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MIP solvers for hard optimization problems 
 

• Mixed-integer linear programming (MIP) plays a central role in modelling difficult-to-solve 
(NP-hard) combinatorial problems 

 
• General-purpose (exact) MIP solvers are very sophisticated tools, but in some hard cases they 

are not adequate even after clever tuning 
 
• One is therefore tempted to quit the MIP framework and to design ad-hoc heuristics for the 

specific problem at hand, thus loosing the advantage of working in a generic MIP framework  
 

• As a matter of fact, too often a MIP model is developed only “to better describe the problem” or, 
in the best case, to compute bounds for benchmarking the proposed ad-hoc heuristics  

 
 

Can we devise an alternative use of a general-purpose MIP solver, e.g., 
to address important steps in the solution process? 
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I MIP you 
 
A neologism: To MIP something = translate into a MIP model and solve through a black-box solver 
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MIP-heuristic  enslaved  to  an  exact MIP solver 
 

• MIPping Ralph: use a black-box (general-purpose) MIP heuristic for the separation of  
Chvàtal-Gomory cuts, so as to enhance the convergence of an exact MIP solver  

(M. F., A. Lodi, “Optimizing over the 
first Chvàtal closure”, IPCO’05, 
2005) 
 

  
MIPped !!!          
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MIP-solver  enslaved  to  a  local-search  metaheuristic 
 

MIPping Fred: use a black-box (general-purpose) MIP solver to  
• explore large solution neighbourhoods defined through invalid linear inequalities called local 

branching cuts;  
• diversification is also modelled through MIP cuts  

     (M.F., A. Lodi, “Local Branching”, Mathematical Programming B, 98, 23-47, 2003) 
 

Given a feasible 0-1 solution Hx , define a MIP  
neighbourhood though  the local branching constraint 

 

kxxxx j
xBj

j
xBj

H

H
j

H
j

≤−+=Δ ∑∑
=∈=∈

)1(:),(
1:0:  

          
  

MIPped !!!          

Matteo
Rejected



 6

MIPping  critical  sub-tasks  in  the  design  of  specific  algorithms 
 
We teach engineers to use MIP models for solving their difficult problems 
(telecom, network design, scheduling, etc.) 
 
 

 
 

 
     Be  smart  as  an  engineer!  
 
Model the most critical steps in the design of your own algorithm 
through MIP models, and solve them (even heuristically) through a 
general-purpose MIP solver… 
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A method for the TSP (Sarvanov and Doroshko, 1981)
The ASSIGN neighborhood

1. consider a given tour as a sequence
of nodes

2. fix the nodes in odd position, and
remove the nodes in even
position

3. Reassign the removed nodes in
optimal way—an easy-solvable
min-cost assignment problem

Neighborhood of exponential cardinality
searchable in polynomial time, recently
studied by:

Deineko and Woeginger (2000)
Firla, Spille and Weismantel (2002)
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(1, 2, 3, 4, 5, 6, 7, 8, 9, …)
(1,--, 3, --,5, --,7, --, 9, …)
(1, 2, 3, 6, 5, 4, 7, 8, 9,…)
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Capacitated Vehicle Routing Problem

Depot
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not exceeding the given
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with minimum total cost
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Capacitated Vehicle Routing Problem

•Important practical applications
•NP-hard
•Generalizes the Traveling Salesman Problem (TSP)

Properties

Selected literature on VRP heuristics
1959 Dantzig and Ramser: problem formulation

1964 Clarke and Wright: heuristic algorithm
Balinski and Quandt: set-partitioning model

1976 Foster and Ryan: Petal heuristic

1981 Fisher and Jaikumar: Generalized Assignment heuristic

1993 Taillard: Tabu Search metaheuristic

1998 Toth and Vigo: Granular Tabu Search metaheuristic
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Basic extensions – Part I

Issue …
It seems useful to
“move” node v3 to
route RA (assuming
this is feasible w.r.t.the
capacity constraints)

But … this cannot be
done by a simple
position-exchange
between nodes

… solution

v1

v2

v3

RA RB

Introduce the concepts
of restricted solution
and insertion point

v1

v2

v3

RA RB
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Basic extensions – Part II

Issue …
It seems useful to
“move” both v3 and v4
to RA (if feasible)

But … this cannot be
done in one step by
only “moving” single
nodes

… solution
go beyond the basic
odd/even scheme and
introduce the notion of
extracted node
sequences

v1

v2

v3

RA RBv4

v1

v2

v3

RA RBv4
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Basic extensions – Part III

Issue …
It is not possible to
insert both v1 and v3-
v4 into the insertion
point IP

… solution
generate a (possibly
large) number of
derived sequences
through extracted
nodes

v1

v2

v3

RA RBv4

v1

v2

v3

RA RBv4
IP

In the example, it is useful to
generate the sequence v1-v3-v4 to be
placed in the insertion point IP
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The SERR algorithm

Steps

Initialization generate, by any heuristic or metaheuristic, an initial
solution

Iteratively:
Selection select the nodes to be extracted, according to suitable

criteria (schemes)
Extraction remove the selected nodes and generate the restricted

solution
Recombination starting from extracted nodes, generate a (possibly large)

number of derived sequences
Re-insertion re-insert a subset of the derived sequences into the

restricted solution, in such a way that all the extracted
nodes are covered again

Evaluation verify a stopping condition and return, if it is the case,
to the selection step
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An example
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An example
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SERR Algorithm

Node re-insertion

Node re-insertion is done by solving the following set-partitioning model:
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An example (cont.d)
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An example (cont.d)
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Initial Solution
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Interesting solutions

Initial solution: cost 1076 Final solution: cost 1067
New best known solution

Instance E-n101-k14 with rounded costs

Xu and Kelly, 1996
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Interesting solutions

Initial solution: cost 1023

Instance M-n151-k12 with rounded costs

Final solution: cost 1022
New best known solutionGendreau, Hertz and Laporte, 1996
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Some Computational Results

-
-
0.00%
0.70%
< 0.01%
0.00%
0.61%
1.08%
0.60%
0.95%
0.00%
0.00%
0.24%
0.48%
0.51%
0.72%
0.00%
0.86%
0.00%
Gap

1023 -> 1022
1076 -> 1067
819.56
831.91
835.32
524.61
820
1032
835
742
682
521
1275
834
796
975
744
700
631
SERR sol. TimeOptimalInstance

7:46:33-M-n151-k12-a
1:36:05-E-n101-k14
2:35:36819.56E101-10c
2:30:55826.14E101-08e
1:12:05835.26E076-10e

4:51524.61E051-05e
2:54:04815E-n101-k8
2:45:201021E-n76-k14
1:19:30830E-n76-k10

30:39735E-n76-k8
27:35682E-n76-k7
4:30521E-n51-k5

3:02:011272B-n68-k9
50:08827P-n70-k10
12:26792P-n65-k10
12:27968P-n60-k15
25:01744P-n60-k10
16:50694P-n55-k10
11:08631P-n50-k8

New best known solution

Optimal solution(*)

New best heuristic solution
known

CPU times in the format
[hh:]mm:ss

PC: Pentium M 1.6GHz

(*) Most optimal solutions
have been found very
recently by Fukasawa, Poggi
de Aragao, Reis, and Uchoa
(September 2003)
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Results

Convergence properties of the SERR method

Low-cost solutions
available in the first
iterations

The best
heuristics
from the
literature are
credited for
errors of
about 2%
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Conclusions

Achieved goals
1. Definition of a new neighborhood with exponential cardinality and of

an effective (non-polynomial) search algorithm
2. Simple implementation based on a general ILP solver
3. Evaluation of the algorithm on a widely-used set of instances
4. Determination of the new best solution for two of the few instances not

yet solved to optimality

Future directions of work

1. Adaptation of the method to more constrained versions of VRP,
including VRP with precedence constraints

2. Use of an external metaheuristic scheme
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