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MIP solvers for hard optimization problems 
 

• Mixed-integer linear programming (MIP) plays a central role in modelling difficult-to-solve 
(NP-hard) combinatorial problems 

 
• General-purpose (exact) MIP solvers are very sophisticated tools, but in some hard cases they 

are not adequate even after clever tuning 
 
• One is therefore tempted to quit the MIP framework and to design ad-hoc heuristics for the 

specific problem at hand, thus loosing the advantage of working in a generic MIP framework  
 

• As a matter of fact, too often a MIP model is developed only “to better describe the problem” or, 
in the best case, to compute bounds for benchmarking the proposed ad-hoc heuristics  
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I MIP you 
 
A neologism: To MIP something = translate into a MIP model and solve through a black-box solver 
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MIP solver enslaved to the local-search metaheuristic 
 
• MIPping local search: use (as a black-box) a general-purpose MIP solver to explore large 

solution neighbourhoods defined through invalid linear inequalities called local branching cuts 
 
 
 
 

Heuristic enslaved to the exact MIP solver 
 

• MIPping Chvàtal-Gomory cuts: a “dual” scenario where a MIP heuristic is used to derive 
dual information (cutting planes) enhancing the convergence of an exact MIP solver 
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(joint work with Andrea Lodi, DEIS, University of Bologna) 
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0-1 Mixed-Integer Programs 
 
• We consider a MIP with 0-1 variables 

 
Relevant cases: 

• 0-1 ILP’s  (generic or with a special structure)  
• MIP’s with no “general integer” variables 
• MIP’s with both general integer and binary variables, the latter being often used to 

activate/deactivate costs/constraints (possibly using BIG-M tricks…) 
 

Assumption: once the binary variables have been fixed, 
the problem becomes (relatively) easy to solve 

 



 7

• We aim at embedding a black-box (general-purpose or specific) 0-1 MIP solver within an overall 
heuristic framework that “helps” the solver to deliver improved heuristic solutions  

 

 

The desired “Italian flag” 
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An example: the hard MIPLIB problem  seymour.lp  
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Local Branch heuristic on a hard MIPLIB problem  (seymour.lp) 
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Variable-fixing strategy (hard version) 
 
A commonly-used (often quite effective) diving heuristic framework: 

• Let 
Hx  be an (almost) feasible “target solution” 

 
• Heuristic depth-first search of the branching tree: 

 
• iteratively  fix to 1  certain “highly efficient” variables 

jx  such as 1=H
jx  (green nodes) 

 
• apply the black-box module to some green nodes 

only 
 

• only limited backtracking allowed 
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Advantages:  

• Problem size quickly reduced: the black-box solver can concentrate on smaller and smaller 
“core problems” 

• The black-box solver is applied over and over on different subproblems (diversification) 
 

Disadvantages:  
• How to choose the “highly efficient” variables to be fixed? 
• Wrong choices at early levels are typically very difficult to detect, even when lower bounds 

are computed along the way… 
 

How to reach a sufficiently-deep branching level 
with a good lower bound? 
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Variable-fixing strategy (soft version): local branching 

 

• General idea: don’t decide the actual variables in   }1:{: =∈= H
j

H xBjS    to 

be fixed (a difficult task!), but just their number kS H −||   

 
• Introduce the Local Branching constraint  

kxxx j
xBj

H

H
j

≤−=Δ ∑
=∈

)1(:),(
1:  

or, more generally, 

kxxxx j
xBj

j
xBj

H

H
j

H
j

≤−+=Δ ∑∑
=∈=∈

)1(:),(
1:0:  

in the original MIP model, so as to define a convenient k-OPT neighbourhood  ),( kxN H
 of the 

target solution 
Hx  

“Akin to k-OPT for TSP” 
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Local branching in an exact solution framework 
 
• Alternate between strategic and tactical branching decisions: 

 
• STRATEGIC (high level) branching phase:  

 concentrate on a convenient target solution and/or a certain neighbourhood size k  
 

• TACTICAL (fine grain) branching phase:  

 search ),( kxN H

 by means of the black-box module (e.g. a general-purpose MIP 
code using branching on variables…) 

 
 

Conjecture: a small value of k drives the black-box solver towards integrality as effectively 
as fixing a large number of variables, but with a much larger degree of freedom  better 
solutions can be found at early branching levels… 
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Working with a node time limit: case (b)
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Local branching in a heuristic solution framework 

 
Easy adaptation of the previous framework:  in case of stalling, use a diversification mechanism to 

find a (worse) solution
1+hx to replace the current-best solution 

hx , and continue 
 

• Diversification by Variable Neighbourhood Search (Hansen & Mladenovic, 1998):  

Find a solution 
1+hx close enough to 

hx , but outside the current k-OPT neighbourhood 
 

• Implementation: run the black-box solver (initial upper bound = ∞+ ) to find the first feasible 

solution 
1+hx of the current problem amended by the diversification constraint 

 

2/),(1 kkxxk h +≤Δ≤+  

 

“Akin to a random 3-OPT move after several 2-OPT moves for TSP” 
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Computational performance in a heuristic context 
 

Very good computational performance reported in the recent literature 
 
• M. Fischetti, A. Lodi, “Local Branching”, Mathematical Programming A, 98, 23-47, 2003 

 

• M. Fischetti, C. Polo, M. Scantamburlo, “A Local Branching Heuristic for Mixed-Integer 
Programs with 2-Level Variables”, Networks 44 (2), 61-72, 2004 

 

• P. Hansen, N. Mladenovìc, D. Urosevic, “Variable Neighborhood Search and Local Branching”, 
Les Cahiers du GERAD, June 2004. 

 
 

Related methodologies inspired by the local branching paradigm: 
 

• E. Danna, E. Rothberg, C. Le Paper, “Exploring relaxation induced neighborhoods to improve 
MIP solutions”, Mathematical Programming A,  102, 71–90, 2005 
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Towards feasibility… and beyond  
 

• Instances for which even finding a first feasible solution is extremely hard in practice, hence the 
local branching framework (as stated) cannot be initialized in a proper way…  

 
[Relaxed model]: relax the MIP model by introducing artificial variables  with big-M 
coefficients in the objective function 
 

• The “to feasibility and beyond” solution approach: 

1. define an infeasible solution 
Hx , e.g., by rounding the optimal LP sol. 

2. relax the MIP model by introducing an artificial variable  (with big-M 

coefficient in the objective function)  for each constraint violated by 
Hx  

3. apply the standard local branching framework starting from 
Hx  
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Infeasibility reduction starting from the rounded LP solution 
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joint work with F. Glover (Univ. Colorado at Boulder, USA) and A. Lodi (DEIS, Univ. Bologna) 
 



Motivation

• In some important practical cases, state-of-the-art MIP solvers may spend a very large

computational effort before initializing their incumbent solution.

• We concentrate on heuristic methods to find a feasible solution for hard MIPs.

• This issue became even more important in the recent years, due to the success of local-search

approaches for general MIPs such as local branching [Fischetti & Lodi, 2002]

and RINS and guided dives [Danna, Rothberg, Le Pape, 2003]

• Indeed, these methods can only be applied if an initial feasible solution is known.

Hence: the earlier a feasible solution is found, the better!

M. Fischetti, F. Glover, A. Lodi, The feasibility pump 1



The basic scheme

• How do you define feasibility for a MIP problem of the form:

min{cTx : Ax ≥ b, xj integer ∀j ∈ I} ?

• We propose the following definition:

a feasible solution is a point x∗ ∈ P := {x : Ax ≥ b} that is coincident with its rounding x̃

where:

1. [·] represents scalar rounding to the nearest integer;

2. x̃j := [x∗
j ] if j ∈ I; and

3. x̃j := x∗
j otherwise.

• Replacing coincident with as close as possible relatively to a suitable distance function

∆(x∗, x̃) suggests an iterative heuristic for finding a feasible solution of a given MIP.
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The basic scheme (cont.d)

• We start from any x∗ ∈ P , and define its rounding x̃.

• At each iteration we look for a point x∗ ∈ P which is as close as possible to the current x̃ by

solving the problem:

min{∆(x, x̃) : x ∈ P}

Assuming ∆(x, x̃) is chosen appropriately, is an easily solvable LP problem.

• If ∆(x∗, x̃) = 0, then x∗ is a feasible MIP solution and we are done.

• Otherwise, we replace x̃ by the rounding of x∗, and repeat.

• From a geometric point of view, this simple heuristic generates two hopefully convergent

trajectories of points x∗ and x̃ which satisfy feasibility in a complementary but partial way:

1. one, x∗, satisfies the linear constraints,

2. the other, x̃, the integer requirement.
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Plot of the infeasibility measure ∆(x∗, x̃) at each iteration
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Definition of ∆(x∗, x̃)

• We consider the L1-norm distance between a generic point x ∈ P and a given integer x̃,

defined as:

∆(x, x̃) =
∑
j∈I

|xj − x̃j|

• Assuming (for the sake of notation) that all integer-constrained variables are binary, ∆(x∗, x̃)

attains the simple form:

∆(x, x̃) :=
∑

j∈I:x̃j=0

xj +
∑

j∈I:x̃j=1

(1 − xj) (1)

• Given an integer x̃, the closest point x∗ ∈ P can therefore be determined by solving the LP:

min{∆(x, x̃) : Ax ≥ b } (2)
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A basic FP implementation

1. initialize nIT := 0 and x∗ := argmin{cTx : Ax ≥ b};

2. if x∗ is integer, return(x∗);

3. let x̃ := [x∗] (= rounding of x∗);

4. while (time < TL) do
5. let nIT := nIT + 1 and compute x∗ := argmin{∆(x, x̃) : Ax ≥ b};

6. if x∗ is integer, return(x∗);

7. if [x∗] 6= x̃ then
8. x̃ := [x∗]

else
9. flip the TT = rand(T/2,3T/2) entries x̃j (j ∈ I) with highest |x∗

j − x̃j|
10. endif
11. enddo

• Step 9 (stalling): we modify x̃, even if this increases its distance from x∗.
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Plot of the infeasibility measure ∆(x∗, x̃) at each pumping cycle
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Summary of the computational results

• ILOG-Cplex 8.1 is run on default version but avoiding preprocessing (following the suggestion

of Ed Rothberg).

• FP solves LPs by leaving ILOG-Cplex decide which is the best algorithm (CPXoptimize).

• Over 83 hard 0-1 MIP instances in the MIPLIB test-bed:

FP failed in finding a feasible solution only in 3 case, while

ILOG-Cplex 8.1 failed 19 times.

• The quality of the solutions obtained is generally comparable, as well as the computing times.
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Notation and definitions

• We consider an Integer Linear Program (ILP) of the form:

min{cTx : Ax ≤ b, x ≥ 0 integer}

and two associated polyhedra:

P := {x ∈ IRn
+ : Ax ≤ b}

PI := conv{x ∈ Zn
+ : Ax ≤ b} = conv(P ∩ Zn)

• A Chvàtal-Gomory (CG) cut is a valid inequality for PI of the form:

buTAcx ≤ buTbc
where u ∈ Rm

+ is called the CG multiplier vector, and b·c denotes lower integer part.

• The first Chvàtal closure of P is defined as:

P1 := {x ≥ 0 : Ax ≤ b, buTAcx ≤ buTbc for all u ∈ IRm
+}

• P1 is indeed a polyhedron, i.e., a finite number of CG cuts suffice to define it. [Chvàtal 1973]
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Notation and definitions (cont.d)

• Clearly, PI ⊆ P1 ⊆ P .

• Every fractional vertex x∗ of P associated with a certain basis B (say) of (A, I) can be cut

off by the CG cut in which u is chosen as the i-th row of B−1, where i is the row associated

with any fractional component of x∗. [Gomory 1958,1963]

• In some cases, one has that PI = P1 as, e.g., for matching problems where undominated CG

cuts correspond to the famous Edmonds’ blossom inequalities. [Edmonds 1965]

• By the well-known equivalence between optimization and separation, we will address the

Chvàtal-Gomory separation problem (CG-SEP) of the form:

Given any point x∗ ∈ P find (if any) a CG cut that is violated by x∗, i.e., find u ∈ IRm
+

such that buTAcx∗ > buTbc, or prove that no such u exists.

• However, CG-SEP is NP-hard, so optimizing over P1 also is. [Eisembrand 1999]
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Some practical questions

• How difficult is, in practice, to optimize exactly over the first Chvàtal closure of a generic ILP?

• Which fraction of the integrality gap can be closed this way, e.g., for some hard problems in the

MIPLIB library?

• Before affording the effort of designing and implementing sophisticated separation
tools, we want to be sure the overall approach has some potentials...

M. Fischetti, A. Lodi, Optimizing over the first Chvàtal closure 3



MIPping CG separation

• Given the input point x∗ ≥ 0 to be separated, CG-SEP calls for a CG cut αTx ≤ α0 which is

(maximally) violated by x∗, where α = buTAc and α0 = buTbc for a certain u ∈ IR+.

• Some properties:

1. Any variable xj such that x∗j = 0 can be omitted.

Indeed, it does not contribute to the violation and its coefficient can be recomputed a

posteriori as αj := uTAj (no time-consuming lifting operations being needed).

2. The same holds for variables at their upper bound in x∗, which can be complemented.

3. It is known that one can assume ui < 1 in case the i-th row of (A, b) is integer.

• Avoiding weak cuts:

– Several equivalent solutions of the separation problem (in its optimization version) typically

exist, some of which produce very weak cuts.

– In practice, finding stronger cuts corresponds to producing “minimal” CG multiplier vectors

with as few nonzero entries as possible.

• Our approach is to model the rank-1 Chvàtal-Gomory separation problem, which is
known to be NP-hard, through a MIP model, which is then solved
(exactly/heuristically) through a general-purpose MIP solver.
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Mipping CG separation (cont.d)

• We then propose the following MIP model for CG-SEP:

max (
∑

j∈J(x∗)

αjx
∗
j − α0)−

m∑
i=1

wiui (1)

fj = u
T
Aj − αj, for j ∈ J(x

∗
) (2)

f0 = u
T
b − α0 (3)

0 ≤ fj ≤ 1− δ, for j ∈ J(x
∗
) ∪ {0} (4)

0 ≤ ui ≤ 1− δ, for i = 1, · · · , m (5)

αj integer, for j ∈ J(x
∗
) ∪ {0} (6)

where J(x∗) := {j ∈ {1, · · · , n} : x∗j > 0} is the support of x∗ (possibly after having

complemented some variables and updated b accordingly).

• We chose the δ = 0.01 so as to improve numerical stability.

• We also introduced the penalty term −
∑

i wiui in the objective function (1), where

wi = 10−4 for all i, which is aimed at favoring the “minimality” of the CG multiplier vector u.
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Solving the CG-separation MIP

• Preliminary experiments where the CG-separation MIP is solved through a commercial

general-purpose MIP solver (ILOG-Cplex 9.0.2)

1. When the LP relaxation of the original ILP model is solved, we take all the violated Gomory

fractional cuts that can be read from the tableau, and skip CG separation.

2. The MIP solver for CG separation is invoked with an initial lower bound of 0.01, meaning

that we are only interested in CG cuts violated by more than 0.01.

3. At each update of the MIP incumbent solution x∗, the corresponding CG cut is stored in a

pool, and added at the end of the separation phase (among the cuts with the same

violation, only the one with the sparsest support is added).

4. The MIP execution for CG separation is stopped if:

• either the optimal solution has been found,

• or τ branching nodes has been explored after the last x∗update.

τ = 1000 if the violation of the incumbent is less than 0.2, and τ = 100 otherwise.

• We keep generating violated CG cuts of rank 1 until either no such violated cut exists (in which

case we have optimized over the first closure), or because a time-limit condition is met.
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Can we solve matching problems?

• We started in a “friendly” setting by addressing 2-matching problems

ID initial LB Optimum # iter.s # cuts CPU time

eil101 619.0 623.0 26 43 9.01

gr120 6,662.5 6,694.0 33 45 10.47

pr124 50,164.0 51,477.0 124 320 555.54

gr137 66,643.5 67,009.0 11 31 1.68

pr144 32,776.0 33,652.0 39 78 9.57

ch150 6,281.0 6,337.0 59 141 71.19

rat195 2,272.5 2,297.0 85 237 202.87

kroA200 27,053.0 27,426.0 26 84 10.93

kroB200 27,347.0 27,768.0 189 558 2,249.55

ts225 115,605.0 121,261.0 323 857 4,906.48

pr226 55,247.5 57,177.0 401 901 4,077.66

gr229 127,411.0 128,353.0 78 224 219.00

gil262 2,222.5 2,248.0 105 266 372.10

a280 2,534.0 2,550.0 52 104 40.21

lin318 38,963.5 39,266.0 292 768 6,103.32
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Can we solve matching problems? (cont.d)

• Some of these instances can be solved in a much shorter computing time by just applying

ILOG-Cplex 9.0.2 MIP solver (by heavy branching), and obviously by considering the use of

the special purpose separation of 2-matching inequalities. [Letchford, Reinelt and Theis 2004]

• However, for some hard instances a cut-and-branch approach in which we separate 100 rounds

of rank-1 cuts, and we then switch to a commercial MIP solver for concluding the optimization

gives promising results.

ILOG-Cplex cut-and-branch

% gap % gap separation total

ID closed nodes time # cuts closed time nodes time

pr124 100.0 43,125 104.17 116 62.1 27.96 1,925 37.51

kroB200 100.0 330,913 2,748.24 129 64.1 49.34 4,113 76.30

ts225 47.1 230,115 1h 250 80.7 164.77 13,552 352.35

pr226 55.0 288,901 1h 179 62.9 61.13 19,977 281.89

gr229 100.0 15,005 180.79 126 82.8 9.65 155 60.94

gil262 100.0 117,506 2,094.77 110 84.0 12.24 217 36.78

lin318 53.3 117,100 1h 187 64.9 110.69 25,953 933.97

M. Fischetti, A. Lodi, Optimizing over the first Chvàtal closure 8



How tight is the first closure for MIPLIB instances?

• Instances from MIPLIB, time limit of 3 hours

% gap

ID Optimum # iter.s # cuts closed time

air03 340,160.00 1 35 100.0 1.47

gt2 21,166.00 160 424 100.0 506.25

lseu 1,120.00 73 190 91.3 565.22

mitre 115,155.00 1,509 5,398 100.0 9,394.17

mod008 307.00 26 109 100.0 8.00

mod010 6,548.00 17 62 100.0 13.05

nw04 16,862.00 78 236 100.0 227.13

p0033 3,089.00 40 152 85.4 12.95

p0548 8,691.00 886 3,356 100.0 1,575.83

stein27 18.00 98 295 0.0 490.02

• A cut-and-branch approach on instance harp2 gave very interesting results:

– 100 rounds of separation (211 rank-1 CG cuts, 53 tight at the end),

– 1,500 CPU seconds and 400K nodes (including both cut generation and branching).

– ILOG-Cplex alone required more than 15,000 CPU seconds and 7M nodes.
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Beyond the first closure?

• We addressed the possibility of using our cutting plane method as a pre-processing tool, to be

used to strengthen the user’s formulation by exploiting cuts of Chvàtal rank larger than 1.

This idea was evaluated by comparing two different cut preprocessors, namely:

– cpx : Apply ILOG-Cplex 9.0.2 (with mip emphasis “move best bound”) on the current ILP

model, save the final root-node model (including the generated cuts) in a file, and repeat on

the new model until a total time limit is exceeded.

– cpx-cg : Apply ILOG-Cplex 9.0.2 (with mip emphasis “move best bound”) on the current

ILP model, followed by 600 seconds of our CG separation procedure; then save in file the

ILP model with all the cuts that are active in the last LP solution, and repeat on the new

model until a total time limit is exceeded.

• For the first time we found a provable optimal solution of value 51,200.00 for the very hard

instance nsrand-ipx.

• Precisely, cpx-cg ran for 4,800 CPU seconds obtaining a tightened formulation that brought the

initial LP bound from 49,667.89 to 50,665.71.
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Beyond the first closure? (cont.d)

Figure 1: Lower bounds provided by cpx and cpx-cg after each call of the separation procedures,

for the hard MIPLIB instance timtab1.
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Can we discover new classes of strong inequalities?

• As in the spirit of PORTA, we can use the framework for obtaining off-line the facial structure

of a specific problem. Advantage: we are not restricted to instances of very small size.

• To illustrate a possible application to the Asymmetric Travelling Salesman Problem (ATSP), we

took a partial ATSP formulation including out- and in-degree equations, plus the SECs on

2-node sets, i.e., the NP-hard Asymmetric Assignment Problem (AAP) relaxation. [Balas 1989]

• We applied the method to ry48p from ATSPLIB, and we stored the CG cuts along with the

associated CG multipliers.

• Through a careful analysis of one returned cut we have that:

α =



0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0
0 1 0 0 1 1 0 0
1 1 0 1 0 1 1 0
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0


; α0 = 5 (7)

which is (by computational methods) facet-defining for ATSP. Using clique lifting we can then

obtain a large class of ATSP facets, that to the best of our knowledge is new.
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Conclusion and future work

• We have been able to show computationally the quality of the Chvàtal-Gomory cuts and to

answer (at least partially) to several natural questions about their practical effectiveness.

• Although an NP-hard problem has to be solved to separate inequalities of rank 1, the issue of

generating those cuts is affordable in practice and it definitely deserves attention.

• An obvious issue for future research is the design of more specific separation procedures for CG

cuts, i.e., ad-hoc heuristics for the corresponding MIP model.
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A method for the TSP (Sarvanov and Doroshko, 1981)

The ASSIGN neighborhood

1. consider a given tour as a sequence 
of nodes

2. fix the nodes in odd position, and 
remove the nodes in even
position

3. Reassign the removed nodes in 
optimal way—an easy-solvable  
min-cost assignment problem

Neighborhood of exponential cardinality
searchable in polynomial time, recently 
studied by: 

Deineko and Woeginger (2000) 
Firla, Spille and Weismantel (2002)
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Capacitated Vehicle Routing Problem

Depot

N customers

K vehicles2

2
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each with capacity C

with known demand di

Input

Goal

K routes
not exceeding the given 
capacity

with minimum  total cost
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Basic extensions – Part I  

Issue …

It seems useful to 
“move” node v3 to 
route RA (assuming 
this is feasible w.r.t.the 
capacity constraints)

But … this cannot be 
done by a simple 
position-exchange 
between nodes

… solution

v1

v2

v3 

RA RB

Introduce the concepts 
of restricted solution
and insertion point

v1

v2

v3

RA RB
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Basic extensions – Part II

Issue …

It seems useful to
“move” both v3 and v4
to RA (if feasible) 

But … this cannot be 
done in one step by 
only “moving” single 
nodes

… solution

go beyond the basic 
odd/even scheme and 
introduce the notion of 
extracted node 
sequences

v1

v2

v3

RA RB
v4

v1

v2

v3

RA RB
v4
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Basic extensions – Part III

Issue …

It is not possible to 
insert both v1 and v3-
v4 into the insertion 
point IP

… solution

generate a (possibly 
large) number of  
derived sequences
through extracted 
nodes

v1

v2

v3

RA RB
v4

v1

v2

v3

RA RB
v4

IP

In the example, it is useful to 
generate the sequence v1-v3-v4 to be 
placed in the insertion point IP
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The SERR algorithm

Steps

Initialization generate, by any heuristic or metaheuristic, an initial
solution

Iteratively:

Selection select the nodes to be extracted, according to suitable 
criteria (schemes)

Extraction remove the selected nodes and generate the restricted 
solution

Recombination starting from extracted nodes, generate a (possibly large) 
number of derived sequences

Re-insertion re-insert a subset of the derived sequences into the 
restricted solution, in such a way that all the extracted 
nodes are covered again

Evaluation verify a stopping condition and return, if it is the case,
to the selection step
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An example
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An example  
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SERR Algorithm

Node re-insertion

Node re-insertion is done by solving the following set-partitioning model:
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An example (cont.d)
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An example (cont.d)  
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Initial Solution
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Interesting solutions

Initial solution: cost 1076 Final solution: cost 1067
New best known solution

Instance E-n101-k14 with rounded costs

Xu and Kelly, 1996
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Interesting solutions

Initial solution: cost 1023

Instance M-n151-k12 with rounded costs

Final solution: cost 1022
New best known solutionGendreau, Hertz and Laporte, 1996
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Some Computational Results

Instance Optimal SERR sol. Gap

631 0.00%

0.86%

0.00%

0.72%

0.51%

0.48%

0.24%

0.00%

0.00%

0.95%

0.60%

1.08%

0.61%

0.00%

< 0.01%

0.70%

0.00%

-

-

700

744

975

796

834

1275

521

682

742

835

1032

820

524.61

835.32

831.91

819.56

1076 -> 1067

1023 -> 1022

Time

P-n50-k8 631 11:08

P-n55-k10 694 16:50

P-n60-k10 744 25:01

P-n60-k15 968 12:27

P-n65-k10 792 12:26

P-n70-k10 827 50:08

B-n68-k9 1272 3:02:01

E-n51-k5 521 4:30

E-n76-k7 682 27:35

E-n76-k8 735 30:39

E-n76-k10 830 1:19:30

E-n76-k14 1021 2:45:20

E-n101-k8 815 2:54:04

E051-05e 524.61 4:51

E076-10e 835.26 1:12:05

E101-08e 826.14 2:30:55

E101-10c 819.56 2:35:36

E-n101-k14 - 1:36:05

M-n151-k12-a - 7:46:33

New best known solution

Optimal solution(*)

New best heuristic solution 
known

CPU times in the format
[hh:]mm:ss

PC: Pentium M 1.6GHz

(*) Most optimal solutions 
have been found very 
recently by Fukasawa, Poggi
de Aragao, Reis, and Uchoa
(September 2003)
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Results

Convergence properties of the SERR method

Low-cost solutions 
available in the first 
iterations

The best 
heuristics 
from the 
literature are 
credited for 
errors of 
about 2%
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Conclusions

Achieved goals

1. Definition of a new neighborhood with exponential cardinality and of 
an effective (non-polynomial) search algorithm

2. Simple implementation based on a general ILP solver 

3. Evaluation of the algorithm on a widely-used set of instances 

4. Determination of the new best solution for two of the few instances not 
yet solved to optimality

Future directions of work

1. Adaptation of the method to more constrained versions of VRP, 
including VRP with precedence constraints

2. Use of an external metaheuristic scheme
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Special contents…
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