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Motivation

• According to the recent computational analysis reported in

M. Fischetti and M. Monaci, How tight is the corner relaxation?, Technical Report, 2005

the Gomory’s corner relaxation gives a very good approximation of the integer hull for MIPs

with general-integer variables, but...

• ... the approximation is less effective for problems with 0-1 variables only, as observed

already in

E. Balas, A Note on the Group-Theoretic Approach to Integer Programming and the 0-1 Case,

Operations Research 21, 1, 321-322 (1973).

• Explanation: for 0-1 ILPs, even the non-binding variable bound constraints xj ≥ 0 or xj ≤ 1

play an important role, hence their relaxation produces weaker bounds...
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• How can we take the variable bound constraints 0 ≤ xj ≤ 1 into account when
generating Gomory-like cuts?

• We introduce the concept of knapsack closure as a tightening of the classical Chavtal-Gomory

(CG) concept:

for all inequalities wTx ≤ w0 valid for the LP relaxation ...

... add to the original system all the valid inequalities for the knapsack polytope

conv{x ∈ {0, 1}n
: w

T
x ≤ w0}

• Question: Is the knapsack closure significantly tighter than the classical CG closure?

• Answer (work in progress): actually optimize over the KP closure on a significant set of

MIPLIB test instances.
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The basic machinery

• We are interested in the 0-1 ILP

min{cT
x : x ∈ P ∩X} (1)

where

P := {x ∈ <n
: Ax ≤ b, x ≥ 0} (2)

is a given polyhedron and

X ⊆ Z
n

is a “combinatorially simple” discrete set, e.g.,

X := {x ∈ Z
n

: 0 ≤ x ≤ 1} (3)
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• Let wTx ≤ w0 be any valid inequality for P , called source KP inequality in the sequel,

and let

KP (w, w0) := {x ∈ X : w
T
x ≤ w0} (4)

define a corresponding KP relaxation of the original ILP problem.

• Given a (fractional) point x∗ ∈ <n, we are interested in the following

Separation problem: Find a linear inequality αTx ≤ α0 that is valid for KP (w, w0)

but violated by x∗ (if any).
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The “easy” case: the source KP inequality is given

• If the source KP inequality is given, the separation problem amounts to the solution of a series

of knapsack problems, i.e., of optimizations of a linear function over the KP relaxation

KP (w, w0).

• Indeed, one can in principle enumerate all the members of KP (w, w0), say x1, . . . , xK, and

write the following LP model for separation:

max α
T
x
∗ − α0 (5)

α
T
x

i ≤ α0, for all i = 1, . . . , K (6)

−1 ≤ αj ≤ 1, for all j = 0, . . . , n (7)

where (7) are just normalization conditions.

• The above LP contains an exponential number of constraints ⇒ standard run-time cut

generation technique, where at each iteration the following steps are performed:
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• consider explicitly just a few solutions in KP (w, w0), say solutions x1, · · · , xh for some

h � K (initially, h := 0)

• compute an optimal solution (α∗, α∗0) of the corresponding restricted LP model

max α
T
x
∗ − α0 (8)

α
T
x

i ≤ α0, for all i = 1, . . . , h (9)

−1 ≤ αj ≤ 1, for all j = 0, . . . , n (10)

• if α∗x∗−α∗0 ≤ 0, then the method can be stopped as no violated inequality αTx ≤ α0 exists

• call an oracle to compute an optimal solution y∗ of the KP problem

max{α∗y : y ∈ KP (w, w0)}

• if α∗y∗ ≤ α∗0, then the inequality α∗x ≤ α∗0 is valid for KP (w, w0) and maximally violated,

so stop

• include y∗ in the separation model by setting h := h + 1 and xh := y∗, and repeat.
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The “hard” case: the source KP inequality is not given

• We need to extend the method above to the case where the inequality wTx ≤ w0 is not
given a priori (nor read from the optimal LP tableau etc.), but is completely general and

defined during the separation phase so as to maximize its effectiveness.

• This approach produces a much more powerful separation tool that goes far beyond the
separation over the first Chvátal closure...

... but requires to use Farkas’ Lemma to certify the validity of wTx ≤ w0 for P , and a more

involved MIP model to replace the “easy” LP separation model shown above.
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• Here is how the MIP separation model looks like:

max α
T
x
∗ − α0 (11)

w
T ≤ u

T
A, w0 ≥ u

T
b, u ≥ 0 (12)

α
T
x

i ≤ α0 + Mδi, for all i = 1, . . . , Q (13)

w
T
x

i ≥ w0 + ε−M(1− δi), for all i = 1, . . . , Q (14)

δi ∈ {0, 1}, for all i = 1, . . . , Q (15)

−1 ≤ αj ≤ 1, for all j = 0, . . . , n (16)

where X =: {x1, . . . , xQ}, and M and ε are a large and a small positive value, respectively.

Notice that u, w, w0, α, α0, δ are all variables.

• The idea of the model above is to certify the validity of wTx ≤ w0 for P (where w and w0

are now variables) by using Farkas’ characterization (12).

Because of (13), a point xi ∈ X can violate the inequality αTx ≤ α0 only by setting δi = 1

in which case (14) imposes that the valid inequality wTx ≤ w0 cuts it off (hence this point

cannot be feasible for the original ILP model).
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A geometrical interpretation

max α
T

x
∗ − α0 (17)

w
T ≤ u

T
A, w0 ≥ u

T
b, u ≥ 0 (18)

α
T

x
i ≤ α0 + Mδi, for all i = 1, . . . , Q (19)

w
T

x
i ≥ w0 + ε−M(1− δi), for all i = 1, . . . , Q (20)

δi ∈ {0, 1}, for all i = 1, . . . , Q (21)

−1 ≤ αj ≤ 1, for all j = 0, . . . , n (22)
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• The solution of the MIP separation model can be obtained along the same lines as for its LP

counterpart:

Find an optimal solution (u∗, w∗, w∗
0, α∗, α∗0, δ∗) of a restricted MIP separation problem

taking into account only a subset of points x1 · · · xh.

Invoke the KP oracle to solve

max{α∗y : y ∈ KP (w
∗
, w

∗
0)}

so as to certify the validity of α∗x ≤ α∗0 for the current KP relaxation KP (w∗, w∗
0)...

... or else to produce a new point xh+1 to be inserted in the MIP separation model (along with

the corresponding variable δh+1), and repeat.

M. Fischetti, A. Lodi, On the knapsack closure of 0-1 ILPs 10



Very preliminary experiments (small cases)

• Single 0-1 knapsack problems: NO GAP, all solved to optimality (as expected)

• Multiple 0-1 knapsack problems: about 20% more gap closed than the CG closure

• More results at MIP 2006, Miami, June 5–8, 2006.
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