = 0} x_{j} + \sum_{j \in B: x_{j}^{H} = 1} (1 - x_{j}) \le k$$

in the original MIP model, so as to define a convenient **k-OPT neighbourhood**  $N(x^{H},k)$  of the target solution  $x^{H}$ 

#### "Akin to k-OPT for TSP"

#### **Local branching in an exact solution framework**

- Alternate between **strategic** and **tactical** branching decisions:
  - **<u>STRATEGIC</u>** (high level) branching phase:

 $\blacktriangleright$  concentrate on a convenient target solution and/or a certain neighbourhood size k

• **<u>TACTICAL</u>** (fine grain) branching phase:

> search  $N(x^H, k)$  by means of the black-box module (e.g. a general-purpose MIP code using branching on variables...)

**<u>Conjecture</u>:** a small value of *k* drives the black-box solver towards integrality as effectively as fixing a large number of variables, but with a **much larger <u>degree of freedom</u>**  $\rightarrow$  better solutions can be found at early branching levels...
















































#### Working with a node time limit: case (b)



#### Working with a node time limit: case (b)



#### Working with a node time limit: case (b)





Figure 2: Solving MIP instance tr24-15 (solution value vs. CPU seconds).

#### **Local branching in a heuristic solution framework**

Easy adaptation of the previous framework: in case of stalling, use a <u>diversification</u> mechanism to find a (worse) solution  $x^{h+1}$  to replace the current-best solution  $x^h$ , and continue

- Diversification by Variable Neighbourhood Search (Hansen & Mladenovic, 1998): Find a solution  $x^{h+1}$  close enough to  $x^h$ , but outside the current k-OPT neighbourhood
- Implementation: run the black-box solver (initial upper bound =  $+\infty$ ) to find the first feasible solution  $x^{h+1}$  of the current problem amended by the diversification constraint

$$k+1 \le \Delta(x, x^h) \le k+k/2$$

"Akin to a random 3-OPT move after several 2-OPT moves for TSP"



Figure 6: LocBra acting as a heuristic for instance B1C1S1 (solution value vs. CPU seconds).

Very good computational performance reported in the recent literature

- M. Fischetti, A. Lodi, "Local Branching", Mathematical Programming A, 98, 23-47, 2003
- M. Fischetti, C. Polo, M. Scantamburlo, "A Local Branching Heuristic for Mixed-Integer Programs with 2-Level Variables", Networks 44 (2), 61-72, 2004
- P. Hansen, N. Mladenovic, D. Urosevic, "Variable Neighborhood Search and Local Branching", Les Cahiers du GERAD, June 2004.

Related methodologies inspired by the local branching paradigm:

• E. Danna, E. Rothberg, C. Le Paper, "Exploring relaxation induced neighborhoods to improve MIP solutions", Mathematical Programming A, 102, 71–90, 2005

• Instances for which even finding a first **feasible** solution is extremely hard in practice, hence the local branching framework (as stated) cannot be initialized in a proper way...

**[Relaxed model]: relax** the MIP model by introducing **artificial variables** with big-M coefficients in the objective function

- The **"to feasibility and beyond"** solution approach:
  - 1. define an **infeasible** solution  $x^{H}$ , e.g., by rounding the optimal LP sol.
  - 2. relax the MIP model by introducing an artificial variable (with big-M coefficient in the objective function) for each constraint violated by  $x^{H}$
  - 3. apply the standard **local branching** framework starting from  $x^{H}$





Infeasibility reduction starting from the rounded LP solution



joint work with F. Glover (Univ. Colorado at Boulder, USA) and A. Lodi (DEIS, Univ. Bologna)

#### Motivation

- In some important practical cases, state-of-the-art MIP solvers may spend a very large computational effort before initializing their incumbent solution.
- We concentrate on heuristic methods to find a feasible solution for hard MIPs.
- This issue became even more important in the recent years, due to the success of local-search approaches for general MIPs such as *local branching* [Fischetti & Lodi, 2002] and *RINS* and *guided dives* [Danna, Rothberg, Le Pape, 2003]
- Indeed, these methods can only be applied if an initial feasible solution is known.

Hence: the earlier a feasible solution is found, the better!

#### The basic scheme

• How do you define feasibility for a MIP problem of the form:

$$\min\{c^T x : Ax \ge b, x_j \text{ integer } \forall j \in \mathcal{I}\} ?$$

• We propose the following definition:

a feasible solution is a point  $x^* \in P := \{x : Ax \ge b\}$  that is coincident with its rounding  $\widetilde{x}$ 

where:

- 1.  $[\cdot]$  represents scalar rounding to the nearest integer;
- 2.  $\widetilde{x}_j := [x_j^*]$  if  $j \in \mathcal{I}$ ; and 3.  $\widetilde{x}_j := x_j^*$  otherwise.
- Replacing coincident with as close as possible relatively to a suitable distance function  $\Delta(x^*, \tilde{x})$  suggests an iterative heuristic for finding a feasible solution of a given MIP.

#### The basic scheme (cont.d)

- We start from any  $x^* \in P$ , and define its rounding  $\widetilde{x}$ .
- At each iteration we look for a point  $x^* \in P$  which is as close as possible to the current  $\tilde{x}$  by solving the problem:

$$\min\{\Delta(x,\tilde{x}): x \in P\}$$

Assuming  $\Delta(x, \tilde{x})$  is chosen appropriately, is an easily solvable LP problem.

- If  $\Delta(x^*, \tilde{x}) = 0$ , then  $x^*$  is a feasible MIP solution and we are done.
- Otherwise, we replace  $\widetilde{x}$  by the rounding of  $x^*$ , and repeat.

- From a geometric point of view, this simple heuristic generates two hopefully convergent trajectories of points  $x^*$  and  $\tilde{x}$  which satisfy feasibility in a complementary but partial way:
  - 1. one,  $x^*$ , satisfies the linear constraints,
  - 2. the other,  $\widetilde{x}$ , the integer requirement.

## Plot of the infeasibility measure $\Delta(x^*,\widetilde{x})$ at each iteration



## **Definition of** $\Delta(x^*, \widetilde{x})$

• We consider the  $L_1$ -norm distance between a generic point  $x \in P$  and a given integer  $\tilde{x}$ , defined as:

$$\Delta(x, \widetilde{x}) = \sum_{j \in \mathcal{I}} |x_j - \widetilde{x}_j|$$

• Assuming (for the sake of notation) that all integer-constrained variables are binary,  $\Delta(x^*, \tilde{x})$  attains the simple form:

$$\Delta(x,\tilde{x}) := \sum_{j\in\mathcal{I}:\tilde{x}_j=0} x_j + \sum_{j\in\mathcal{I}:\tilde{x}_j=1} (1-x_j)$$
(1)

• Given an integer  $\tilde{x}$ , the closest point  $x^* \in P$  can therefore be determined by solving the LP:

$$\min\{\Delta(x,\tilde{x}): Ax \ge b\}$$
(2)

#### A basic **FP** implementation

```
1. initialize nIT := 0 and x^* := \operatorname{argmin}\{c^T x : Ax \ge b\};

2. if x^* is integer, return(x^*);

3. let \tilde{x} := [x^*] (= rounding of x^*);

4. while (time < TL) do

5. let nIT := nIT + 1 and compute x^* := \operatorname{argmin}\{\Delta(x, \tilde{x}) : Ax \ge b\};

6. if x^* is integer, return(x^*);

7. if [x^*] \ne \tilde{x} then

8. \tilde{x} := [x^*]

else

9. flip the TT = rand(T/2,3T/2) entries \tilde{x}_j (j \in \mathcal{I}) with highest |x_j^* - \tilde{x}_j|

10. endif

11. enddo
```

• Step 9 (stalling): we modify  $\tilde{x}$ , even if this increases its distance from  $x^*$ .

## Plot of the infeasibility measure $\Delta(x^*,\widetilde{x})$ at each pumping cycle



### **Summary of the computational results**

- ILOG-Cplex 8.1 is run on default version but avoiding preprocessing (following the suggestion of Ed Rothberg).
- FP solves LPs by leaving ILOG-Cplex decide which is the best algorithm (CPXoptimize).
- Over 83 hard 0-1 MIP instances in the MIPLIB test-bed:

FP failed in finding a feasible solution only in 3 case, while

#### ILOG-Cplex 8.1 failed 19 times.

• The quality of the solutions obtained is generally comparable, as well as the computing times.

## Mipping Chvàtal-Gomory cuts

Matteo Fischetti *University of Padova, Italy* 

Andrea Lodi University of Bologna, Italy IBM, T.J. Watson Research Center



M. Fischetti, A. Lodi, Optimizing over the first Chvàtal closure

#### **Notation and definitions**

• We consider an Integer Linear Program (ILP) of the form:

$$\min\{c^T x : Ax \le b, x \ge 0 \text{ integer}\}\$$

and two associated polyhedra:

$$P := \{x \in I\!\!R^n_+ : Ax \le b\}$$
$$P_I := conv\{x \in Z^n_+ : Ax \le b\} = conv(P \cap Z^n)$$

• A Chvàtal-Gomory (CG) cut is a valid inequality for  $P_I$  of the form:

 $\lfloor u^T A \rfloor x \leq \lfloor u^T b \rfloor$ where  $u \in R^m_+$  is called the CG multiplier vector, and  $\lfloor \cdot \rfloor$  denotes lower integer part.

• The first Chvàtal closure of P is defined as:

$$P_1 := \{ x \ge 0 : Ax \le b, \lfloor u^T A \rfloor x \le \lfloor u^T b \rfloor \text{ for all } u \in I\!\!R^m_+ \}$$

•  $P_1$  is indeed a polyhedron, i.e., a finite number of CG cuts suffice to define it. [Chvàtal 1973]

#### Notation and definitions (cont.d)

- Clearly,  $P_I \subseteq P_1 \subseteq P$ .
- Every fractional vertex  $x^*$  of P associated with a certain basis B (say) of (A, I) can be cut off by the CG cut in which u is chosen as the *i*-th row of  $B^{-1}$ , where *i* is the row associated with any fractional component of  $x^*$ . [Gomory 1958,1963]
- In some cases, one has that  $P_I = P_1$  as, e.g., for matching problems where undominated CG cuts correspond to the famous Edmonds' blossom inequalities. [Edmonds 1965]
- By the well-known equivalence between optimization and separation, we will address the Chvàtal-Gomory separation problem (CG-SEP) of the form:

Given any point  $x^* \in P$  find (if any) a CG cut that is violated by  $x^*$ , i.e., find  $u \in \mathbb{R}^m_+$  such that  $\lfloor u^T A \rfloor x^* > \lfloor u^T b \rfloor$ , or prove that no such u exists.

• However, CG-SEP is NP-hard, so optimizing over  $P_1$  also is. [Eisembrand 1999]

#### Some practical questions

- How difficult is, **in practice**, to optimize *exactly* over the first Chvàtal closure of a generic ILP?
- Which fraction of the integrality gap can be closed this way, e.g., for some hard problems in the MIPLIB library?
- Before affording the effort of designing and implementing sophisticated separation tools, we want to be sure the overall approach has some potentials...



www.Laeta?htmas.da

## MIPping CG separation

- Given the input point  $x^* \ge 0$  to be separated, CG-SEP calls for a CG cut  $\alpha^T x \le \alpha_0$  which is (maximally) violated by  $x^*$ , where  $\alpha = \lfloor u^T A \rfloor$  and  $\alpha_0 = \lfloor u^T b \rfloor$  for a certain  $u \in \mathbb{R}_+$ .
- Some properties:
  - 1. Any variable  $x_j$  such that  $x_j^* = 0$  can be omitted. Indeed, it does not contribute to the violation and its coefficient can be recomputed a posteriori as  $\alpha_j := u^T A_j$  (no time-consuming lifting operations being needed).
  - 2. The same holds for variables at their upper bound in  $x^*$ , which can be complemented.
  - 3. It is known that one can assume  $u_i < 1$  in case the *i*-th row of (A, b) is integer.
- Avoiding weak cuts:
  - Several equivalent solutions of the separation problem (in its optimization version) typically exist, some of which produce very weak cuts.
  - In practice, finding stronger cuts corresponds to producing "minimal" CG multiplier vectors with as few nonzero entries as possible.
- Our approach is to model the rank-1 Chvàtal-Gomory separation problem, which is known to be NP-hard, through a MIP model, which is then solved (exactly/heuristically) through a general-purpose MIP solver.

#### Mipping CG separation (cont.d)

• We then propose the following MIP model for CG-SEP:

max

$$(\sum_{j\in J(x^*)}\alpha_j x_j^* - \alpha_0) - \sum_{i=1}^m w_i u_i$$
(1)

$$f_j = u^T A_j - \alpha_j, \quad \text{for } j \in J(x^*)$$
 (2)

$$f_0 = u^T b - \alpha_0 \tag{3}$$

$$0 \le f_j \le 1 - \delta, \quad \text{for } j \in J(x^*) \cup \{0\}$$
(4)

$$0 \le u_i \le 1 - \delta$$
, for  $i = 1, \cdots, m$  (5)

$$\alpha_j \text{ integer}, \quad \text{for } j \in J(x^*) \cup \{0\}$$
 (6)

where  $J(x^*) := \{j \in \{1, \dots, n\} : x_j^* > 0\}$  is the support of  $x^*$  (possibly after having complemented some variables and updated b accordingly).

- We chose the  $\delta = 0.01$  so as to improve numerical stability.
- We also introduced the penalty term  $-\sum_{i} w_{i}u_{i}$  in the objective function (1), where  $w_{i} = 10^{-4}$  for all *i*, which is aimed at favoring the "minimality" of the CG multiplier vector *u*.

### Solving the CG-separation MIP

- Preliminary experiments where the CG-separation MIP is solved through a commercial general-purpose MIP solver (ILOG-Cplex 9.0.2)
  - 1. When the LP relaxation of the original ILP model is solved, we take all the violated Gomory fractional cuts that can be read from the tableau, and skip CG separation.
  - 2. The MIP solver for CG separation is invoked with an initial lower bound of 0.01, meaning that we are only interested in CG cuts violated by more than 0.01.
  - 3. At each update of the MIP incumbent solution  $x^*$ , the corresponding CG cut is stored in a pool, and added at the end of the separation phase (among the cuts with the same violation, only the one with the sparsest support is added).
  - 4. The MIP execution for CG separation is stopped if:
    - either the optimal solution has been found,
    - or au branching nodes has been explored after the last  $x^*$ update.
    - au=1000 if the violation of the incumbent is less than 0.2, and au=100 otherwise.
- We keep generating violated CG cuts of rank 1 until either no such violated cut exists (in which case we have optimized over the first closure), or because a time-limit condition is met.

#### Can we solve matching problems?

| ID      | initial LB | Optimum   | # iter.s | $\# \ cuts$ | CPU time |
|---------|------------|-----------|----------|-------------|----------|
| eil101  | 619.0      | 623.0     | 26       | 43          | 9.01     |
| gr120   | 6,662.5    | 6,694.0   | 33       | 45          | 10.47    |
| pr124   | 50,164.0   | 51,477.0  | 124      | 320         | 555.54   |
| gr137   | 66,643.5   | 67,009.0  | 11       | 31          | 1.68     |
| pr144   | 32,776.0   | 33,652.0  | 39       | 78          | 9.57     |
| ch150   | 6,281.0    | 6,337.0   | 59       | 141         | 71.19    |
| rat195  | 2,272.5    | 2,297.0   | 85       | 237         | 202.87   |
| kroA200 | 27,053.0   | 27,426.0  | 26       | 84          | 10.93    |
| kroB200 | 27,347.0   | 27,768.0  | 189      | 558         | 2,249.55 |
| ts225   | 115,605.0  | 121,261.0 | 323      | 857         | 4,906.48 |
| pr226   | 55,247.5   | 57,177.0  | 401      | 901         | 4,077.66 |
| gr229   | 127,411.0  | 128,353.0 | 78       | 224         | 219.00   |
| gil262  | 2,222.5    | 2,248.0   | 105      | 266         | 372.10   |
| a280    | 2,534.0    | 2,550.0   | 52       | 104         | 40.21    |
| lin318  | 38,963.5   | 39,266.0  | 292      | 768         | 6,103.32 |

• We started in a "friendly" setting by addressing 2-matching problems

## Can we solve matching problems? (cont.d)

- Some of these instances can be solved in a much shorter computing time by just applying ILOG-Cplex 9.0.2 MIP solver (by heavy branching), and obviously by considering the use of the special purpose separation of 2-matching inequalities. [Letchford, Reinelt and Theis 2004]
- However, for some hard instances a cut-and-branch approach in which we separate 100 rounds of rank-1 cuts, and we then switch to a commercial MIP solver for concluding the optimization gives promising results.

|         | ILOG-Cplex |         |          | cut-and-branch |        |            |        |        |
|---------|------------|---------|----------|----------------|--------|------------|--------|--------|
|         | % gap      |         |          |                | % gap  | separation |        | total  |
| ID      | closed     | nodes   | time     | # cuts         | closed | time       | nodes  | time   |
| pr124   | 100.0      | 43,125  | 104.17   | 116            | 62.1   | 27.96      | 1,925  | 37.51  |
| kroB200 | 100.0      | 330,913 | 2,748.24 | 129            | 64.1   | 49.34      | 4,113  | 76.30  |
| ts225   | 47.1       | 230,115 | 1h       | 250            | 80.7   | 164.77     | 13,552 | 352.35 |
| pr226   | 55.0       | 288,901 | 1h       | 179            | 62.9   | 61.13      | 19,977 | 281.89 |
| gr229   | 100.0      | 15,005  | 180.79   | 126            | 82.8   | 9.65       | 155    | 60.94  |
| gil262  | 100.0      | 117,506 | 2,094.77 | 110            | 84.0   | 12.24      | 217    | 36.78  |
| lin318  | 53.3       | 117,100 | 1h       | 187            | 64.9   | 110.69     | 25,953 | 933.97 |

#### How tight is the first closure for MIPLIB instances?

#### • Instances from MIPLIB, time limit of 3 hours

|         |            |          |        | % gap  |          |
|---------|------------|----------|--------|--------|----------|
| ID      | Optimum    | # iter.s | # cuts | closed | time     |
| air03   | 340,160.00 | 1        | 35     | 100.0  | 1.47     |
| gt2     | 21,166.00  | 160      | 424    | 100.0  | 506.25   |
| lseu    | 1,120.00   | 73       | 190    | 91.3   | 565.22   |
| mitre   | 115,155.00 | 1,509    | 5,398  | 100.0  | 9,394.17 |
| mod008  | 307.00     | 26       | 109    | 100.0  | 8.00     |
| mod010  | 6,548.00   | 17       | 62     | 100.0  | 13.05    |
| nw04    | 16,862.00  | 78       | 236    | 100.0  | 227.13   |
| p0033   | 3,089.00   | 40       | 152    | 85.4   | 12.95    |
| p0548   | 8,691.00   | 886      | 3,356  | 100.0  | 1,575.83 |
| stein27 | 18.00      | 98       | 295    | 0.0    | 490.02   |

- A cut-and-branch approach on instance harp2 gave very interesting results:
  - 100 rounds of separation (211 rank-1 CG cuts, 53 tight at the end),
  - 1,500 CPU seconds and 400K nodes (including both cut generation and branching).
  - ILOG-Cplex alone required more than 15,000 CPU seconds and 7M nodes.

#### **Beyond the first closure?**

• We addressed the possibility of using our cutting plane method as a pre-processing tool, to be used to strengthen the user's formulation by exploiting cuts of Chvàtal rank larger than 1.

This idea was evaluated by comparing two different cut preprocessors, namely:

- *cpx*: Apply ILOG-Cplex 9.0.2 (with mip emphasis "move best bound") on the current ILP model, save the final root-node model (including the generated cuts) in a file, and repeat on the new model until a total time limit is exceeded.
- *cpx-cg*: Apply ILOG-Cplex 9.0.2 (with mip emphasis "move best bound") on the current ILP model, followed by 600 seconds of our CG separation procedure; then save in file the ILP model with all the cuts that are active in the last LP solution, and repeat on the new model until a total time limit is exceeded.
- For the first time we found a provable optimal solution of value 51,200.00 for the very hard instance nsrand-ipx.
- Precisely, *cpx-cg* ran for 4,800 CPU seconds obtaining a tightened formulation that brought the initial LP bound from 49,667.89 to 50,665.71.

#### Beyond the first closure? (cont.d)



Figure 1: Lower bounds provided by *cpx* and *cpx-cg* after each call of the separation procedures, for the hard MIPLIB instance *timtab1*.

#### Can we discover new classes of strong inequalities?

- As in the spirit of PORTA, we can use the framework for obtaining off-line the facial structure of a specific problem. Advantage: we are not restricted to instances of very small size.
- To illustrate a possible application to the Asymmetric Travelling Salesman Problem (ATSP), we took a partial ATSP formulation including out- and in-degree equations, plus the SECs on 2-node sets, i.e., the NP-hard Asymmetric Assignment Problem (AAP) relaxation. [Balas 1989]
- We applied the method to ry48p from ATSPLIB, and we stored the CG cuts along with the associated CG multipliers.
- Through a careful analysis of one returned cut we have that:

which is (by computational methods) facet-defining for ATSP. Using *clique lifting* we can then obtain a large class of ATSP facets, that to the best of our knowledge is new.

#### **Conclusion** and future work

- We have been able to show computationally the quality of the Chvàtal-Gomory cuts and to answer (at least partially) to several natural questions about their **practical** effectiveness.
- Although an NP-hard problem has to be solved to separate inequalities of rank 1, the issue of generating those cuts is affordable in practice and it definitely deserves attention.
- An obvious issue for future research is the design of more specific separation procedures for CG cuts, i.e., ad-hoc heuristics for the corresponding MIP model.



# A new heuristic algorithm for the *Vehicle Routing Problem*



Roberto De Franceschi, DEI, University of Padua

Matteo Fischetti, DEI, University of Padua

Paolo Toth, DEIS, University of Bologna

1

# A method for the TSP (Sarvanov and Doroshko, 1981)



## **Capacitated Vehicle Routing Problem**





#### K routes

not exceeding the given capacity

with minimum total cost

## Basic extensions – Part I



#### Issue ...

It seems useful to "move" node  $v_3$  to route  $R_A$  (assuming this is feasible w.r.t.the capacity constraints)

But ... this cannot be done by a simple position-exchange between nodes

#### ... solution

Introduce the concepts of *restricted solution* and *insertion point*
### Basic extensions – Part II



#### Issue ...

It seems useful to "move" **both**  $v_3$  and  $v_4$ to  $R_A$  (if feasible)

But ... this cannot be done in one step by only "moving" single nodes

#### ... solution

go beyond the basic odd/even scheme and introduce the notion of extracted node sequences

### Basic extensions – Part III



#### Issue ...

It is not possible to insert *both*  $v_1$  and  $v_3$ - $v_4$  into the insertion point IP

#### ... solution

generate a (possibly large) number of *derived sequences* through extracted nodes

In the example, it is useful to generate the sequence  $v_1-v_3-v_4$  to be placed in the insertion point IP

## The SERR algorithm

| Steps               |                                                                                                                                        |  |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Initialization      | generate, by any heuristic or metaheuristic, an initial solution                                                                       |  |  |  |  |
| Iteratively:        |                                                                                                                                        |  |  |  |  |
| Selection           | select the nodes to be extracted, according to suitable criteria (schemes)                                                             |  |  |  |  |
| Extraction          | remove the selected nodes and generate the <b>restricted</b><br>solution                                                               |  |  |  |  |
| Recombination       | starting from extracted nodes, generate a (possibly large) number of derived sequences                                                 |  |  |  |  |
| <b>Re-insertion</b> | re-insert a subset of the derived sequences into the restricted solution, in such a way that all the extracted nodes are covered again |  |  |  |  |
| Evaluation          | verify a stopping condition and return, if it is the case, to the selection step                                                       |  |  |  |  |

## An example



# An example



## SERR Algorithm

Node re-insertion

Node re-insertion is done by solving the following *set-partitioning* model:

$$\min \sum_{s \in S} \sum_{i \in I} C_{si} x_{si}$$
$$\sum_{s \neq v} \sum_{i \in I} x_{si} = 1 \quad \forall v \text{ extracted}$$
$$\sum_{s \in S} x_{si} \leq 1 \quad \forall i \in I$$
$$d(r) + \sum_{s \in S} \sum_{i \in r} d(s) x_{si} \leq C \quad \forall r \in R$$
$$0 \leq x_{sj} \leq 1 \quad \text{integer} \quad \forall s \in S, \forall i \in I$$

 $x_{si} = 1$  if and only if sequence *s* goes into the insertion point *i*   $C_{si}$  (best) insertion cost of sequence *s* into the insertion point *i* d(r) total demand of the restricted route *r* 

d(s) total demand in the node sequence s

# An example (cont.d)



## An example (cont.d)



## **Initial Solution**



## Interesting solutions

Instance E-n101-k14 with rounded costs





Initial solution: cost 1076 Xu and Kelly, 1996 Final solution: cost 1067 New best known solution

14

## Interesting solutions

Instance M-n151-k12 with rounded costs





Initial solution: cost 1023 Gendreau, Hertz and Laporte, 1996 Final solution: cost 1022 New best known solution

15

## Some Computational Results

| Instance     | Optimal | SERR sol.    | Gap     | Time    |
|--------------|---------|--------------|---------|---------|
| P-n50-k8     | 631     | 631          | 0.00%   | 11:08   |
| P-n55-k10    | 694     | 700          | 0.86%   | 16:50   |
| P-n60-k10    | 744     | 744          | 0.00%   | 25:01   |
| P-n60-k15    | 968     | 975          | 0.72%   | 12:27   |
| P-n65-k10    | 792     | 796          | 0.51%   | 12:26   |
| P-n70-k10    | 827     | 834          | 0.48%   | 50:08   |
| B-n68-k9     | 1272    | 1275         | 0.24%   | 3:02:01 |
| E-n51-k5     | 521     | 521          | 0.00%   | 4:30    |
| E-n76-k7     | 682     | 682          | 0.00%   | 27:35   |
| E-n76-k8     | 735     | 742          | 0.95%   | 30:39   |
| E-n76-k10    | 830     | 835          | 0.60%   | 1:19:30 |
| E-n76-k14    | 1021    | 1032         | 1.08%   | 2:45:20 |
| E-n101-k8    | 815     | 820          | 0.61%   | 2:54:04 |
| E051-05e     | 524.61  | 524.61       | 0.00%   | 4:51    |
| E076-10e     | 835.26  | 835.32       | < 0.01% | 1:12:05 |
| E101-08e     | 826.14  | 831.91       | 0.70%   | 2:30:55 |
| E101-10c     | 819.56  | 819.56       | 0.00%   | 2:35:36 |
| E-n101-k14   | -       | 1076 -> 1067 | -       | 1:36:05 |
| M-n151-k12-a | -       | 1023 -> 1022 | -       | 7:46:33 |

New best known solution

Optimal solution(\*)

New best heuristic solution known

CPU times in the format [hh:]mm:ss

PC: Pentium M 1.6GHz

(\*) Most optimal solutions have been found very recently by Fukasawa, Poggi de Aragao, Reis, and Uchoa (September 2003)

### Results

Convergence properties of the SERR method



## Conclusions

#### Achieved goals

- 1. Definition of a new neighborhood with exponential cardinality and of an effective (non-polynomial) search algorithm
- 2. Simple implementation based on a general ILP solver
- **3. Evaluation** of the algorithm on a widely-used set of instances
- 4. Determination of the **new best solution** for two of the few instances not yet solved to optimality

#### Future directions of work

- 1. Adaptation of the method to more constrained versions of VRP, including VRP with precedence constraints
- 2. Use of an external metaheuristic scheme

#### Special contents...



